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Decay of persistent spin helix due to the spin relaxation at boundaries
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We study electron spin relaxation in one-dimensional structures of finite length in the presence of Bychkov-
Rashba spin-orbit coupling and boundary spin relaxation. Using a spin kinetic equation approach, we formulate
boundary conditions for the case of a partial spin polarization loss at the boundaries. These boundary conditions
are used to derive corresponding boundary conditions for a spin drift-diffusion equation. The latter is solved
analytically for the case of relaxation of a homogeneous spin polarization in one-dimensional finite-length
structures. It is found that the spin relaxation consists of three stages (in some cases, two)—an initial D’yakonov-
Perel’ relaxation is followed by spin helix formation and its subsequent decay. Analytical expressions for the
decay time are found. We support our analytical results by results of Monte Carlo simulations.
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I. INTRODUCTION

Dynamics of electron spin polarization in semiconductor
structures has attracted a lot of attention recently in the context
of spintronics,1–3 which is playing a fundamental role in novel
technological developments based on different effects in this
scientific area. Moreover, the ability to understand and predict
the dynamics of electron spins in semiconductors is also
important for the area of two-terminal electronic devices with
memory, so-called memristive devices.4–8 In some of them,4,6

the electron spin degree of freedom defines their internal
state and, consequently, is responsible for their time-dependent
memory response.

Currently, much attention is focused on one-dimensional
(1D) systems with spin-orbit coupling since they demon-
strate a variety of unexpected and useful properties.9–16 In
particular, it has been shown by us recently14,15 that the
electron spin relaxation in finite-length wires14 and certain
two-dimensional (2D) channels15 is drastically different from
that in infinite 1D or 2D systems: Instead of relaxing to
zero, the homogeneous electron spin polarization relaxes into
a persistent spin polarization structure known as the spin
helix,17–20 a spin polarization configuration in which the
direction of spin polarization density rotates along the wire
(see Fig. 1). Moreover, system boundaries significantly modify
the dynamics of spin relaxation in finite-size 2D systems,21

decreasing the spin relaxation rate.
In real experimental situations, the spin helix configura-

tion cannot exist infinitely long. Here, we assume that the
main decay mechanism is due to spin relaxation at system
boundaries. Indeed, local strong random electric fields in the
vicinity of boundaries result in a random spin-orbit interaction
influencing the electron spin degree of freedom. It is thus
important to develop a theory and model spin relaxation in
constrained geometries taking into account the boundary spin
relaxation and understand how the boundary spin relaxation
changes the overall character of electron spin relaxation in the
entire system.

In this paper, we use both spin kinetic15 and diffusion20,22–25

equations to investigate the dynamics of electron spin polariza-
tion in semiconductor wires of finite length. Specifically, we

consider the dynamics of spin relaxation in one-dimensional
(1D) finite-length systems with a Bychkov-Rashba26 spin-orbit
interaction and boundary spin relaxation. Since it is easier to
incorporate the boundary spin relaxation into the boundary
conditions for spin kinetic equations,15 below we use the
spin kinetic equation approach first. Next, based on boundary
conditions for the spin kinetic equations, we derive boundary
conditions for the spin diffusion equation, which is easier to
solve. Finally, we obtain an exact solution for the problem of
spin relaxation in a finite-length wire. Our analytical studies
are complemented by semiclassical Monte Carlo simulations
of spin dynamics,27 giving additional insight into the problem.

II. MODEL AND BOUNDARY CONDITIONS

Let us consider electrons in a wire with a Bychkov-
Rashba26 spin-orbit interaction. It is assumed that between
different scattering events, the electron Hamiltonian is given
by

H = H0 + HR = p̂2

2m
− ασyp̂, (1)

where p̂ is the x component of the electron momentum
operator, m is the effective electron’s mass, σy is the Pauli
matrix, and α is the spin-orbit coupling constant. One can
show28 that the quantum-mechanical evolution of a spin of
an electron with a momentum p can be reduced to a spin
rotation with the angular velocity � = 2αp/h̄ about the axis
determined by the unit vector n = p × z/p. The scattering
events such as, for example, due to phonons or impurities,
randomize the electron trajectories and, correspondingly, the
spin precession axis. This causes an average spin relaxation
(the D’yakonov-Perel’ spin relaxation mechanism29,30).

A kinetic description of electron spin polarization in one-
dimensional wires can be given15 in terms of vectors S+
and S−, which are the spin polarizations of electrons moving
along the wire in the positive (with momentum p = mvex) and
negative (p = −mvex) x directions with the average velocity
v = l/τ , where l is the mean free path and τ is the momentum
relaxation time. The kinetic equation can be written as a system
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FIG. 1. (Color online) Transformation of homogeneous spin
polarization into a persistent spin helix in a wire of length L

with Bychkov-Rashba spin-orbit coupling without boundary spin
relaxation (modified from Ref. 14).

of two vector equations,15

(
∂

∂t
+ v

∂

∂x

)
S+ = −�ey × S+ − 1

2τ
(S+ − S−), (2)

(
∂

∂t
− v

∂

∂x

)
S− = �ey × S− − 1

2τ
(S− − S+), (3)

which take into account electron spin precessions [the first
term on the right-hand side (rhs) of Eqs. (2) and (3)] induced
by a Bychkov-Rashba26 spin-orbit interaction [the second term
on the rhs of Eq. (1)] and bulk scattering events [the second
term on the rhs of Eqs. (2) and (3)]. Here, p = mv is the
average momentum, and ey is the unit vector in the y direction.
Additionally, it is convenient to introduce the parameter η =
�/v = 2αmh̄−1, which gives the spin precession angle per unit
length. Note that the direction of spin precessions in Eqs. (2)
and (3) is different for left- and right-moving electrons.

Equations (2) and (3) incorporate the well-known
D’yakonov-Perel’ spin relaxation mechanism.29,30 Indeed,
trajectories of spin-polarized electrons are randomized by bulk
scattering events described by the second term on the rhs of
Eqs. (2) and (3). Correspondingly, the direction of spin rotation
becomes fluctuating, which causes average spin relaxation
(dephasing). The incomplete spin relaxation in finite-length
wires14 can be explained by the existence of a maximum
electron spin precession angle defined by the system size.

In this work, we study the dynamics of spin polarization
in a wire of the length L, −L/2 < x < L/2, in the presence
of spin relaxation at the boundaries � = [x = ±L/2]. The
boundary conditions, which take into account the relaxation
of spin polarization in elastic scatterings of electrons from the
boundaries, can be formulated as

[S− = γ S+]|x=L/2, (4)

[S+ = γ S−]|x=−L/2, (5)

where γ , 0 � γ � 1, is a phenomenological dimensionless
parameter characterizing the boundary relaxation rate. If γ =
1, then the spin polarization of scattered electrons is conserved
(no boundary spin relaxation). The case γ = 0 corresponds
to the total relaxation of spin polarization at the boundary,
whereas for 0 < γ < 1 we deal with a situation of a partial
boundary relaxation.

Combining Eqs. (2) and (3) we obtain a single equation for
the total spin polarization S = S+ + S−,

∂2S
∂t2

+ 1

τ

∂S
∂t

− v2 ∂2S
∂x2

− 2�vey × ∂S
∂x

+�2(S − Syey) = 0, (6)

where Sy is the y component of S. What are the boundary
conditions for S? These can be derived reformulating the
boundary conditions given by Eqs. (4) and (5) in terms of
the function S only. Subtracting Eq. (3) from Eq. (2) we find

∂

∂t
(S+ − S−) + v

∂S
∂x

+ �ey × S + 1

τ
(S+ − S−) = 0. (7)

Now, let us consider, for example, the boundary x = L/2.
From Eq. (4) we see that at x = L/2, S+ = S/(1 + γ ), and
S− = γ S/(1 + γ ). Substituting these boundary values into
Eq. (7) we obtain the corresponding boundary condition that
can be generally formulated for both boundaries as[

v
∂S
∂x

+ �ey × S ± 1 − γ

1 + γ

(
∂S
∂t

+ S
τ

)]∣∣∣∣
x=±L/2

= 0. (8)

It is important to keep in mind that Sy is not coupled to any
other component of spin polarization [see Eqs. (6) and (8)].
Consequently, we can safely take out Sy from our consideration
selecting Sy(x,t = 0) = 0.

Introducing a complex polarization

S = Sx + iSz, (9)

it is straightforward to rewrite Eq. (6) and boundary conditions
(8) in a more compact form

∂2S

∂t2
+ 1

τ

∂S

∂t
− v2

(
∂

∂x
− iη

)2

S = 0, (10)

[
∂S

∂x
− iηS ± 1 − γ

1 + γ

(
1

v

∂S

∂t
+ S

vτ

)]∣∣∣∣
x=±L/2

= 0. (11)

The diffusion limit of Eqs. (10) and (11) is realized when
L � l, ηl � 1, and t � τ . In this case we can neglect ∂2S/∂t2

compared to τ−1∂S/∂t in Eq. (10) and ∂S/∂t compared to S/τ

in Eq. (11), because all relevant spin relaxation times are much
longer than the momentum relaxation time τ . As a result, we
obtain

∂S

∂t
= l2

τ

(
∂

∂x
− iη

)2

S, (12)

(
∂S

∂x
− iηS ± 1 − γ

1 + γ

S

l

)∣∣∣∣
x=±L/2

= 0. (13)

The initial condition for Eq. (12) is

S(x,t = 0) = S0(x). (14)

We can exclude the rotations of the spin polarization vector
[defined by Eq. (9)] that are still present in Eqs. (12) and (13)
by introducing a complex field u via

u(x,t) = e−iηxS(x,t). (15)

Note that the rotation transformation (15) is a particular case
of more general transformations that can be used to remove
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spin precession.31 It can be shown14 that Eqs. (12) and (13)
transform into the ordinary heat equation

∂u

∂t
= D

∂2u

∂x2
, (16)

with the boundary condition(
∂u

∂x
± 1 − γ

1 + γ

u

l

)∣∣∣∣
x=±L/2

= 0, (17)

where D = l2/τ . Note that in the diffusion approximation y

component of spin polarization Sy satisfies the same Eqs. (16)
and (17).

III. RELAXATION OF HOMOGENEOUS POLARIZATION
IN FINITE-LENGTH WIRES

We find the general solution of Eq. (16) with the boundary
conditions (17) using the standard method of separation of
variables. The straightforward application of this method leads
to the following expression for the complex spin polarization:

S = eiηx

+∞∑
n=1

(
ane

− 4μ2
nD

L2 t sin
2μnx

L
+ bne

− 4ξ2
nD

L2 t cos
2ξnx

L

)
,

(18)

where μn and ξn are positive roots of

tan μn = −κμn and cot ξn = κξn, (19)

and κ = 2(1 + γ )l/[(1 − γ )L].
Thinking about relaxation of an initial spin polarization

profile, it is evident that an “overall” spin relaxation rate is
determined by the smallest of the roots of Eqs. (19), which is
the root ξ1 satisfying the inequality 0 < ξ1 < π/2 (note that
π/2 < μ1 < π ). We can find explicit expressions for the spin
relaxation time τr = L2/(4Dξ 2

1 ) in the limiting cases of small
and large κ . Specifically, when κ � 1 (the limit of strong
boundary spin relaxation),

ξ1 = π

2
(1 − κ) and τr = L2τ

π2l2
(1 + 2κ). (20)

In the opposite limit, when κ � 1 (the limit of weak boundary
spin relaxation), we obtain

ξ1 = 6κ − 1

6κ
3
2

and τr = (1 + γ )[1 + (3κ)−1]Lτ

2(1 − γ )l
. (21)

There are two additional time scales in the problem—the
D’yakonov-Perel’ spin relaxation time, τDP = τ/(lη)2, and the
time of persistent spin helix formation in the absence of bound-
ary spin scattering, τh. As these time scales are hidden in the
set of relaxation times describing the dynamics of the general
solution [Eq. (18)], we refer to our prior publication14 where
the expression for τh is given, τh = L2/(π2D). It is interesting
that τh cannot exceed τr , namely, τr � τh. Consequently, when
τr � τh, the spin dynamics can be considered as a three-stage
process: An initial D’yakonov-Perel’ spin relaxation (i) is
followed by spin helix formation (ii), which is followed by
its decay (iii). Otherwise, when τr and τh are close, the decay
stage significantly overlaps with the spin helix formation and
thus stages (ii) and (iii) cannot be well separated.

In the case of three-stage dynamics, the spin helix amplitude
(at the end of the second stage) is defined by the relation
between τDP and τh times. In particular, if τh � τDP (or,
equivalently, Lη � π ), then the spin helix amplitude is much
smaller than the amplitude of the initial spin polarization. In
the opposite regime, when τh � τDP (or Lη � π ), the spin
helix amplitude is comparable to the initial one.

As an application of the above theory, let us consider
a specific problem—the problem of relaxation of initially
homogeneous spin polarization pointing in the z direction. In
this case, the initial condition simply reads S(x,0) = iS0 [see
Eq. (9)]. The coefficients an and bn are obtained by substitution
of this initial condition into Eq. (18), its multiplication by an
appropriate sine or cosine function, and subsequent integration
over x. This results in

an

S0
= 4μn cos μn[2 sin(ηL/2) + ηLκ cos(ηL/2)][

(ηL)2 − 4μ2
n

]
(1 + κ cos2 μn)

, (22)

bn

S0
= i

4ξn sin ξn[2 cos(ηL/2) − ηLκ sin(ηL/2)][
4ξ 2

n − (ηL)2
]
(1 + κ sin2 ξn)

. (23)

Figure 2 demonstrates the dynamics of initially homoge-
neous spin polarization plotted using Eqs. (18), (22), and (23).
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FIG. 2. (Color online) Relaxation of homogeneous spin polariza-
tion initially polarized in the z direction. (a) and (b) show the z and x

components of spin polarization density at several moments of time.
The wire length L = 100l, ηl = 0.1545, γ = 0.97. These parameters
result in κ = 1.31 and ξ1 = 0.78.
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FIG. 3. (Color online) Temporal evolution of the spin polarization
density Sz at the wire’s center for the same parameter values as in
Fig. 2. The fitting curves are obtained employing numerical values of
τDP and τr calculated for these parameter values.

We emphasize that the initial relaxation at the center is of
D’yakonov-Perel’ type as, e.g., Sz and Sx in the central region
(see t = 100τ curves) are flat. The spin helix configuration is
clearly seen at t ∼ 1000τ . The subsequent slower evolution
of spin polarization is caused by the boundary spin scattering.
The boundary spin scattering results in smaller amplitudes of
spin polarization oscillations closer to the ends and a larger
amplitude at the wire’s center.

Three stages of spin polarization dynamics, however, are
better visualized plotting the magnitude of Sz at the wire’s
center as a function of time. Figure 3 shows Sz(0,t) for
two selected values of boundary spin scattering coefficient
γ . Clearly, both curves contain two intervals of exponential
relaxation that are seen on this logarithmic plot as straight
lines. The initial interval of D’yakonov-Perel’ spin relaxation
(0 < t � 200τ ) is not influenced by the boundary spin relax-
ation. The latter, however, determines the character of spin
relaxation at long times 750τ � t . The interval of spin helix
formation (200τ � t � 750τ ) is located between two regions
of exponential evolution mentioned above.

In order to obtain additional insight on spin relaxation
with boundary spin scattering, we have performed Monte
Carlo simulations using an approach described in Refs. 32
and 27. This approach is based on a semiclassical description of
electron space motion and a quantum-mechanical description
of spin dynamics. All the main parts of the Monte Carlo
simulation algorithm are described in Refs. 32 and 27 and
will not be repeated here. The only different feature of the
code is the boundary spin scattering mechanism implemented
in the following way. When an electron scatters from a
boundary, the direction of its spin is inverted with a probability
p = (1 − γ )/2. It is not difficult to notice that this part of the
algorithm is equivalent to the boundary conditions [Eqs. (4)
and (5)] for the spin kinetic equation.

There is an excellent agreement between our analytical
results and the numerical Monte Carlo simulations. For
example, let us consider the dynamics of spin relaxation in
a finite-length wire with boundary spin scattering when the
spin precession angle per mean free path is relatively small.
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FIG. 4. (Color online) Comparison of the z component of spin
polarization calculated analytically (straight lines) and numerically
using Monte Carlo simulations (dots) for L = 100l, ηl = 0.015 45,
γ = 0.8.

We also assume that at the initial moment of time t = 0,
the spin polarization is homogeneous and points in the z

direction. For this situation, Fig. 4 presents a comparison of Sz

at different moments of time plotted using Eqs. (18), (22), and
(23) (smooth curves) and Monte Carlo simulations (dots). We
see that there is an excellent agreement between the analytical
and numerical results.

Figure 4 shows a stronger distortion of the spin helix closer
to the ends. This is a consequence of the diffusive dynamics
that reduces the speed of spin polarization transfer along the
wire. In the opposite ballistic regime of transport, when l � L,
we expect a faster formation of the spin helix (see Ref. 15) and
its uniform decay. However, the ballistic regime is out of scope
of this paper and is the subject for the future work.

IV. CONCLUSIONS

In conclusion, we have developed a theory of spin relaxation
in wires accounting for boundary spin relaxation. For both spin
kinetic and diffusion equations appropriate boundary condi-
tions have been derived. Based on this theory, we predict the
existence of three (in some cases, however, two) stages of spin
dynamics consisting of an initial D’yakonov-Perel’ relaxation
followed by spin helix formation and its subsequent decay.
Experimentally, parameters of boundary spin relaxation can
be extracted from both the long-time spin helix decay rate and
spin helix shape distortion. In addition to the spin relaxation in
finite-length wires with Rashba spin-orbit coupling, our theory
can also be applied to describe spin relaxation in certain 2D
channels in the presence of both Rashba and Dresselhauss
spin-orbit couplings of equal strength (see Ref. 15 for more
details).
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22A. A. Burkov, A. S. Núñez, and A. H. MacDonald, Phys. Rev. B

70, 155308 (2004).
23E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, Phys. Rev.

Lett. 93, 226602 (2004).
24S. Saikin, J. Phys.: Condens. Matter 16, 5071 (2004).
25Y. V. Pershin, Phys. E 23, 226 (2004).
26Y. Bychkov and E. Rashba, JETP Lett. 39, 78 (1984).
27S. Saikin, Y. V. Pershin, and V. Privman, Proc. Circuits Devices

Syst. 152, 366 (2005).
28Y. V. Pershin and V. A. Slipko, arXiv:1007.0853v1; Phys. Rev. B

82, 125325 (2010).
29M. I. Dyakonov and V. I. Perel’, Sov. Phys. Solid State 13, 3023

(1972).
30M. I. Dyakonov and V. Y. Kachorovskii, Sov. Phys. Semicond. 20,

110 (1986).
31I. V. Tokatly and E. Y. Sherman, Phys. Rev. B 82, 161305 (2010).
32A. A. Kiselev and K. W. Kim, Phys. Rev. B 61, 13115 (2000).

035430-5

http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1016/j.physrep.2010.04.002
http://dx.doi.org/10.1103/PhysRevB.78.113309
http://dx.doi.org/10.1103/PhysRevB.78.113309
http://dx.doi.org/10.1109/JPROC.2009.2021077
http://dx.doi.org/10.1109/JPROC.2009.2021077
http://dx.doi.org/10.1080/00018732.2010.544961
http://dx.doi.org/10.1109/TCT.1971.1083337
http://dx.doi.org/10.1109/PROC.1976.10092
http://dx.doi.org/10.1038/nnano.2011.103
http://dx.doi.org/10.1038/nnano.2011.103
http://dx.doi.org/10.1103/PhysRevB.83.115305
http://dx.doi.org/10.1103/PhysRevB.82.235303
http://dx.doi.org/10.1103/PhysRevLett.93.126601
http://dx.doi.org/10.1103/PhysRevLett.93.126601
http://dx.doi.org/10.1103/PhysRevB.84.195314
http://dx.doi.org/10.1103/PhysRevB.84.195314
http://dx.doi.org/10.1103/PhysRevB.83.193302
http://dx.doi.org/10.1103/PhysRevB.83.193302
http://dx.doi.org/10.1103/PhysRevB.84.155306
http://dx.doi.org/10.1103/PhysRevB.84.155306
http://dx.doi.org/10.1103/PhysRevLett.107.156602
http://dx.doi.org/10.1103/PhysRevLett.107.156602
http://dx.doi.org/10.1103/PhysRevLett.97.236601
http://dx.doi.org/10.1103/PhysRevLett.97.236601
http://dx.doi.org/10.1103/PhysRevLett.98.076604
http://dx.doi.org/10.1038/nature07871
http://dx.doi.org/10.1038/nature07871
http://dx.doi.org/10.1103/PhysRevB.82.125325
http://dx.doi.org/10.1103/PhysRevB.84.075331
http://dx.doi.org/10.1103/PhysRevB.70.155308
http://dx.doi.org/10.1103/PhysRevB.70.155308
http://dx.doi.org/10.1103/PhysRevLett.93.226602
http://dx.doi.org/10.1103/PhysRevLett.93.226602
http://dx.doi.org/10.1088/0953-8984/16/28/025
http://dx.doi.org/10.1016/j.physe.2004.03.007
http://dx.doi.org/10.1049/ip-cds:20045225
http://dx.doi.org/10.1049/ip-cds:20045225
http://arXiv.org/abs/arXiv:1007.0853v1
http://dx.doi.org/10.1103/PhysRevB.82.125325
http://dx.doi.org/10.1103/PhysRevB.82.125325
http://dx.doi.org/10.1103/PhysRevB.82.161305
http://dx.doi.org/10.1103/PhysRevB.61.13115



