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Nonlinear elastic behavior of two-dimensional molybdenum disulfide
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This research explores the nonlinear elastic properties of two-dimensional molybdenum disulfide. We derive
a thermodynamically rigorous nonlinear elastic constitutive equation and then calculate the nonlinear elastic
response of two-dimensional MoS2 with first-principles density functional theory (DFT) calculations. The
nonlinear elastic properties are used to predict the behavior of suspended monolayer MoS2 subjected to a
spherical indenter load at finite strains in a multiple-length-scale finite element analysis model. The model is
validated experimentally by indenting suspended circular MoS2 membranes with an atomic force microscope. We
find that the two-dimensional Young’s modulus and intrinsic strength of monolayer MoS2 are 130 and 16.5 N/m,
respectively. The results approach Griffith’s predicted intrinsic strength limit of σint ∼ E

9 , where E is the Young’s
modulus. This study reveals the predictive power of first-principles density functional theory in the derivation
of nonlinear elastic properties of two-dimensional MoS2. Furthermore, the study bridges three main gaps that
hinder understanding of material properties: DFT to finite element analysis, experimental results to DFT, and the
nanoscale to the microscale. In bridging these three gaps, the experimental results validate the DFT calculations
and the multiscale constitutive model.
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I. INTRODUCTION

Two-dimensional (2D) materials have recently become an
area of increased research focus despite their long being
considered thermodynamically unstable.1 The experimental
significance of 2D materials was first revealed in 2004 when
the electrical properties of graphite crystals limited to only
a few atoms thick were probed.2 These 2D crystals were
obtained via the clever and simple mechanical exfoliation
method. Since this groundbreaking study, graphene and other
2D materials have been studied in areas of basic research such
as electronics, optics, and mechanics.3–8

Two-dimensional materials serve as outstanding testbeds
for fundamental studies of mechanical properties under ex-
treme strains.4 They can be fabricated in a pristine condition
essentially free of defects, which enables them to achieve
extreme tensile strain states prior to fracture or void nucleation.
The mechanical flexibility of 2D materials allows them to con-
form to a surface and adhere to it via van der Waals interactions,
thus simplifying the boundary conditions on a 2D material
during mechanical characterization.4 In addition, the relatively
small number of atoms per unit cell in known 2D materials
offer the opportunity to use first-principles and molecular
dynamics computational methods.9 Finally, the 2D geometry
restricts the possible deformation states which render higher-
order nonlinear continuum elasticity formulations sufficiently
tractable to combine with the atomistic methods to formulate
multi-length-scale models that can be readily incorporated
into standard finite element analysis (FEA) formulations.9,10

Most of these previous studies concentrated on monatomi-
cally thin graphene, which is a single close-packed atomic
plane of a single component (i.e., carbon), but other more
general 2D materials can be produced by mechanical
exfoliation.7,11–15

In this study, we extend these methods to study 2D
molybdenum disulfide, which is a multicomponent and mul-
tiatomic layer system. Molybdenum disulfide is a layered
transition metal dichalcogenide (LTMD) composed of layers
of molybdenum atoms sandwiched between sulfur atoms, with
each molybdenum atom ionically bonded to six sulfur atoms
as seen in Fig. 1. Multiple MoS2 layers are held together in the
bulk material through van der Waals interactions, so the MoS2

monolayers are easily cleaved.
Molybdenum disulfide has been used as a solid lubricant for

centuries and was studied as a material for detecting and recti-
fying radio signals in the 1950s.16 Bulk MoS2 has a hardness
of 1–1.5 on the Mohs scale and exhibits excellent lubrication
in high vacuum or under atmospheric conditions.16 A study
on bundles of MoS2 nanotubes reveals a Young’s modulus of
120 GPa with an intertube shear modulus of 160 ± 30 MPa.17

Bulk MoS2 is an indirect gap semiconductor with a band gap of
1.2 eV, but by reducing the number of layers one can modify the
band structure and create a direct gap semiconductor.5,12,18–21

Recently, monolayers of MoS2 have been investigated as
materials for microelectromechanical systems (MEMS) and
nanoelectromechanical systems (NEMS) devices.5,7,12,17 The
low power dissipation of MoS2 direct gap semiconductors and
its low cost make it an ideal candidate for flexible electronic
applications. Studies have investigated the crystal structure
and electrical properties.5–7,12,14,16,18,20–22 Finally, the elastic
properties of 2D MoS2 have been investigated to characterize
the Young’s modulus and breaking strength.11 However a more
complete understanding of the mechanical properties of 2D
MoS2 is necessary to be able to predict its response upon
incorporation into MEMS and NEMS devices.

The thickness of a 2D material is indeterminate because its
out-of-plane electron configuration may change as a function
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FIG. 1. (Color online) Atomic structure of monolayer MoS2. The
green and yellow spheres represent Mo and S atoms, respectively:
(a) top view of the atomic structure; (b) side view of MoS2 to highlight
the out-of-plane sulfur atoms; and (c) oblique view of 4 × 4 unit cells.

of deformation state. Hence, stress σ and elastic moduli such
as Young’s modulus E are defined intrinsically as force per
length rather than force per area. For purposes of comparison
to three-dimensional (3D) materials, the derived 3D quantities
of stress and elastic moduli of a 2D material can be determined
as σ 3D = σ/t and E3D = E/t , respectively, where t is an
assumed thickness of the 2D materials. Herein, we assume
t = 0.615 nm as a representative thickness of 2D MoS2,
which is the interlayer spacing between layers of MoS2 in the
bulk material.16 Unless explicitly expressed otherwise with
a superscript 3D, we assume all stress and moduli are 2D
quantities.

The overall goal of this study is to determine the nonlinear
elastic properties of single-layer MoS2. First, we derive a
thermodynamically rigorous continuum elastic constitutive
model of the nonlinear elastic response of MoS2 via a Taylor
series expansion of the elastic strain energy density potential.
We then use density functional theory (DFT) to calculate the
elastic response of MoS2 for several in-plane deformation
states of uniaxial strain as well as biaxial strain. The magnitude
of the applied strains ranges from infinitesimal to finite
deformations beyond that corresponding to the intrinsic (i.e.,
maximum) stress. All components of the stiffness tensors of
the higher-order elastic constitutive model are determined
by fitting the continuum model to the stress versus strain
results of the uniaxial strain deformation states studied by
DFT calculations. We use the crystal symmetry of 2D MoS2

to determine the number of independent elastic constants for
the continuum model. To verify the internal consistency of
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FIG. 2. (Color online) Unit cell of monolayer MoS2. The axes
are labeled by the black arrows and the unit cell is contained in the
dashed red box. Atoms of S lie both above and below the plane of the
Mo atoms.

the higher-order continuum theory, we calculate the elastic
response with DFT of MoS2 under a condition of uniaxial
stress and demonstrate that the continuum model, fit only to the
uniaxial strain DFT results, accurately predicts the DFT results
in uniaxial stress. To validate the model, we use atomic force
microscopy (AFM) nanoindentation to determine the force-
displacement response as well as the force required to rupture a
monolayer MoS2 film suspended over open circular holes. The
results of a detailed finite element analysis of the indentation
experiments using the nonlinear elastic continuum formulation
are consistent with the experimental measurements to within
experimental uncertainty, thus validating the model.

II. NONLINEAR ELASTIC CONSTITUTIVE MODEL

Figure 2 shows the undeformed unit cell of monolayer
MoS2 described by two lattice vectors ai (i = 1,2). Unit
vectors in the x1- and x2-directions relative to Fig. 2 are
denoted as ê1 and ê2, respectively, and a1 = a1ê1 and a2 =
a2( 1

2 ê1 +
√

3
2 ê2). As will be discussed in the following, the

magnitudes of the lattice vectors are a1 = a2 = 3.16 Å in the
undeformed reference configuration.

A macroscopic homogeneous in-plane deformation of the
2D crystal results in deformation of the lattice vectors a′

i = Fai

where F is the deformation gradient tensor and a′
i are the

deformed lattice vectors. Writing the Lagrangian strain tensor
as η = 1

2 (FTF − I) where I is the identity tensor, the strain
energy density potential has the functional form � = �(η),
which quantifies the elastic strain energy per unit reference
area of the undeformed MoS2.9

The elastic strain energy density potential can be expressed
as a Taylor series expansion in powers of strain as

� = 1

2!
Cijklηij ηkl + 1

3!
Cijklmnηij ηklηmn

+ 1

4!
Cijklmnopηij ηklηmnηop

+ 1

5!
Cijklmnopqrηij ηklηmnηopηqr + · · · , (1)
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where Cijkl, Cijklmn, Cijklmnop, and Cijklmnopqr are the second-,
third-, fourth-, and fifth-order stiffness tensors, respectively;9

the summation convention is adopted for repeating indices
and summation for lower case indices runs from 1 to 3. The
quadratic term in strain suffices to describe a linear elastic
material, so the higher-order terms are necessary to describe
the nonlinear response. The second Piola-Kirchhoff stress
tensor �ij , defined in terms of its work conjugate Lagrangian
strain, is calculated by taking ∂�/∂ηij to obtain

�ij = Cijklηkl + 1

2!
Cijklmnηklηmn + 1

3!
Cijklmnopηklηmnηop

+ 1

4!
Cijklmnopqrηklηmnηopηqr + · · · . (2)

Upon adopting the Voigt notation,23 the stress tensor can
be expressed as

�I = CIJ ηJ + 1

2!
CIJKηJ ηK + 1

3!
CIJKLηJ ηKηL

+ 1

4!
CIJKLMηJ ηKηLηM + · · · , (3)

where the lower case indices transform to Voigt indices in
upper case letters as 11→1, 22→2, 33→3, 23→4, 13→5, and
12→6; the summation convention still holds and summation
of upper case indices ranges from 1 to 6. The compo-
nents of CIJ are the second-order elastic constants (SOEC),
those of CIJK are the third-order elastic constants (TOEC),
those of CIJKL are the fourth-order elastic constants (FOEC),
and those of CIJKLM are the fifth-order elastic constants
(FFOEC).

A general anisotropic elastic solid has 21 independent
components in the SOEC, 56 in the TOEC, 126 in the FOEC,
and 252 in the FFOEC. The deformation state of a 2D material
can be approximated as being solely an in-plane deformation
state when the contribution of bending deformation to the

strain energy density is negligible compared to that of in-plane
deformation. This implies that only in-plane components
(i.e., those with indices that include only I,J = 1,2 and 6
or i,j = 1 and 2) of the stiffness tensors may be nonzero,
and all out-of-plane components of the stiffness tensors are
identically zero. An undeformed 2D MoS2 monolayer has
point group D3h, which has a hexagonal crystal structure.13,24

Previous studies have shown that in-plane deformation states
for this point group have two independent components of the
SOEC, three independent components of the TOEC tensor,
and four independent components of the FOEC tensor.25,26 We
calculate that the FFOEC tensor has five independent nonzero
components by imposing the symmetry elements of monolayer
MoS2 symmetry on the tensor based upon

Cabcdefghij

= QkaQlbQmcQndQoeCklmnopqrstQpf QqgQrhQsiQtj , (4)

where Q refers to the transformation matrix associated with
a symmetry element. Thus, monolayer MoS2 requires a total
of only 14 independent components of the stiffness tensors
to describe finite in-plane deformations. The list of elastic
constants is given in Table I.

For general infinitesimal in-plane deformations, the elastic
response is isotropic and linear with Young’s modulus E =
(C2

11 − C2
12)/C11 and Poisson’s ratio ν = C12/C11 and the full

linear-elastic response is⎡
⎢⎣

�1

�2

�6

⎤
⎥⎦ =

⎡
⎢⎣

C11 C12 0

C12 C11 0

0 0 C11−C12
2

⎤
⎥⎦

⎡
⎢⎣

η1

η2

η6

⎤
⎥⎦. (5)

For general finite in-plane deformations, the elastic re-
sponse is anisotropic and nonlinear and the in-plane com-
ponents of the second Piola-Kirchhoff tensor �1, �2, and �6

are given by

�1 = C11η1 + C12η2 + 1
2C111η

2
1 + C112η1η2 − 1

2

(
1
2C111 + 1

4C112 − 3
4C222

)
η2

6 + 1
2 (C111 + C112 − C222)η2

2

+ 1
6C1111η

3
1 + 1

6

(
1
2C1111 + C1112 − 1

2C2222
)
η3

2 + 1
2C1112η

2
1η2 + 1

2C1122η1η
2
2 + 1

2

(
1

12C1111 + 1
6C1112 − 1

4C1122
)
η2η

2
6

− 1
2

(
5
24C1111 + 1

6C1112 − 3
8C2222

)
η1η

2
6 + 1

6C11112η
3
1η2 + 1

24C11111η
4
1 + 1

24C12222η
4
2 + 1

4C11122η
2
1η

2
2

− 1
4

(
1
10C11111 + 1

8C11112 − 9
40C22222

)
η2

1η
2
6 + 1

24

(
11
80C11111 + 3

8C11112 + 1
8C11122 − 9

16C12222 − 3
40C22222

)
η4

6

+ 1
6

(
1
2C11111 + 3

2C11112 + C11122 − 3
2C12222 − 1

2C22222
)
η1η

3
2 + 1

4

(
1

15C11111 + 1
8C11112 − 1

6C11122 − 1
40C22222

)
η2

2η
2
6

− 1
2

(
13
120C11111 + 1

4C11112 + 1
6C11122 − 3

8C12222 − 3
20C22222

)
η1η2η

2
6, (6)

�2 = C12η1 + C11η2 + 1
2C112η

2
1 + 1

2C222η
2
2 + (C111 + C112 − C222)η1η2 − 1

2

(
1
4C112 − 1

2C111 + 1
4C222

)
η2

6 + 1
6C1112η

3
1

+ 1
6C2222η

3
2 + 1

2

(
1
2C1111 + C1112 − 1

2C2222
)
η1η

2
2 + 1

2C1122η
2
1η2 + 1

2

(
1

12C1111 + 1
6C1112 − 1

4C1122
)
η1η

2
6

− 1
2

(
1
6C1112 − 7

24C1111 + 1
8C2222

)
η2η

2
6 − 1

4

(
13

120C11111 + 1
4C11112 + 1

6C11122 − 3
8C12222 − 3

20C22222
)
η2

1η
2
6

+ 1
6C11122η

3
1η2 + 1

6C12222η1η
3
2 + 1

24C11112η
4
1 + 1

24C22222η
4
2 + 1

2

(
1
15C11111 + 1

8C11112 − 1
6C11122 − 1

40C22222
)
η1η2η

2
6

+ 1
24

(
1
8C11122 − 3

8C11112 − 1
80C11111 + 3

16C12222 + 3
40C22222

)
η4

6

+ 1
4

(
1
2C11111 + 3

2C11112 + C11122 − 3
2C12222 − 1

2C22222
)
η2

1η
2
2 − 1

4

(
1
8C12222 − 9

40C11111 + 1
10C22222

)
η2

2η
2
6, (7)
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�6 = 1
2 (C11 − C12)η6 + 1

4 (2C111 − C112 − C222)η2η6 − 1
4 (2C111 + C112 − 3C222)η1η6 + 1

12 (C1111 + 2C1112 − 3C1122)η1η2η6

− 1
48 (5C1111 + 4C1112 − 9C2222)η2

1η6 + 1
48 (7C1111 − 4C1112 − 3C2222)η2

2η6 − 1
96 (C1111 + 8C1112 − 6C1122 − 3C2222)η3

6

− 1
240 (4C11111 + 5C11112 − 9C22222)η3

1η6 + 1
24 (9C11111 − 5C12222 − 4C22222)η3

2η6

+ 1
240 (8C11111 + 15C11112 − 20C11122 − 3C22222)η1η

2
2η6 − 1

480 (C11111 + 30C11112 − 10C11122 − 15C12222 − 6C22222)η2η
3
6

+ 1
480 (11C11111 + 30C11112 + 10C11122 − 45C12222 − 6C22222)η1η

3
6

− 1
240 (13C11111 + 30C11112 + 20C11122 − 45C12222 − 18C22222)η2

1η2η6, (8)

where η1, η2, and η6 are the in-plane components of the
Lagrangian strain tensor defined relative to the orientation of
monolayer MoS2 shown in Fig. 2.

We now consider several special deformation states that
simplify the expressions for the general nonlinear in-plane
elastic response, which we will now refer to being in uniaxial
strain. The elastic response of monolayer MoS2 is calculated
for these special states. With reference to Fig. 2, a state of
uniaxial strain in the x1-direction is characterized by η1 � 0
and η2 = η6 = 0. The corresponding elastic response gives
�1 � 0, �2 � 0, where �2 is the lateral constraint stress for
this configuration, which is the stress required to maintain zero
strain in the lateral direction; symmetry dictates that �6 = 0.
Similarly, we consider a state of uniaxial strain in the x2-
direction. Finally, we consider a state of equibiaxial strain for
which η1 = η2 = η � 0 and η6 = 0 which results in �1 =
�2 � 0 and �6 = 0. The deformation gradient tensors for the
three deformation states, respectively, are

F1 =
[

λ1 0

0 1

]
, F2 =

[
1 0

0 λ2

]
, Fbi =

[
λbi 0

0 λbi

]
,

(9)

where the stretch ratio λ1 is the ratio of the deformed length
of the unit cell in the x1-direction to the reference length, λ2

is defined analogously for deformation in the x2 direction, and
for the equibiaxial case λbi = λ1 = λ2.

For uniaxial strain in the x1-direction, the general stress-
strain response simplifies to

�1 = C11η1 + 1
2C111η

2
1 + 1

6C1111η
3
1 + 1

24C11111η
4
1, (10)

�2 = C12η1 + 1
2C112η

2
1 + 1

6C1112η
3
1 + 1

24C11112η
4
1, (11)

�6 = 0. (12)

For uniaxial strain in the x2-direction there results

�1 = C12η2 + 1
2 (C111 − C222 + C112)η2

2

+ 1
12 (C1111 + 2C1112 − C2222)η3

2 + 1
24C12222η

4
2,

(13)

�2 = C11η2 + 1
2C222η

2
2 + 1

6C2222η
3
2 + 1

24C22222η
4
2, (14)

�6 = 0. (15)

For the biaxial strain state there results

�1 = �2 = (C11 + C12)η + 1
2 (2C111 − C222 + 3C112)η2

+ 1
6

(
3
2C1111 + 4C1112 − 1

2C2222 + 3C1122
)
η3

+ 1
24 (3C11111 + 10C11112 − 5C12222

+ 10C11122 − 2C22222)η4, (16)

�6 = 0. (17)

It is significant to note that all 14 elastic constants appear
in the stress versus strain constitutive relationships for the
three special cases collectively. Thus, the values of the elastic
constants can be determined by fitting to the stress versus strain
response as calculated from first-principles calculations.

In addition, we consider the elastic behavior of MoS2 under
conditions of uniaxial stress as a means to verify the internal
consistency of the higher-order continuum theory. Uniaxial
stress in the x1-direction is characterized by �1 � 0, �2 = 0
with η1 � 0 and η2 � 0 due to Poisson contraction. Uniaxial
stress in the x2-direction is defined analogously.

III. FIRST-PRINCIPLES CALCULATIONS
OF ELASTIC RESPONSE

We use density functional theory (DFT) to calculate the
elastic response for the three special deformation states.
The DFT calculations are performed with the VASP software
package27–31 using the projector augmented wave method
and both the local density approximation32 (LDA) and the
generalized gradient approximation31,33 (GGA) at 0 K.

A unit cell of one molybdenum atom and two sulfur atoms is
employed assuming a separation distance of 61.5 Å between
MoS2 monolayers. The k-point grid is 13 × 13 × 3 with a
cutoff energy of 500 eV. The undeformed equilibrium state
is determined through an energy and stress minimization as a
function of the in-plane lattice vector and out-of-plane sulfur
atom heights. The equilibrium configuration is determined to
be a spacing of 3.122 Å between molybdenum atoms and
an out-of-plane distance of 1.557 Å between a plane of sulfur
atoms and the intermediate plane of molybdenum atoms. These
results are consistent with experimentally determined lattice
spacing of 3.16 Å between Mo atoms and 1.59 Å out-of-
plane height for S atoms in a bulk MoS2 crystal.34 The stress
components computed in VASP are in terms of true stress, or
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FIG. 3. (Color online) (a) The least-squares curve fit to DFT
data using the LDA functional of three prescribed deformation
states. Quantities are plotted in second Piola-Kirchhoff stress and
Lagrangian strain. Symbols depict calculated data and lines indicate
least-squares fits. (b) The same data converted to true stress and true
strain.

Cauchy stress σ , in units of force per area on the cross-sectional
edges of the unit cell. For a 2D material, it is appropriate to
express the stress in terms of force per length of the edge;
this is obtained from the product of the the stress components
calculated from VASP and the interlayer spacing of 61.5 Å.

The relation between the true stress and second Piola-
Kirchhoff (P-K) stress � is given as

� = J F−1σ (F−1)T , (18)

where J is the determinant of the deformation gradient tensor
F.35 In this work, we did not explore the possibility of finite
wave-vector instabilities which might be relevant at large
strains. For example, in graphene a phonon instability of the
K mode occurs for sufficiently large equibiaxial strain.36

To calculate the elastic response of a given deformation
state, the unit cell is determined according to the deformed
lattice vectors a′

i which are functions of the applied F. The
molybdenum and sulfur atoms are relaxed in the strained unit
cell into the minimum potential energy configuration both in
and out of the plane. A series of simulations is performed
for both uniaxial strain cases as well as the equibiaxial strain
case, beginning with strains within the linear-elastic regime
and finishing with strains beyond that corresponding to the
intrinsic (i.e., maximum) stress.

The results of the VASP simulations are shown in Fig. 3(a)
where the second Piola-Kirchhoff stress is plotted as a function
of the Lagrangian strain and in Fig. 3(b) the true stress is plotted
as a function of the true strain. True (i.e., Cauchy) stress

TABLE II. Nonzero independent elastic constant fit to the LDA
functional DFT data of monolayer MoS2 relating the second Piola-
Kirchhoff stress tensor to the Lagrangian strain deformation state.
The SOEC, TOEC, FOEC, and FFOEC (second-, third-, fourth-, and
fifth-order elastic constants, respectively) are tabulated.

SOEC (N/m) TOEC (N/m) FOEC (N/m) FFOEC (N/m)

C11 = 140 C111 = −1300 C1111 = 8770 C11111 = −29 830
C12 = 40 C112 = −1090 C1112 = 440 C11112 = −4340

C222 = −30 C1122 = −230 C11122 = −230
C2222 = 5870 C12222 = −8450

C22222 = −18 930

is calculated based on Eq. (18) and the true strain is given
as ε = ln(λ). The calculated DFT results are highlighted as
symbols. The red symbols represent calculations for uniaxial
strain in the x1-direction, with the + and × symbols indicating
the lateral constraint and normal stresses as a function of
prescribed strain η, respectively. The green symbols represent
calculations for uniaxial strain in the x2-direction, with the �
and � symbols indicating the lateral constraint and normal
stresses, respectively. The blue ⊗ symbols represent the
equibiaxial stress (�1 = �2) in the x1- and x2-directions.

The values of the 14 independent components of the
stiffness tensors are determined by least-squares curve fitting
of Eqs. (10)–(17) to the corresponding DFT calculations. The
results, shown as solid colored lines in Fig. 3, demonstrate that
the higher-order continuum formulation accurately describes
the calculated stress-strain response up to approximately
0.30 Lagrangian strain or 0.25 true strain. The resulting
14 independent elastic constants for monolayer MoS2 are
tabulated in Table II. For the linear-elastic regime at small
strains, the Young’s modulus is E2D = 129 N/m and the
in-plane Poisson’s ratio is ν = 0.29.

A fifth-order expansion of the strain energy density function
captures the anisotropy of 2D MoS2 and the elastic instability
used to predict failure of the material. The appropriateness
of the fifth-order fit is verified by comparing the root-mean-
square (rms) deviation defined as

√
SSE/n, where SSE is

the sum of squares error and n is the number of data points
used in the fit. Comparing the rms deviation for the 234
data points of stress and strain, a third-order elastic constant
expansion results in a rms deviation of 1.404 N/m, a fourth-
order approximation results in 0.462 N/m, and the fifth-order
approximation results in a 0.145 N/m rms deviation. The
third- and fourth-order approximations can not capture both the
linear response and the peak stress at finite strains in the same
fit. The third- and fourth-order fits underpredict the Young’s
modulus as 65 and 104 N/m, respectively. The fifth-order
approximation captures the relevant behavior of 2D MoS2

under tension including the linear-elastic response and the
elastic instability used to predict fracture.

It is interesting to note that the anisotropy of MoS2 is
very prominent in Fig. 3(a) comparing the resulting second
Piola-Kirchhoff stresses as a result of uniaxial strains in the
x1- and x2-directions. Along the x1-direction, as defined in
Fig. 1, the second Piola-Kirchhoff lateral constraint stress
becomes higher than the normal stress. The true stress measure,
in Fig. 3(b), reveals that this phenomenon is a result of the
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TABLE III. Nonzero independent elastic constant fits to the PBE
functional DFT data of monolayer MoS2 relating the second Piola-
Kirchhoff stress tensor to the Lagrangian strain deformation state.
The SOEC, TOEC, FOEC and FFOEC (second-, third-, fourth- and
fifth-order elastic constants, respectively) are tabulated.

SOEC (N/m) TOEC (N/m) FOEC (N/m) FFOEC (N/m)

C11 = 130 C111 = −1200 C1111 = 7800 C11111 = −26460
C12 = 40 C112 = −1010 C1112 = 580 C11112 = −4200

C222 = −60 C1122 = −50 C11122 = −800
C2222 = 5760 C12222 = −6880

C22222 = −21300

reference area choice. In a system composed of one type of
atom, such as graphene, this behavior has not been observed.9

The calculations are repeated using a projector augmented
wave with a generalized gradient approximation (GGA), the
Perdew-Burke-Ernzerhof (PBE), functional in VASP. The unit
cell remains one molybdenum atom and two sulfur atoms and
a separation distance of 61.5 Å between MoS2 monolayers.
The k-point grid remains 13 × 13 × 3 with a cutoff energy
of 500 eV. The undeformed equilibrium state is determined
through an energy and stress minimization as a function of
the molybdenum atom spacing and out-of-plane sulfur atom
heights. The equilibrium configuration is determined to be
a spacing of 3.182 Å between molybdenum atoms and an
out-of-plane distance of 1.563 Å between a plane of sulfur
atoms and the intermediate plane of molybdenum atoms for the
PBE functional. The resulting higher-order elastic constants
are shown in Table III and the graphs are shown in Figure 4.

The PBE functional results fit to the higher-order nonlinear
elastic constants predict a Young’s modulus of E = 118 N/m
and a Poisson’s ratio of ν = 0.31. At strains above 20%,
the difference in stress measures for LDA and PBE is
approximately 15%. The calculations with LDA predict an
elastic instability at η = 23.4% and � = 27 N/m, while the
PBE calculations predict an elastic instability as η = 23.2%
and � = 24 N/m.

We verify in two ways that our calculations and constitutive
model are correct and internally self-consistent. First, we
reproduce our VASP calculations of the elastic response under
all five deformation states considered herein with both the
ABINIT and QUANTUM ESPRESSO DFT software packages. The
results from all three software packages are quantitatively
consistent with each other for the PBE approximation, thus
verifying the DFT calculations. Second, we demonstrate that
the DFT calculations and the continuum constitutive model
are internally self consistent, individually for the LDA and
PBE approximations. To do so, we first calculated the elastic
response for the equibiaxial and the two uniaxial strain
deformation states using DFT. Then, we determined the 14
independent elastic constants of the continuum fifth-order
elastic constitutive description by fitting to the DFT results
of the equibiaxial and the two uniaxial strain deformation
states. We then predicted the elastic response under the two
states of uniaxial stress using the continuum model. We then
calculated the elastic response for the two states of uniaxial
stress via DFT. The continuum predictions are compared to
the DFT calculations in Fig. 5(a) for the LDA approximation
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FIG. 4. (Color online) (a) The least-squares curve fit to DFT
data using the PBE functional of three prescribed deformation
states. Quantities are plotted in second Piola-Kirchhoff stress and
Lagrangian strain. Symbols depict calculated data and lines indicate
least-squares fits. (b) The same data converted to true stress and true
strain.

and Fig. 5(b) for the PBE approximation. There is a very good
agreement between the predictions and the calculations, thus
verifying the internal consistency of the multiscale atomistic
(DFT) and continuum constitutive model. It bears emphasis
that the 14 elastic constants are determined by fitting to DFT
results from only the equibiaxial and uniaxial strain states for
each approximation; the DFT results for the two uniaxial stress
deformation states were not used in the curve-fitting process.

For completeness, we now discuss the details of the DFT
calculation under uniaxial stress conditions. The uniaxial stress
DFT calculations are achieved by relaxing the ê2-components
of the a1- and a2-lattice vectors for uniaxial stress in the
x1-direction. The uniaxial stress state in the x2 direction is
achieved analogously by relaxation of the ê1-components. Li37

performs uniaxial stress calculations that are not consistent
with our results. However, our results have been verified
using three ab initio codes (i.e., VASP, ABINIT, and QUANTUM

ESPRESSO), and a direct comparison to Li’s results will be made
in a forthcoming publication.38

IV. EXPERIMENTAL METHODS

Following the approach and procedures of Lee et al.4 the
specimens are fabricated on a silicon substrate with a 300-nm
epilayer of SiO2. We introduce an array of circular wells
with 500-nm diameter and 500-nm depth, via reactive ion
etching, into the substrate following patterning via electron
beam lithography. Then, MoS2 is mechanically exfoliated onto
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FIG. 5. (Color online) Plotted above are the uniaxial stress
calculations based upon DFT with a LDA functional (a) and a
PBE functional (b). The + and × data points represent the data
calculated for a uniaxial stress state in the x1 and x2 directions,
respectively. The red and black lines represent the least-squares curve
fit prediction of the stress-strain curve for uniaxial stress in the x1 and
x2 directions, respectively. The data are plotted in true stress and true
strain.

the substrate. The individual flakes of MoS2, with sizes up to
4 μm by 8 μm, are randomly distributed atop the substrate and
are large enough to cover several adjacent wells.

The nanoindentation experiments performed in this study
offer several advantages over mechanical tests performed on
nanotube structures. First, the sample geometry is precisely
defined and the 2D structure is less sensitive to material or
substrate defects. The circular freestanding monolayers of
MoS2 are effectively clamped around the periphery via van
der Waals interactions with the substrate, which serves to
constrain both radial and out-of-plane displacements. Thus, the
boundary conditions are well defined and repeatable, whereas
it is much more difficult to obtain such boundary conditions
when loading nanotube configurations.

We use optical microscopy to identify candidate monolayer
MoS2 sheets suspended above wells, as seen in Fig. 6(a).
Then, an AFM (XE-100, Park Systems) in noncontact mode
confirms the monolayer thickness to be 0.615 nm.39 Suspended
monolayers are imaged in noncontact mode to determine
the center of the membrane. The monolayer films are then
indented at their centers with the AFM to determine the
force-displacement response as well as the breaking force.

The AFM tip is a diamond cube corner on a silicon
cantilever fabricated by MicroStar Technologies; standard
silicon AFM tips are not used because the load levels can
cause fracture of the tip prior to rupture of the monolayer
MoS2. The tip radius, measured before and after indentation
using a transmission electron microscope (TEM), is 26 nm.
The AFM cantilever is calibrated against a reference cantilever
for accurate determination of its stiffness.40 Indentations are
performed on 12 suspended membranes from one flake of
MoS2 that can be seen in Fig. 6. Each monolayer MoS2

membrane is loaded and unloaded several times at a prescribed
AFM tip displacement rate of 1.25 μm/s. Eight of the mem-
branes exhibit significant hysteresis of the force-displacement
response, indicating that the van der Waals interactions are
not sufficient to preclude slipping at the periphery of the
suspended membranes; data from these membranes are not
included in subsequent analysis. Four of the membranes
exhibit negligible hysteresis. The depth of the indent load-
unload cycles is increased in 30–50 nm increments until
rupture of the membrane is recorded, characterized by the
tip plunging through the membrane and a sudden diminution
of the force. A typical set of data in Fig. 7 shows two
loading-unloading curves in blue and green, demonstrating
the negligible hysteresis. Subsequently, in the red curve, the
membrane is loaded to rupture shown by the × symbol. The
average breaking force of the four membranes is 1500 nN with
a standard deviation of 300 nN.

The force-displacement data are analyzed to characterize
the elastic response of monolayer MoS2. A semiempirical
formula approximates the relationship between force and
displacement for an axisymmetric membrane under a central
point load as4

F = σ0(πa)

(
δ

a

)
+ E(q3a)

(
δ

a

)3

, (19)

where F is the applied force on the AFM tip, δ is the load
point deflection, a is the membrane radius, E and σ0 are the
2D Young’s modulus and prestress in the film, respectively,
and q = (1.05 − 0.15ν − 0.16ν2), and ν = 0.29 the Poisson’s
ratio. The prestress and Young’s modulus are determined
by fitting Eq. (19) to the experimental force-displacement
data. The resulting measure of stiffness is valid only as an
estimate of the in-plane Young’s modulus; it does not offer
any insight into 3D mechanical behaviors such as bending
stiffness. In this study, 26 loading curves yield an average
value of Ē = 120 N/m with a standard deviation of 30 N/m
and an average prestress of σ̄0 = 0.4 N/m with a standard
deviation of 0.2 N/m.

V. EXPERIMENTAL VALIDATION

We now discuss results of a detailed finite element analysis
(FEA) of the indentation of the circular monolayer MoS2

membrane and compare the results to the experimental data.
The FEA simulation employs the higher-order nonlinear
elastic constitutive behavior of Eqs. (6)–(8) as well as the
elastic constants in Table II that have been implemented
into a user material (UMAT) subroutine10 for use with the
commercially available finite element program ABAQUS.41 This
implementation is valid for use in membrane elements, which
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FIG. 6. (Color online) Suspended MoS2 on SiO2 substrate imaged
via optical microscopy (a) and AFM (b) and (c). The arrow in image
(a) points to a flake of monolayer MoS2; (b) shows the AFM image
of the area highlighted in red in (a); the scale bars in (a), (b), and
(c) are 10 μm, 5 μm, and 100 nm, respectively; and (d) shows the
experimental setup graphically.

implies that the bending stiffness of the MoS2 is vanishingly
small compared to the in-plane stiffness. This assumption is
valid when the radius of curvature of the deformed MoS2

monolayer is much greater than the distance between nearest
atomic neighbors. Specifically for these simulations, the
smallest radius of curvature in the MoS2 is the 26 nm of the
indenter tip and the interatomic distance is 3.16 Å.
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FIG. 7. (Color online) Typical loading-unloading curve for a
monolayer MoS2 membrane. The blue and green curves include
both the loading and unloading data points. There is no evidence
of hysteresis. The red curve ends in abrupt fracture of the membrane,
marked by the × symbol.

The circular membrane of diameter 500 nm is modeled
with 9575 four-node membrane elements and is clamped to
inhibit displacements at its periphery and loaded at its center
with a frictionless rigid sphere of radius 26 nm. An equibiaxial
prestress is set to 0.42 N/m, the average measure of prestress
from AFM nanoindentations. The simulation is performed in
approximately 900 time increments equating to an average
of 1.2 nm of indenter displacement per increment. The FEA
formulation requires 3D stress and modulus measures as well
as a well-defined membrane thickness, so we perform the
computations using the derived 3D quantities. However, we
report the results in terms of the intrinsic 2D quantities.

Figure 8 shows the simulated force-displacement curve
at the center of the membrane for both the LDA and
PBE approximations, which are in good agreement with
experimental results from AFM nanoindentations. The close
agreement between the results from the finite element model
based on first-principles data and the nanoindentation curve is
a testament to the validity of the experimental and theoretical
framework that comprise this study.

Figure 9 shows the details of the stress concentration
in the MoS2 monolayer under the indenter tip. At very
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FIG. 8. (Color online) Comparison of the multiscale finite ele-
ment models based on first-principles data represented by the solid
and dashed lines for LDA and PBE fits, respectively. The AFM data
are represented by small open circle symbols. The point at which
fracture occurs in the model is represented with a + symbol for the
LDA fit and a × symbol for the PBE fit. The measured breaking force
from AFM nanoindentatio is represented by the red large open circle
symbol.
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FIG. 9. (Color online) ABAQUS FEA contours showing maximum
principal stress at each integration point under the spherical rigid
indenter at indentation depths of (a) 6, (b) 63, (c) 98, and (d) 101 nm.
The scale bars in (a)–(d) are 30 nm.

shallow indentation depths, the stress state is axisymmetric [cf.
Fig. 9(a)], consistent with elastic isotropy at small strains. At
an intermediate indentation depth in Fig. 9(b), the stress state
begins to develop a sixfold rotation symmetry, which becomes
fully developed at large indentation depths of Fig. 9(c).
Thus, monolayer MoS2 develops an elastic anisotropy with
a sixfold rotation symmetry at finite strains of an approximate
equibiaxial nature, consistent with the D3h point group of the
hexagonal lattice. The deformation state in the very center of
the indented region experiences equibiaxial deformation, so
that according to Fig. 3(a) the LDA data, the peak stress the
MoS2 can withstand is 16.5 N/m, a Lagrangian strain of about
0.23. At larger equibiaxial strains, the stress will decrease and
the deformation state will be unstable because of the negative
local tangent modulus leading to strain softening. Figure 9(d)
shows the monolayer MoS2 at the state when the stress in
the very center has begun to decrease. The FEA simulation

becomes unable to converge to equilibrium solutions at an
indentation depth past 102 nm, where force on the indenter
tip in the first-principles FEA model is 1490 nN for the LDA
least-squares fit and 1360 nN for the PBE least-squares fit,
well within the experimental uncertainty of the measurements.
The 95% confidence interval for the experimental breaking
force is 1350–1650 nN. A smaller degree of uncertainty in
experimental measurements would lend insight into which
approximation closer represents the mechanical properties of
MoS2.

VI. CONCLUSIONS

We have calculated using DFT the elastic response of
monolayer MoS2 for in-plane conditions of uniaxial strain
and equibiaxial strain. The strains range from infinitesimal
values to finite values beyond that corresponding to the
intrinsic (i.e., maximum) stress. In addition, we derived the
framework for a thermodynamically rigorous nonlinear elastic
constitutive relationship for arbitrary in-plane deformation
by expanding the strain energy density in a Taylor series in
powers of Lagrangian strain truncated after the fifth power.
There are 14 independent components of the resulting stiffness
tensors. The values of these components are determined by
fitting to the DFT results. The resulting multiscale continuum
constitutive relationship is nonlinear and anisotropic, although
the nonlinearity does not manifest itself until a strain beyond
about 0.05 and the anisotropy becomes significant only after
a strain of about 0.1. AFM nanoindentation experiments
performed on circular suspended monolayers of MoS2 provide
experimental evidence of intrinsic strength and in-plane
Young’s modulus. A detailed finite element model (FEM) of
the experimental configuration was performed with ABAQUS

along with a user material (UMAT) which incorporated the
continuum constitutive model for use in membrane elements.
The predicted force versus displacement response as well
as the force at rupture of the MoS2 film correspond closely
to the experimental values. This study bridges three main
gaps that hinder understanding of material properties: DFT
to FEM, experimental results to DFT, and the nanoscale to
the microscale. In bridging these three gaps, the experimental
results validate the DFT calculations and the multiscale
constitutive model.

Our results show that MoS2 is a strong and flexible
crystal. The maximum stress at the point of fracture is the
intrinsic strength of the MoS2, σint = 16.5 N/m, as confirmed
with finite element analysis implementation of the nonlinear
elastic constants. When assuming a monolayer thickness
of t = 0.615 nm, the 3D intrinsic strength of MoS2 is
σ 3D

int = 26.8 GPa. The in-plane Young’s modulus suitable
for conditions of infinitesimal strains is E = 16.5 N/m, or
E3D = 210 GPa, which is consistent with the experimental
results of Bertolazzi.11 The in-plane Poisson’s ratio suitable
for conditions of infinitesimal strains as calculated using
DFT is ν = 0.29. It is interesting to note that Griffith42

predicts the intrinsic strength of a material to be σint ≈ E/9,
whereas experimental and DFT results suggest σint ≈ E/8 in
accordance with studies measuring the intrinsic strength of
graphene.4
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