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Density-dependent electrical conductivity in suspended graphene:
Approaching the Dirac point in transport
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We theoretically consider, comparing with the existing experimental literature, the electrical conductivity of
gated monolayer graphene as a function of carrier density, temperature, and disorder in order to assess the
prospects of accessing the Dirac point using transport studies in high-quality suspended graphene. We show that
the temperature dependence of graphene conductivity around the charge neutrality point provides information
about how closely the system can approach the Dirac point, although competition between long-range and
short-range disorder as well as between diffusive and ballistic transport may considerably complicate the picture.
We also find that the acoustic phonon scattering contribution to the graphene resistivity is always relevant at the
Dirac point, in contrast to higher density situations where the acoustic phonon contribution to the resistivity is
strongly suppressed under the low-temperature Bloch-Grüneisen regime. We provide detailed numerical results
for temperature- and density-dependent conductivity for suspended graphene.
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I. INTRODUCTION

It has been shown1–6 that suspended graphene (SG)
can achieve very high mobilities since various annealing
techniques can remove much of the extrinsic impurities
unavoidably present in graphene on substrates.7–9 Such ul-
trapure graphene (in this article, “graphene” mostly implies
“suspended graphene” without any substrates) with ultrahigh
mobility is of considerable importance for a number of reasons.
First, a careful comparison between graphene experimental
data with and those without substrates could teach the
community a great deal about the type of disorder operational
in graphene on various substrates and the associated scattering
mechanisms limiting graphene mobility on substrates,10 thus
helping the eventual technological application of graphene-
based devices. Second, ultrapure SG enables the study of
interaction effects6,11–13 without the considerable complica-
tions arising from disorder, and additionally, the absence of
dielectric screening by the substrate enhances the Coulomb
interaction. Third, as a direct consequence of the high sample
purity, SG is a convenient system for experimental study of
the fractional quantum Hall effect.2,4 Fourth, the (relative)
absence of disorder in SG suppresses the electron-hole puddle
formation around the charge-neutrality point, i.e., the Dirac
point, making it relatively easier to access the intrinsic Dirac
point physics by lowering the carrier density.5

The last item (“accessing the Dirac point”) along with
the first item (“understanding transport in SG”) provides the
motivation of our theoretical research presented in the current
paper, where we carry out a detailed quantitative study of
SG carrier transport as a systematic function of temperature
and carrier density neglecting all complications arising from
the inhomogeneous electron-hole puddles14–16 in the system
(which typically become operational below a typical carrier
density nc ∼ 1012 cm−2 for graphene on SiO2 substrates).14,15

Our theoretical results provide a direct estimate of the disorder-
limited SG transport properties down to low carrier densities
which experiments should be able to access in clean SG
samples where inhomogeneous puddle formation is pushed

down to very low carrier densities. Our work, therefore, should
provide a benchmark for understanding SG transport data as
well as for figuring out how close to the Dirac point specific
SG experimental samples manage to approach.

A characteristic and universal feature of graphene transport
is the minimum conductivity phenomenon where, at some
disorder-dependent low carrier density (nc), the conductivity
shows an approximate saturation as a function of the carrier
density, forming a rough minimum conductivity plateau
around the Dirac point7–9 with a characteristic electron-hole
density width of ±nc. The characteristic density cutoff nc

defining this minimum conductivity plateau roughly defines
how close in density [or in energy εc ≈ εF (nc) = h̄vF

√
πnc,

where εc is the graphene Fermi energy for carrier density nc,
and vF is the graphene Fermi velocity] the particular graphene
sample approaches the Dirac point. The larger the nc (or Ec),
the farther the system is from the Dirac point, no matter
how low one tunes the gate voltage since the Dirac point is
defined only to the uncertainty of nc. It is now reasonably well
established8–10,17,18 that the minimum conductivity plateau and
the characteristic density cutoff arise from disorder-induced
density inhomogeneity (or, equivalently, electron-hole puddle
formation) in the system, which makes it impossible to access
the Dirac point nominally existing precisely at zero carrier
density. Instead the disorder-induced density fluctuations
characterized by nc make the zero-density (and as such,
measure-zero) Dirac point ill defined over a scale of nc.
The smaller nc is, the more closely one can approach the
Dirac point by tuning the gate-voltage-induced carrier density.
Thus, transport measurements, which probe nc directly by
definition (since for |n| < nc the conductivity approximately
saturates), provide a clear signature for how close to the
Dirac point one is able to approach in a particular graphene
sample. In high-quality SG, nc ∼ 108 cm−2 can be achieved,5

indicating that experiments can assess the Dirac point within
εc ∼ 0.4 meV ∼ 5 K. With further improvement in SG sample
quality, it is conceivable that the SG Dirac point could be
accessed within 0.5 K, leading to the possibility of studying
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intrinsic interaction phenomenon associated with the non-
Fermi liquid aspects of the Dirac point.11–13 This Dirac point
accessibility is the primary motivation for our detailed current
study of SG transport properties as functions of carrier density
and temperature. In this work we assume that nc = 0, and our
results therefore only apply to ultrapure SG samples at doping
densities above the conductivity minima and/or at kBT > εc.

In addition to the Dirac point accessibility issue discussed
above, a secondary motivation of our work is a qualitative
theoretical understanding of realistic SG transport in order to
assess whether the current experimental SG samples are in
the ballistic or the diffusive regime. Several recent SG exper-
imental investigations1–5 conclude that their studied samples
are in the ballistic regime based on the estimated transport
mean free path being longer than (or comparable to) the linear
sample size. Such very long mean free paths imply essentially
no carrier scattering within the sample (and, consequently,
almost no disorder), and thus the issue of diffusive versus
ballistic transport in SG samples is an important topic of
considerable interest to the community. We find that this is
also a very subtle topic since the extraction of the mean free
path from the measured conductivity is quite nontrivial at a low
gate voltage (i.e., near the Dirac point) where intrinsic thermal
carrier occupancy (because of the zero-band-gap nature of
graphene) effects become crucial, and a näive estimate of the
mean free path using simply the gate-induced carrier density
would seriously overestimate the mean free path. In fact, we
believe that at low carrier densities it is much more sensible
to discuss the physics simply in terms of the dimensionless
two-dimensional (2D) conductivity (in units of e2/h) rather
than in terms of the mean free path and/or mobility, which
are both derived by dividing the measured conductivity by
a putative carrier density subject to large errors near the
charge-neutrality point. We find that a theoretical description
based on purely diffusive transport using the semiclassical
Drude-Boltzmann theory gives a reasonable description for
the experimentally observed SG transport properties. We
believe that the only way to definitively establish ballistic SG
transport is to experimentally observe the explicit sample-
size-dependent conductivity characterizing ballistic transport,
where conductance, and not conductivity, is the meaningful
physical quantity, which, to the best of our knowledge, has not
yet been seen in any SG samples by any experimental group.
We therefore contend, based on our theoretical results, that the
currently existing SG samples are all high-mobility diffusive
samples.

We consider primarily disorder-induced resistive scattering
in our theory10,17,18 since our interest is mainly the issue of
approaching the Dirac point in high-quality SG. The phonon
effects have been considered elsewhere in detail,19–22 and
it is straightforward to include phonons in the theory; we
do provide some results including phonon scattering in the
theory since their effect could be important at higher (lower)
temperatures (carrier densities).

The rest of this article is organized as follows. In Sec. II we
describe our basic transport model and provide the expected
theoretical results for finite-temperature Drude transport of
intrinsic (i.e., undoped) graphene precisely at the Dirac point,
which serves as the starting point for later discussions. In
Sec. III we provide our full theory, and then in Sec. IV we

provide our numerical results, concluding in Sec. V with a
discussion and a summary.

II. INTRINSIC TRANSPORT AT THE DIRAC POINT

Precisely at the Dirac point (n = 0), assuming no disorder-
induced electron-hole puddles and T = 0, it is easy to see
that the semiclassical Drude-Boltzmann conductivity σD at
the Dirac point (or, equivalently, the charge-neutrality point)
is precisely 0 (i.e., infinite resistivity) because of the trivial
reason that there are no carriers to carry any current. We note
that in our zeroth-order Drude-Boltzmann transport theory
the matrix element of the off-diagonal terms vanishes due
to the conservation of energy, which gives rise to the zero
conductivity at T = 0 and n = 0. But more rigorous transport
theories (such as the Kubo formula and the self-consistent
Boltzmann transport theory, which are beyond the Boltzmann
theory) produce nonvanishing matrix elements between off-
diagonal terms even at n = 0. Thus the well-known minimum
conductivity appears in these theories. Since our analysis
is totally based on the zeroth-order Boltzmann theory the
conductivity vanishes for n = 0 even for chiral graphene.
This trivial result is unstable because there will be a finite
conductivity the moment the carrier density deviates from
the precise measure-zero n = 0 constraint, which is bound
to happen at T �= 0 even at the Dirac point by virtue of
the low-energy thermal electron-hole excitations capable of
carrying the current. Unlike ordinary band insulators with
finite band gaps,23 there is no exponential suppression of
finite-temperature band conductivity in graphene because of
its gaplessness. Instead, as is well-known and discussed in
some detail below, σD(T ) at the Dirac point of graphene
manifests a power-law “insulating” temperature dependence,
which should distinguish the Dirac point behavior from the
saturated conductivity behavior in the presence of electron-
hole puddles.18,24 This power-law insulating behavior associ-
ated with the Dirac point has nothing to do with Anderson
localization physics and arises entirely within the metallic
Drude-Boltzmann diffusive transport theory because graphene
is a gapless semiconductor.

Consider undoped graphene in the absence of disorder (or
electron-hole puddles), i.e., the chemical potential at T = 0
lies at the Dirac point. Then the thermally excited number of
electrons (and holes) at finite temperatures can be calculated
as

n =
∫

D(ε)nF (ε)dε, (1)

where nF is the Fermi distribution function and D(ε) =
gε/2πγ 2 is the density of states (DOS) of graphene, with
the total degeneracy g = 4 arising from spin (2) and valley
(2)and γ = h̄vF . The induced carrier density at T becomes

n = g

2π

π2

12

(kBT )2

γ 2
= T 2 × 0.89 × 106 cm−2. (2)

At T = 300 K we have n = 8 × 1010 cm−2. Thus if the
conductivity is simply proportional to the carrier density, it
increases quadratically with temperature. We show below that
the actual temperature dependence of the conductivity depends
on the scattering mechanism.
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In the presence of disorder-induced momentum scattering
the conductivity can be calculated within Boltzmann transport
theory. In this theory the puddle effect is not considered, i.e.,
the theory is valid only for n > nc. The conductivity is given
by10,25

σD(T ) = e2v2
F

2

∫
dεD(ε)τ (ε)

(
−∂f (ε)

∂ε

)
, (3)

where τ is the disorder-induced transport scattering time. Note
that in this equation the conductivity is not related explicitly
to the carrier density. If we assume a constant scattering time,
i.e., no energy and temperature dependence of the scattering
time, then we have

σD(T ) = e2

h

2 ln 2

γ
(τ0vF )(kBT ), (4)

where τ0 is the constant scattering time and the mean free path
is given by l = τ0vF . In this case the conductivity increases
linearly with temperature.

Now consider a generalized scattering time. Within the
Fermi golden rule we have

1

τ
= 2π

h̄
ni

∑
k′

|Vi(k,k′)|2(1 − cos θkk′)δ(εk − εk′), (5)

where ni is the impurity concentration and Vi is the carrier-
impurity scattering potential.

For a short-range potential (i.e., δ-range potential) with the
strength Vi = Vδ and the impurity density ni = nδ , we have

1

τ (ε)
= nδV

2
δ

4

vF ε

γ 3
. (6)

With Eq. (3) we have

σD(T ) = 4e2

h

γ 2

nδV
2
δ

. (7)

Thus the conductivity is independent of the temperature for
δ-correlated zero-range disorder.

For an unscreened long-range Coulomb potential, Vi(q) =
2πe2/κq, where κ is the background lattice dielectric constant
(taken to be unity for SG), we have

1

τ (ε)
= π2

h̄
ni

r2
s γ 2

ε
, (8)

where rs = e2/κγ is the graphene fine-structure coupling
constant. With Eq. (3) we have

σD(T ) = e2

h

1

3ni

1

r2
s γ 2

(kBT )2. (9)

For a screened long-range Coulomb potential, i.e.,

Vi(q) = 2πe2

κqε(q)
, (10)

where the dielectric function, ε(q), is given by

ε(q) = 1 + 2πe2

κq
�(q,T ), (11)

and where �(q) is the polarizability depending on the wave
vector and temperature,26 within the RPA we have

�(q,T ) = q

4γ
+ 4

πβγ 2

[
ln 2

−
∫ βεq/2

0

√
1 − (2y/βεq )2

1 + ey
dy

]
, (12)

where β = 1/kBT and εq = h̄vF q. Finally, the conductivity
can be calculated to be (with some straightforward algebra)

σD(T ) = e2

h

1

2πni

(kBT )2

r2
0 γ 2

I (r0), (13)

where

r0 = rs

1 + πrs/2
, (14)

and I (r0) is a function which is independent of the temperature
and given by

I (r0) =
∫ ∞

0
dt t2τ (t,r0)

et

(et + 1)2
, (15)

where
1

τ (t,r0)
=

∫ 1

0
dx

√
1 − x2

ε0(2tx,r0)2
(16)

and

ε0(z,r0) = 1 + 4r0

z

[
ln 2 −

∫ z/2

0

√
1 − (2y/z)2

1 + ey
dy

]
. (17)

Thus the Dirac point conductivity increases quadratically with
temperature for a screened Coulomb potential disorder, similar
to the bare Coulomb disorder results in Eq. (9).

Finally, for scattering of the thermally excited carriers
by deformation potential coupling to acoustic phonons,19

we get the following expression in the high-temperature
nondegenerate equipartition phonon distribution regime:

σph = e2

h

8ρmv2
phγ

2

D2

1

kBT
, (18)

where D is the deformation potential, ρm the graphene mass
density, and vph the phonon velocity. Thus, the conductivity
decreases inverse linearly with increasing temperature. For low
temperatures, T < TBG, where the TBG is the so-called Bloch-
Grüneisen temperature, phonon scattering is very strongly
suppressed19 and is not of any interest in the current work.

We note that, as expected, the above Boltzmann theoretical
semiclassical description of the Dirac point conductivity,
which neglects all interactions27 and interference effects28–30

(but includes thermal excitation, screening, and scattering
effects quantum mechanically), gives σD(T = 0) = 0 at the
Dirac point, and the finite σD(T ) for T �= 0 arises entirely from
the finite density of thermal electron-hole excitations [c.f.,
Eq. (1)] in gapless graphene. The temperature dependence
of the finite-temperature Dirac point conductivity is entirely
a power law with σD(T ) ∼ T α , where α = 0, 1, or 2,
respectively, depending on whether the scattering mechanism
is short-ranged or energy-independent or long-ranged (includ-
ing screened Coulomb scattering). In addition, α = −1 for
phonon scattering as shown in Eq. (18), and in the presence
of all possible scattering mechanisms, the actual temperature-
dependent Dirac point conductivity would be nonuniversal and
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FIG. 1. (Color online) The Dirac point conductivity σD as a
function of temperature. σi (σδ) indicates the conductivity due to
screened charged Coulomb disorder with an impurity density ni =
0.3 × 1010 cm−2 [short-range disorder with nδV

2
δ = 1.5 (eV Å)2].

σph represents the conductivity limited by acoustic phonon scattering.
σtot is the total conductivity including all scattering mechanisms. The
dashed line indicates the conductivity due to the Coulomb disorder
and the short-range disorder.

complex, depending on the strength of the various scattering
processes in the particular sample. It is then easy to see that
the experimentally measured α exponent could be any number
between 0 and 2, depending on the manifestly nonuniversal
strength of various scattering mechanisms in the system.

The important point to note is that the temperature depen-
dence is never exponential, a key qualitative feature which
helps to distinguish the Dirac point thermally induced conduc-
tivity from the Anderson (strong) localization (or gap-induced
insulating) behavior. This power-law temperature-dependence
feature remains valid even in the presence of phonon scattering
which leads to a metallic conductivity (i.e., a negative α) with a
temperature-dependent conductivity with a power law between
1 and 5,19 depending on whether or not the Bloch-Grüneisen
regime is relevant. We emphasize that phonons can only
induce metallic behavior (with the conductivity decreasing
with increasing temperature), and as such, disorder and phonon
scattering together may produce a complicated nonmonotonic
temperature dependence. In Fig. 1 we show the calculated
σD including all three scattering mechanisms (i.e., short-range
and long-range disorder as well as acoustic phonons). The
total conductivity (σtot) shows a nonmonotonic temperature
dependence. As the temperature increases, σtot increases
due to the dominance of Coulomb disorder at low tempera-
tures, but after reaching a maximum conductivity it decreases
with increasing temperature due to phonon scattering. This
crossover temperature scale for σD(T ) depends sensitively on
the amount of Coulomb disorder in the system and increases
(decreases) with increasing (decreasing) Coulomb disorder.
We note that if Coulomb disorder is weak or absent, σD(T )
decreases monotonically with increasing temperature because
of phonon scattering. The fact that experimental low-density
SG transport data1–5 show a nonmonotonic temperature de-
pendence of low-density SG conductivity clearly indicates that
Coulomb disorder dominates even the currently existing SG
samples (and not just the graphene-on-substrate samples).

A key aspect of the temperature-dependent Dirac point
electrical conductivity derived above, which, although rather
obvious, has not been much discussed in the literature, is that
the intrinsic Dirac point behavior is really a high-temperature
phenomenon rather than a low-temperature one since one must
have n(T ) > nc in order to see the intrinsic behavior (where
nc is the characteristic cutoff density defining electron-hole
puddle formation in the system). Thus, the intrinsic Dirac
point physics can only be accessed for T � Tc ≈ 10−3√nc,
with nc(T ) measured in units of cm−2 (K), and the intrinsic
Dirac point behavior is completely suppressed by the extrinsic
inhomogeneous carrier density fluctuations associated with
electron-hole puddles. For the extremely low value of nc ∼
108 cm−2, we get Tc = 10 K, whereas for the usual graphene-
on-SiO2 substrates, where nc ≈ 1012 cm−2, Tc ≈ 1000 K!
Thus, the intrinsic Dirac point conductivity (and its strongly
insulating temperature dependence arising from Coulomb
disorder) can never be observed in most graphene-on-SiO2

samples studied in most laboratories, and indeed, in spite
of clear theoretical predictions for the insulating temperature
dependence of low-density graphene conductivity,25 for a long
time it was believed that graphene conductivity is essentially
temperature independent up to room temperature (since the
electron-phonon coupling constant is small in graphene, even
phonon-induced metallic temperature dependence is fairly
weak in graphene at a high carrier density).

To observe the intrinsic Dirac point physics σD(T ) at low
temperatures (�100 mK) so that various predicted interaction-
induced Dirac point reconstructions (or instabilities)13 can be
experimentally observed (since higher temperature strongly
suppress interaction effects), one would have to produce
SG samples of rather extraordinary purity, with the puddle-
induced density inhomogeneity being less than 104 cm−2. This
seems a rather daunting task, and it is therefore safe to say that
the T → 0 intrinsic Dirac point conductivity is unlikely to
be experimentally explored in the near-future, making our
current work, where we consider finite-temperature Dirac
point transport neglecting interaction effects, relevant for all
experimental Dirac point transport studies in the near-future.

Before concluding this section we emphasize that we are
only considering T �= 0 disorder-limited Boltzmann conduc-
tivity in our theory, neglecting all interaction effects, and for
T = 0 our Dirac point conductivity is trivially 0. A completely
different approach is necessary to discuss intrinsic Dirac point
conductivity in clean graphene at T = 0, where interaction
and quantum interference effects would be important. Such a
theory is beyond the scope of our work and is not of interest to
us since we know of no experimental relevance of the T = 0
Dirac point conductivity. Second, the inclusion of phonon
effects is extremely important for the Dirac point conductivity
behavior as a function of temperature since phonons lead to
nonmonotonic σD(T ) with metallic behavior (dσD/dT < 0)
at higher temperatures, replacing the insulating behavior
(dσD/dT > 0) at lower temperatures with a nonuniversal
disorder-dependent crossover behavior.

III. CONDUCTIVITY OF SUSPENDED GRAPHENE

Our theoretical model assumes the absence of puddles
in the system, and as such, the theory is cut off at some
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sample-dependent characteristic carrier density nc below
which the inhomogeneous density fluctuations around the
Dirac point become important, leading to an observable
minimum-conductivity plateau formation. The theory is valid
only for n � nc or in the nonplateau regime by definition. If
nc is very small, as has been claimed in several recent exper-
imental studies,1–6 then our theory would apply down to very
low carrier densities (as long as interference and interaction
effects are negligible). Puddle effects on graphene transport
properties have been theoretically studied elsewhere,24 and
puddles would introduce additional nontrivial temperature and
density dependence for n � nc, which is not of interest to us
in the current work, where nc is very small by virtue of the
ultraclean nature of SG in general.

In our theory, we consider three distinct scattering mech-
anisms contributing to the SG resistivity. These are charged
impurity, short-range disorder, and in-plane acoustic phonon
scattering processes. There can be other types of scattering
mechanisms contributing to the graphene resistivity such
as resonant scattering centers,31,32 ripples,33 and flexural
phonons.34–36 The short-range disorders considered in the
resonant scatterers31,32 modify the DOS of graphene (i.e., there
is a resonant DOS peak at the Dirac point due to these disor-
ders). In this case short-range disorder scattering gives rise
to density-dependent conductivity. In our Boltzmann theory,
to keep the theory consistent for all other disorders we used
the bare DOS of pure graphene and we obtained the density-
independent conductivity from the short-range disorder. In
this paper the short-range disorder represents the zero-range
disorder, i.e., V (r) = Vδδ(r). The calculated scattering time
with the finite-width potential [i.e., V (r) = Vδθ (r − r0)] does
not significantly modify that with the zero-range potential as
long as r0 < 2a, where a is the lattice constant of graphene.
In SG the flexural phonons may dominate the phonon con-
tribution to the resistivity.35,36 However, in SG under specific
tension induced by contacts (this is the case for all available SG
samples) the flexural phonon contribution to the conductivity is
severely suppressed, and as a consequence the in-plane phonon
is the dominant scattering mechanism.36 Since we consider SG
under tension our calculated results are not affected by the flex-
ural phonons. The possibility of still other unknown scattering
mechanisms (such as scattering from the hybridization of
electron-hole excitations and out-of-plane optical phonons)37

contributing to the graphene resistivity cannot be ruled out
either. But we neglect these scattering mechanisms because
we want to keep the number of parameters to a minimum and
also because the very high SG mobility and quality imply that
the overall scattering contributions are small.

The Drude-Boltzmann conductivity theory for extrinsic
graphene in the presence of induced carriers is a straight-
forward generalization of the theory provided in Sec. II
except the total carrier density now has an externally tunable
(through the gate voltage) density in addition to the thermally
excited intrinsic carriers considered in Sec. II. This theory
has been much discussed in the literature, and we provide
below the working equations for different contributions to
the SG resistivity from the three scattering mechanisms
considered in our work. The theory below is a straightforward
generalization of the theory for the finite-temperature Dirac
point conductivity developed in Sec. II.

Within the Boltzmann transport theory,10,25 the conductivity
σ (n,T ) is given within the relaxation time approximation by

σ = e2

2

∫
dεD(ε)v2

k τ (ε)

[
−∂f (ε)

∂ε

]
, (19)

where f (ε) is the relevant distribution function. The relaxation
time τ (ε) ≡ τ (εk) is given after ensemble averaging over a
random disorder configuration by

1

τ (α)(εk)
= 2π

h̄

∑
(α)

n
(α)
i

∫
d2k′

(2π )2

∣∣〈V (α)
kk′

〉∣∣2

× (1 − cos θkk′)δ(εk − ε′
k), (20)

where θkk′ is the scattering angle and V (α) is the potential
disorder causing the scattering, with n

(α)
i being the 2D density

of the random impurities (or defects) producing the disorder
and (α) being a label indicating the kind of scatterer (e.g., long-
range Coulomb scattering, short-range defect scattering, etc.)
under consideration, with each scattering mechanism being
independent.

The finite-temperature conductivity is given by an appro-
priate thermal energy averaging within the Boltzmann theory
once τ (ε) has been calculated. The zero-temperature result is
simply given by

σ = e2v2
F

2
D(εF )τ (εF ), (21)

where the graphene Fermi velocity vF is assumed to be a
constant (independent of momentum and density) and εF , the
Fermi energy, is the chemical potential at T = 0. The finite
temperature chemical potential, μ(n,T ), is calculated self-
consistently25 so that the net carrier density (induced by doping
or an external gate) is n, and the gaplessness of graphene
automatically ensures that this procedure incorporates the
thermally excited carriers (i.e., the only carriers present for
intrinsic graphene as considered in Sec. II at the Dirac point
with εF = 0) along with the induced carriers of density n. In
this paper our main interest is the low-carrier-density regime
where n is small so that the Dirac point behavior is accessed.

A. Short-range disorder

For short-range (or, more appropriately, zero-range) δ

scatterers, we have

|〈Vkk′ 〉|2 = V 2
δ (1 + cos θ )/2, (22)

where Vδ is the strength of the short-range disorder and the
(1 + cos θ )/2 factor arises from the matrix elements effect due
to the pseudospin chirality of graphene (this chirality factor
leads to the famous suppression of back scattering in graphene
and also in surface states of topological insulators).

It is easy to show that short-range disorder leads to a
carrier-density-independent conductivity σ (n) ∝ V −2

δ and to
an exponentially suppressed temperature dependence at low
temperatures. In the high-temperature limit, the resistivity due
to short-range disorder increases by a factor of 2 compared
with the T = 0 value,25 and thus, short-range disorder by
itself introduces weak metallic behavior in graphene with
little temperature dependence at low (T � TF = εF /kB)
temperatures and increasing resistivity at high temperatures
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(T → ∞). This is the same thing that happens to just the
Dirac point conductivity as discussed in Sec. II.

B. Long-range Coulomb disorder

Unintentional charged impurity centers in the environment
are a major source of disorder for graphene on substrates.
Although they are substantially removed in annealed SG
samples (leading to the very high observed SG mobility), there
are still some remnant random charged impurity centers on the
SG surface which contribute to carrier scattering. For Coulomb
disorder we have

|〈Vkk′ 〉|2 =
∣∣∣∣Vc(q)

ε(q)

∣∣∣∣
2 1 + cos θ

2
, (23)

where Vc(q) = 2πe2/κq, with κ (=1 for SG) as the back-
ground dielectric constant, is the 2D Coulomb interaction and
ε(q) is the wave-vector-dependent static dielectric function of
the free carriers in graphene.10,17

The density dependence σ (n) of conductivity due to
Coulomb disorder is linear, σ ∼ n, and the preponderance of
the observed linearity of σ (n) on n is considered to be strong
evidence for the importance of charged impurity scattering in
determining graphene transport properties. The temperature
dependence due to Coulomb disorder has been discussed
elsewhere,25 and here we summarize the main findings for
the discussion of our results presented in the rest of this paper.
In the low-temperature limit (T � TF = εF /kB), one gets for
Coulomb disorder

σ (T ) = σ0[1 − A2(T/TF )2], (24)

where A2 > 0. In the high-temperature limit (T � TF ), which
is the more appropriate regime for our consideration of
transport near the Dirac point (n ∼ 0), one gets

σ (T ) ∼ B2(T/TF )2, with B2 > 0. (25)

Thus, Coulomb disorder by itself predicts weak metallic
behavior for T � TF and strong insulating behavior for
T � TF (which is the appropriate limit for the low-density
Dirac point regime).

C. Acoustic phonon scattering

In addition to short-range and long-range disorder, which
affect the SG conductivity at all temperatures (but with distinct
density and temperature dependence in different regimes),
we also include resistive scattering by graphene acoustic
phonons through deformation potential coupling, which is
operational primarily at higher temperatures (except at the
Dirac point, where it is operational at all temperatures). We
note that the deformation potential coupling is rather weak
in graphene, and therefore, the primary (essentially, the only)
effect of phonon scattering is to introduce a weak metallic
temperature dependence on the phonon-induced resistivity
ρph ∼ T at higher temperatures T > TBG ∼ 2h̄vphkF , where
vph is the phonon velocity (i.e., speed of sound). Since
kF ∝ √

n, phonon effects could affect the net SG resistivity
at fairly low temperatures for the low-carrier-density systems
of our interest in this work. Since kF effectively vanishes
at the Dirac point, acoustic phonons are operational even at

arbitrarily low temperatures near the Dirac point as TBG tends
toward 0.

Since phonon scattering has already been considered in
detail theoretically elsewhere,19 we show below the relevant
“high-temperature” relaxation time for the deformation poten-
tial coupling,

1

τ (ε)
= 1

h̄3

ε

4v2
F

D2

ρmv2
ph

(kBT ), (26)

where D and ρm are, respectively, the deformation po-
tential coupling and graphene mass density. At very low
temperatures, the phonon-induced relaxation time enters the
Bloch-Grüneisen regime where ρph ∼ T 4 and is negligibly
small.19 In our numerical results presented later in this
paper, we use the full numerical solution of the Boltzmann
theory for calculating the phonon-induced resistivity, which
always becomes important above (a density-dependent) a
characteristic temperature.

D. Asymptotic behavior of SG conductivity

We now combine the contributions to σ (T ,n) = [ρ(T ,n)]−1

from the three distinct scattering mechanisms described
in Secs. III A–III C to discuss the asymptotic density and
temperature dependence of SG conductivity near the Dirac
point. First, we establish the counter-intuitive result that the
conductivity around the Dirac point is always affected by
phonon scattering even at arbitrarily low temperatures. Writing
the effective carrier density n(T ) around the Dirac point as

n(T ) ≈ n0 + AT 2, (27)

where n0 ∝ Vg is the gate-induced extrinsic carrier density
and AT 2 (�n0) is the intrinsic Dirac point thermally excited
carrier density (see Sec. II), we can define an effective Fermi
wave vector,

kF =
√

π (n0 + AT 2) ≈
√

πAT, (28)

where A = (π/6)(kB/γ )2 are known T -independent con-
stants. Then the Bloch-Grüneisen temperature TBG above
which phonon scattering effects are important is given by

TBG = ωph(2kF )/kB = 2(vph/vF )
√

π2/6T = dT , (29)

where d = 2vph/vF

√
π2/6. (We note that TBG is defined by

phonons with an effective wave vector of 2kF since 2kF

typically is the most resistive scattering process across the
Fermi surface.) Now the condition for acoustic phonons to
contribute appreciably to the resistivity (e.g., ρ ∝ T ) is that
T > TBG, implying that d > 1. If d > 1, then the Dirac point
resistivity remains unaffected by phonons to arbitrarily high
temperatures, whereas d < 1 implies that phonons contribute a
linear resistivity down to low temperatures. It is easy to check
that for actual graphene parameters, we find that d ≈ 10−3

and thus d � 1 is satisfied, implying that σD(T ) is affected,
in principle, by phonon scattering at all temperatures. We can
estimate the crossover temperature scale Tc for a low-density
SG system to go from being “insulating-like,” dominated
by Coulomb disorder, to being “metallic-like,” dominated by
phonon scattering, to be Tc ∼ 2/(AcBp)1/2, where Ac is the
coefficient for the T 2 dependence due to Coulomb disorder in
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Eq. (13) and Bp is the coefficient of the linear T-inverse term
due to phonon scattering in Eq. (18). It is easy to show that
Tc ∼ n

1/3
i , and thus the crossover temperature increases with

increasing Coulomb disorder in the system. For very pure SG
samples, Tc could be very low, and it is, in principle, possible
for the low-temperature Dirac point conductivity to show a
transition from being insulating-like to being metallic-like as a
function of decreasing disorder (i.e., ni), but this is by no means
a localization transition—it is simply a crossover behavior
driven by the competition between charged impurities and
phonons. In general, the Dirac point conductivity would show
complex nonmonotonic temperature-dependent conductivity
as is obvious from this analysis and from Fig. 1.

For finite doping when n0 � AT 2, the above argument
does not hold, and phonon effects on conductivity are pushed
to much higher temperatures, while at the same time the
temperature scale for the insulating behavior is substantially
suppressed since TF is now large [see Eqs. (24) and (25)]. Then
the high-temperature behavior of σ (T ) must always reflect
the weak metallic (dσ/dT < 0) conductivity in the ρph ∝ T

regime for T � TBG. Thus, at a high carrier density both the in-
sulating and the metallic temperature dependences are strongly
suppressed, leading to a very weak temperature dependence
of graphene conductivity as is well established experimentally.
How high in temperature one must go to manifest this weak
metallic phonon-induced conductivity obviously depends on
the gate-induced carrier density. First, TBG increases with
increasing carrier density n since TBG ∝ √

n. Thus, doped
SG with a high carrier density should reflect a very weak
temperature dependence except for the weak phonon-induced
metallic behavior at high temperatures, whereas Dirac point
conductivity (or, more generally, low-temperature conductiv-
ity) should reflect a strong (and, in principle, nonmonotonic)
temperature dependence of the conductivity. The observation
of any strong temperature dependence in graphene (insulating,
metallic, or nonmonotonic) therefore indicates Dirac point
behavior.

For short-range disorder, as discussed in Sec. III A, σ (T )
has a weak T dependence at low temperatures and a metallic
temperature dependence at high temperatures, and thus adding
phonon scattering does not change the picture qualitatively.
Thus, pure short-range disorder by itself can only introduce
weak metallic temperature dependence in graphene transport
properties, with σ (T ) decreasing with increasing T at high
temperatures as phonons start playing a role. In addition, short-
range disorder does not manifest any density dependence of
σ (n), and therefore, σ (T ,n) would have little dependence on
density and temperature (except at high temperatures) if the
dominant resistive scattering mechanism is short-range defect
scattering, in conflict with all existing experiments.

Long-range disorder, however, must dominate low-density
transport since ρ ∝ 1/n for long-range disorder, and therefore,
the Dirac point conductivity is necessarily limited by long-
range disorder, which, as discussed in Sec. III B, leads to
a nonmonotonic temperature dependence of weak metallic
behavior for higher temperatures. At low carrier densities
(as well as in the presence of any remnant puddles) the
low-temperature weak metallicity may be ignored, and the
net temperature dependence arising from long-range disorder
(Sec. III B) and phonon scattering (Sec. III C) can be combined

to give

ρ(T ) = (σ0 + AcT
2)−1 + BpT , (30)

where σ0 subsumes the weak metallic temperature dependence
at low temperatures and Ac and Bp (as defined above)
depend, respectively, on the long-range Coulomb scattering
and acoustic phonon scattering as discussed above. For small
σ0, at the Dirac point, such a T dependence leads immediately
to a universal crossover temperature scale Tc given by

Tc ≈ (AB)−1/3 ∝ n
1/3
i r2/3

s v
4/3
F v

1/3
ph D−2/3, (31)

with Tc being the characteristic temperature defining the
crossover from the temperature power-law insulating tem-
perature dependence induced by Coulomb scattering to the
higher temperature phonon-induced weak metallic temper-
ature dependence. We note that Tc increases weakly with
disorder (ni) and rs but decreases with increasing deformation
potential coupling. Cleaner SG systems would thus manifest
stronger phonon effects. But for high densities, when σ0

typically is large, and the phonon effects can only show up at
very high temperatures T � TBG(∼n0), with TBG also being
large, Eq. (30) immediately implies very little temperature
dependence, except for ρ(T ) ∼ T for T � TBG. Thus, away
from the Dirac point, whence both TF and TBG are large, SG
conductivity should manifest a weak temperature dependence,
whereas the observation of a strong temperature-dependent
conductivity is evidence of approaching the Dirac point in the
system.

In the next section, we provide our calculated numerical
results for SG transport properties using the full numerical
solutions of the Boltzmann transport theory including long-
range and short-range disorder and acoustic phonon scattering.

IV. NUMERICAL TRANSPORT RESULTS
FOR SUSPENDED GRAPHENE

We consider three scattering mechanisms in calculating the
density- and temperature-dependent SG conductivity σ (n,T )
or, equivalently, the resistivity ρ ≡ 1/σ : long-range Coulomb
disorder (ni), short-range disorder (nδV

2
δ , where nδ is the short-

range impurity density and Vδ is the strength of the short-range
disorder), and acoustic phonon scattering (D). We assume
D = 19 eV throughout and assume that the long-range and the
short-range disorder can both be taken to arise from random
quenched point impurity centers located in the SG layer.

In addition to conductivity (or resistivity) we also present
results for the mobility μ and the mean free path l since
these are quantities of considerable experimental interest. In
particular, the mean free path is often used by experimentalists
to operationally determine whether or not transport is ballistic;
if l > L (where L is the system size), one nominally has
ballistic transport (and our theory becomes inapplicable).
Similarly, mobility is an important physical quantity pertaining
to the sample quality; typically SG samples should have a high
mobility because the amount of disorder is suppressed.

In calculating the conductivity of extrinsic SG in the
presence of finite doping (or gate-induced carriers with a finite
Fermi energy εF ) we first generalize the theory of Sec. II to
the finite-doping case as discussed below (with n0 being the
doping density). The current density in the presence of an

035415-7



S. DAS SARMA AND E. H. HWANG PHYSICAL REVIEW B 87, 035415 (2013)

applied electric field (Ex) is given by

Jx = Ex

e2v2
F

2

∫
D(ε)τ (ε)

(
−df (ε)

dε

)
dε, (32)

where D(ε) = gε/[2π (h̄vF )2] is the DOS of graphene with
energy ε = h̄vF k and f (ε) is the Fermi distribution function.
Thus the conductivity becomes

σ = e2v2
F

2

∫
D(ε)τ (ε)

(
−df (ε)

dε

)
dε. (33)

To find a direct analogy of the conductivity with the parabolic
dispersion, σ = ne2〈τ 〉/m, we rewrite Eq. (33) as

σ (T ) = e2〈τ 〉gε(T )

4πh̄2 , (34)

where

〈τ 〉 =
∫

D(ε)τ (ε)
(− df (ε)

dε

)
dε∫

D(ε)
(− df (ε)

dε

)
dε

, (35)

which is exactly the same definition of the average scattering
time for 2D parabolic band systems and ε(T ) is given by

ε(T ) =
∫

f (ε)dε = μ0(T ) + 1

β
ln[1 + e−βμ0 ], (36)

where μ0(T ) is the chemical potential, and at T = 0
μ0 = εF . With the 2D parabolic energy dispersion ε =
(h̄kF )2/2m Eq. (34) becomes the 2D conductivity formula,
σ = ne2〈τ 〉/m.

With the classical average velocity 〈vx〉 the current density
is given by

Jx = n(T )e〈vx〉, (37)

where we use the total electron density at finite T instead of
the zero-temperature density n0, and n(T ) is given by

n(T ) =
∫

D(ε)f (ε)dε. (38)

From Eqs. (32) and (37) we have

〈vx〉 = σ (T )

en(T )
Ex. (39)

Then the mobility can be defined by (we note that we have used
the standard notation μ to imply both mobility and chemical
potential, which should not cause any confusion since they
do not arise in the same equation in the text and it should be
clear from the context whether mobility or chemical potential
is being discussed)

μ(T ) = 〈vx〉
Ex

= σ (T )

en(T )
. (40)

Now we define the mean free path from the average
scattering time as

l(T ) = vF 〈τ 〉 = σ
h

e2

2

g

h̄vF

ε(T )
. (41)

For the mobility [Eq. (40)] and mean free path [Eq. (41)] the
total density and thermal energy at finite temperature are used

0 1 2 3 4 5
T/T

0

10

20

30

ε/
E 

  ,
   

n/
n n/n

ε/E

F

0

F

F
0

FIG. 2. (Color online) Temperature-dependent electron density
n(T ) [Eq. (38)] and energy ε(T ) [Eq. (36)] as a function of
temperature, T/TF .

instead of n0 and εF , i.e.,

μ(T ) = σ (T )

en0
(42)

and

l(T ) = σ
h

e2

2

g

h̄vF

εF

. (43)

We note, as mentioned already, that there are two possible
alternative definitions above for the mobility μ and mean
free path l, depending on whether one uses the gate-induced
doping density n0 or the full carrier density n(T ) including the
thermally excited carriers. For T < TF , where TF (=εF /kB)
is always defined with respect to the T = 0 carrier density
induced by the gate, the two definitions are equivalent since
n(T ) ≈ n0 = n. But at very high temperatures (or very low
doping densities), n(T ) � n0 because T � TF . For ordinary
graphene on substrates, where the puddle-induced density
inhomogeneity introduces a cutoff density of nc ∼ 1012 cm−2

with a corresponding TF ∼ 1250 K, by definition n(T ) = n0 =
n, and there is not much of a difference between the two
different ways of defining the mobility and the mean free path.
But for SG, where nc is small and thus very small values of n0

are meaningful, the two distinct ways of defining μ and l make
a big difference for a low external doping density (n0 ∼ 0), i.e.,
near the Dirac point.

To make the above point more explicit, we show in Fig. 2
our calculated n = n(T ) and ε(T ) compared with n0 and εF ,
respectively. It is clear that for T/TF � 1, there is a substantial
difference between n(T ) and n0 = n(T = 0). Since TF ∼ 12 K
for n0 ∼ 108 cm−2, close to the Dirac point, the two quantities
(n and n0) may differ a lot even at moderate temperatures.

In Figs. 3–10, we show our calculated SG transport
properties as functions of density and temperature, neglecting
all effects of density inhomogeneity or puddles; our theory
should therefore be cut off at some very low doping density
(�109 cm−2) where puddles become relevant in high-quality
SG. In Figs. 3–8, we show the density dependence for a few
representative temperatures, whereas in Figs. 9 and 10 we
show the calculated temperature dependence for a few fixed
doping densities. We include phonon effects only in Figs. 9
and 10 since our main interest is low-temperature transport. In
obtaining our numerical results, we focus on three published
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experimental SG works in the literature: Bolotin et al.,3,4 Du
et al.,1,2 and Mayorov et al.5 Our goal is not data fitting or
getting precise agreement with the experimental results, since
the details of disorder are unknown in experimental systems,
and we cannot rule out the possibility of additional scattering
mechanisms not included in our model being operational in
experimental systems. What we are interested in is obtaining
the broad qualitative features of SG transport data in our
theory in order to critically assess the issues of ballistic versus
diffusive SG transport and the access to the Dirac point at a
low carrier density. We mention that the authors of all three of
these works1–5 interpret their data in terms of ballistic transport
mainly by comparing their extracted mean free paths with
the sample size. We critically examine the nature (ballistic or
diffusive) of transport in these experiments.

For each experiment, we choose a set of disorder parameters
as shown below based on the best overall semiquantitative and
qualitative agreement with the data, keeping these disorder
parameters fixed for all the presented results. The acoustic
phonon scattering parameters are standard and are taken
to be D = 19 eV, ρm = 7.6 × 10−8 g/cm2, and vph = 2 ×
106 cm/s. We use the following disorder parameters for each
experiment.

Du et al.: ni = 6.5 × 1010 cm−2, nδV
2
δ = 15.7 (eV Å)2.

Bolotin et al.: ni = 1.2 × 1010cm−2, nδV
2
δ = 1.5(eV Å)

2
.

Mayorov et al.: ni = 0.3 × 1010cm−2, nδV
2
δ = 1.5 (eV Å)

2
.

We note that, consistent with the experimental SG sample qual-
ity, our disorder is the strongest (weakest) of Du (Mayorov),
with Bolotin disorder being intermediate. This is consistent
with the claimed high-density mobility being ∼500 000,
∼200 000, and ∼100 000 cm2/V s, respectively, in the three
experiments (although the precise value of the sample mobility
may not be a meaningful quality since the mobility depends
on both density and temperature).

In Figs. 3—5, we show our calculated σ (n), μ(n), and l(n)
as a function of the doping density n (alluded to n0 above)
for T = 0, 100, 200, and 300 K for the three experimental SG
samples, respectively. We emphasize that for small values of
n0, where the T/TF > 1 condition may apply, the alternative
definitions for the chemical potential and the mean free path
would lead to large quantitative differences since, as is obvious
from Fig. 2, n(T ) � n0 in this regime.

Our calculated σ (n) results for the three experimental
samples in Figs. 3–5 manifest similar qualitative behavior
with large quantitative differences because of the differences
in the details of the underlying disorder. In particular,
the following salient features of the results are consistent
with the experimental findings in high-quality SG samples.
(i) σ (n) manifests sublinear density dependence, simulating
σ ∼ √

n, over an extended density range and, thus, calling
into question the experimental interpretation of SG transport
being ballistic38 based entirely on this sublinear density
dependence. (ii) At the lowest density, σ (n) is always limited
by the long-range Coulomb scattering (with ρ ∝ n), but
the competition between long-range and short-range disorder
(which leads to the effective sublinear density dependence
over an extended density range) and the existence of the
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FIG. 3. (Color online) Conductivity of SG corresponding to the
experimental data of Bolotin et al.3 (a) Calculated conductivity as
a function of density for different temperatures—T = 0, 100, 200,
and 300 K (from top to bottom)—with ni = 0.85 × 1010 cm2 and
nδV

2
δ = 1.5 (eV Å)2. (b) Mobility and (c) mean free path. Solid

lines are calculated with temperature-dependent n(T ) and ε(T ),
and dashed lines are calculated with the zero-temperature density
n0 and energy EF . (d) σ , (e) μ, and (f) l at low densities (down to n =
107 cm−2). Note that as n → 0 or T/TF → ∞ for a fixed temperature,
μ(T ) ∝ σ (T )/T 2 and l(T ) ∝ σ (T )/T . Thus, both μ(n → 0) and
l(n → 0) saturate at a finite temperature.

low-density puddle-dependent cutoff (not included in the
current theory) may mask this linear density dependence in
high-quality SG samples where random charged impurity
disorder is presumably rather low. (iii) At the lowest density,
the system would always manifest insulating temperature
dependence because of the dominance of thermal excitation in
the gapless system [this is obvious in Figs. 3(d), 4(d), and 5(d)]
near the Dirac point—there is a density-dependent crossover to
the metallic behavior at higher carrier densities, emphasizing
that the characteristic Dirac point insulating transport behavior
is a high-temperature crossover behavior (which may not
be apparent for T/TF � 1. (iv) The calculated mobility
approaches ∼5 × 105, ∼5 × 105, and ∼5 × 106 cm2/V s,
respectively, in the Bolotin, Du, and Mayorov samples close
to the Dirac point, showing the unprecedentedly high qualities
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FIG. 4. (Color online) Conductivity corresponding to the ex-
perimental data of Du et al.2 (a) Calculated conductivity as a
function of density for different temperatures—T = 0, 100, 200,
and 300 K (from top to bottom)—with ni = 5.0 × 1010 cm2 and
nδV

2
δ = 14.7 (eV Å)2. (b), (c) Mobility (b) and mean free path (c) are

shown as a function of density, respectively. Solid lines are calculated
with the temperature-dependent n(T ) and ε(T ), and dashed lines are
calculated with a zero-temperature density n0 and an energy EF .
(d) σ , (e) μ, and (f) l at low densities.

of these SG systems. (v) It is misleading to characterize
the mobility (or the mean free path) using the gate-induced
density since this would produce an erroneously large mobility
and mean free path at low gate voltages and, in fact, would
imply a divergent mobility (or mean free path) at the Dirac
point—when the full density n(T ) is used in defining the
mobility (or mean free path), the low-density mobility and
mean free path saturate, providing the correct characterization.
(vi) Both definitions [using n0 or n(T )] give identical mobility
and mean free path values for high carrier densities (�1012

cm−2), as one expects, since n(T ) ∼ n0 for high densities.
(vii) Although broadly in qualitative agreement with the
experimental data, there are important discrepancies between
our theory and experiment in the details, most likely because
of our neglect of other possible scattering mechanisms in
the experimental systems. (viii) The appropriate mean free
path (at low densities near the Dirac point) varies between
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FIG. 5. (Color online) Conductivity corresponding to the exper-
imental data of Mayorov et al.5 (a) Calculated conductivity as a
function of density for different temperatures—T = 0, 100, 200,
and 300 K (from top to bottom)—with ni = 0.3 × 1010 cm2 and
nδV

2
δ = 1.5 (eV Å)2. (b), (c) Mobility (b) and mean free path

(c) as a function of density. Solid lines are calculated with the
temperature-dependent n(T ) and ε(T ), and dashed lines are calculated
with a zero-temperature density n0 and an energy EF . (d) σ , (e) μ,
and (f) l at low densities.

∼100 nm (Du sample) and ∼1000 nm (Mayorov sample),
and therefore true ballistic transport measurements would
require a sample size of <0.1 μm, and one must observe
sample-length-dependent conductivity to validate any ballistic
transport behavior.

Since long-range and short-range disorders affect σ (n,T )
qualitatively differently (and the nature of the disorder in the
experimental samples is not known based on any independent
measurements), we depict in Figs. 6–8 the distinct theoretical
dependence of the conductivity on long-range and short-range
disorder separately (in contrast to Figs. 3–5, where both are
included together in the theory) on the density for the SG
system. To bring out the qualitatively different dependence of
conductivity, mobility, and mean free path on n0 (the doping
density) or n(T ) at a low density, we show in Figs. 6–8 the
dependence on both n0 and n(T ) separately. In Fig. 6, we
show the calculated conductivity, whereas in Figs. 7 and 8 we
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FIG. 6. (Color online) Calculated conductivity as a function of
density for different temperatures: (a) For a long-range Coulomb
potential with ni = 1010 cm−2 and (b) for a neutral short-range
potential with nδV

2
δ = 5 (eV Å)2. Solid lines indicate σ vs n(T ),

and dashed lines indicate σ vs n0 = n(T = 0) or density induced by
only the gate voltage.

show the mobility and the mean free path. In Fig. 6 we show
σ (n) for just long-range disorder or just short-range disorder,
with the two different density dependences [n0 and n(T )]
showing quantitative differences only at low values of n (or,
equivalently, high values of T ), with the two being identical (by
definition) at T = 0 since n(T = 0) ≡ n0. In Figs. 7 and 8, we
show the calculated mobility and mean free path for long-range
(Fig. 7) and short-range (Fig. 8) disorder with each case also
providing the dependence on n0 and n(T ). The important
qualitative conclusion from Figs. 6–8 is that one should always
extract mobility and mean free path using the correct total
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FIG. 7. (Color online) (a), (b) Calculated mobility as a function
of density for different temperatures and for a long-range Coulomb
potential with ni = 1010 cm−2. Here n0 indicates the density induced
by the gate voltage and n(T ) indicates the total density, i.e., the density
from the gate plus the density from thermal excitations. Solid lines
represent Eq. (40) with n(T ) and dashed lines represent Eq. (42) with
n0 = n(T = 0) or density induced by only gate voltage. (c), (d) Mean
free path shown as a function of density. Solid (dashed) lines indicate
Eq. (41) [Eq. (43)].
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FIG. 8. (Color online) (a), (b) Calculated mobility as a function
of density for different temperatures and for a short-range neutral
potential with nδV

2
δ = 5 (eV Å)2. Solid lines represent Eq. (40) with

n(T ) and dashed lines represent Eq. (42) with n0 = n (T = 0) or
density induced by only the gate voltage. (c), (d) Mean free path
shown as a function of density. Solid (dashed) lines indicate Eq. (41)
[Eq. (43)].

density n(T ) rather than just the doping density n0, particularly
at low carrier densities because the extracted mobility and
mean free path for the two definitions differ qualitatively as
the Dirac point is approached with the distinction between
the two definitions being much larger for long-range disorder.
Our work establishes that derived quantities such as mean
free path and mobility, which involve an effective division of
the experimentally measured conductivity by a density, are
not meaningful for graphene (particularly at low densities,
approaching the Dirac point) because n(T )/n0 diverges at
the Dirac point. This is not a serious problem for graphene
on substrates because the puddle-induced cutoff density nc

ensures that n(T ) ≈ n0 ≈ n, but in high-quality SG, mobility
and mean free path are meaningful only if they are extracted
at a high density where n(T ) ≈ n0.

All the above results (Figs. 3 and 4) ignore phonon
effects, which are very weak in graphene and only affect
high-temperature transport. In Figs. 9 and 10, we show the
explicit effects of acoustic phonon scattering in the theory by
comparing results for σ (T ) including and excluding phonons
in the calculation at high (Fig. 9) and low (Fig. 10) carrier
densities and for the Bolotin et al.3,4 and Du et al.1,2 samples.
In general, the phonon scattering effect is much stronger for
the Bolotin et al. sample than the Du et al. sample because of
the much higher quality (lower disorder) of the former. This
finding is completely consistent with our theoretical analysis
in Secs. II and III, where we establish that the Dirac point
conductivity would be affected by phonons even at rather low
temperatures for very clean samples with low values of ni . Our
basic finding is that phonons introduce metallic temperature
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FIG. 9. (Color online) Temperature-dependent conductivity of
SG corresponding to the experimental data of (a) Du et al.1 and
(b) Bolotin et al.3 The same parameters used in Figs. 3 and 4 are
used in this calculation. Solid (dashed) lines indicate the results with
(without) phonon scattering.

dependence at higher carrier densities, nullifying the intrinsic
insulating temperature dependence arising from Coulomb
disorder, but in general the insulating temperature dependence
remains quite strong up to the room temperature at a low carrier
density (Fig. 10) in high-quality SG. We note that both Figs. 9
and 10 clearly show the very low-temperature (T/TF � 1)
weak metallic T dependence of σ (T ) arising entirely from
the Fermi surface effect, which is more strongly manifested
in the higher-density (Fig. 9) system. This again reinforces
our claim that the insulating behavior of σ (n,T ), which is the
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FIG. 10. (Color online) Temperature-dependent conductivity of
SG corresponding to the experimental data of (a), (b) Bolotin et al.3

and (c), (d) Du et al.1. The same parameters used in Figs. 3 and
4 are used in this calculation. (a), (c) Solid (dashed) lines indicate
the results without (with) phonon scattering, and black (red) lines
indicate the results for a density n = 1010 cm−2 (n = 109 cm−2).
(b), (d) Individual contribution to the total conductivity (black line)
is shown for a density n = 1010 cm−2. In (d) the nonmonotonic
behavior at high densities does not appear due to the strong short-
range potential scattering, but in high-mobility samples (b) the
nonmonotonic behavior shows up due to the much weaker neutral
impurity scatterings.

hallmark of the Dirac point transport property, is much better
studied as a high-temperature phenomenon in low-density
SG. This insulating behavior has clearly been observed by
Bolotin et al., Du et al., and Mayorov et al., establishing
that all three SG samples are reflecting intrinsic Dirac point
transport behavior in their very high-quality SG samples.
Based on our results we contend that the observation of
low-density power-law insulating temperature dependence in
graphene is a direct manifestation of the Dirac point behavior.

V. CONCLUSION

We have provided in this work a detailed theoretical
study of the density- and temperature-dependent conduc-
tivity of low-disorder SG within the semiclassical Drude-
Boltzmann transport theory neglecting density inhomogeneity
(i.e., puddle) effects. Our theory includes three independent
scattering mechanisms: long-range Coulomb disorder, short-
range δ-function disorder, and acoustic phonon scattering. We
establish, by comparing our detailed numerical results for the
conductivity with three recent experimental studies,1–5 that the
measured low-density conductivity in existing experiments on
SG is approaching at least some aspects of the intrinsic Dirac
point behavior.

Some of our more important qualitative conclusions are
as follows. (i) The intrinsic Dirac point behavior is better
manifested at higher (lower) temperatures (densities) remain-
ing above the puddle-induced characteristic density. (ii) The
observation of a power-law insulating temperature dependence
of conductivity is a direct manifestation of the Dirac point
behavior. (iii) At low doping densities, it is not meaningful to
characterize the system using derived quantities (e.g. mobility
or mean free path) because of the considerable ambiguity in
which density (just the extrinsic doping density or the total
density including thermal excitations) should be used in the
definition of mobility (or mean free path). (iv) The competition
among long-range and short-range disorder plus phonon scat-
tering could lead to complex (and even nonmonotonic) depen-
dence of the conductivity on temperature and density, and it is
not meaningful to conclude about the underlying nature of the
transport behavior (ballistic or diffusive; localized or extended,
etc.) based just on preconceived notions about the expected
density and temperature dependence for various processes.
(v) By improving the sample quality and reducing disorder,
it should be possible to approach the Dirac point indefinitely
through careful conductivity measurements in SG, providing
unique opportunities to study in the future many interesting ef-
fects not included in our theory (e.g,, interaction, localization,
ripple, flexural phonons). (vi) Phonons could affect the Dirac
point conductivity in high-quality SG down to arbitrarily low
temperatures since the Bloch-Grüneisen temperature becomes
vanishingly small near the Dirac point; whether phonon effects
will overcome the insulating temperature dependence due to
Coulomb disorder depends on the details of the amount of
disorder scattering effective in the system.

We conclude by emphasizing that our results establish that
how closely in density one has approached the Dirac point can
be estimated by seeing how high in temperature the Coulomb-
disorder-induced insulating temperature dependence persists
in a particular graphene sample (or, paradoxically, how low in
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temperature the acoustic phonon effects persist if the graphene
sample is devoid of Coulomb disorder causing the insulating
behavior).
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