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Effects of optical and surface polar phonons on the optical conductivity of doped graphene
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Using the Kubo linear response formalism, we study the effects of intrinsic graphene optical and surface polar
phonons (SPPs) on the optical conductivity of doped graphene. We find that inelastic electron-phonon scattering
contributes significantly to the phonon-assisted absorption in the optical gap. At room temperature, this midgap
absorption can be as large as 20–25% of the universal ac conductivity for graphene on polar substrates (such as
Al2O3 or HfO2) due to strong electron-SPP coupling. The midgap absorption, moreover, strongly depends on
the substrates and doping levels used. With increasing temperature, the midgap absorption increases, while the
Drude peak, on the other hand, becomes broader as inelastic electron-phonon scattering becomes more probable.
Consequently, the Drude weight decreases with increasing temperature.
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I. INTRODUCTION

Since it was first isolated in 2004,1 graphene, a material
composed of a single layer of carbon atoms arranged in
a two-dimensional (2D) honeycomb lattice, has attracted
immense interest2–4 due to its excellent transport and op-
tical properties,2,4–9 which make it an attractive candi-
date for possible applications in nanoscale electronics and
optoelectronics.10–12 One particular field which has received
considerable attention, both experimentally13–16 as well as
theoretically,17–25 is the optical (or ac) conductivity in
graphene, that is, the frequency-dependent conductivity. The
main feature that can be observed in the optical conductivity is
that for frequencies larger than twice the absolute value of the
chemical potential μ, the optical conductivity is roughly given
by σ0 = e2/(4h̄), the so-called universal ac conductivity.13,14

For frequencies below 2|μ|, the optical conductivity is greatly
reduced, which can be explained within a single-particle model
where transitions induced by photons with energies h̄ω < 2|μ|
are forbidden due to Pauli’s exclusion principle. The ability to
tune the optical properties of graphene has been explored for
use in broadband light modulators.26–28 One figure of merit
for this application is the modulation depth of the optical
absorption. In experiments, however, one does not observe
the optical conductivity to vanish completely, as one would
expect from the simple single-particle argument given above.
In addition, a substantial Drude weight loss has been reported
in graphene on SiO2.16

To describe this behavior, mechanisms involving disorder
and/or phonons, both of which can account for a finite
absorption below 2|μ|, have been studied theoretically in both
monolayer17,21–23,29 and bilayer30,31 graphene. In addition to
these single-electron effects, excitonic effects24 as well as
effects arising from the Coulomb interaction25 have also been
considered, but were found to have a negligible effect on
the midgap absorption in heavily doped samples. Moreover,
the optical conductivity in the presence of a magnetic field,
the so-called magneto-optical conductivity, has also been
investigated theoretically,32,33 with Ref. 33 taking into account
the coupling between electrons and Einstein phonons.

Besides the aforementioned studies on the optical conduc-
tivity, the role played by different phonons has also been

studied in the context of heat dissipation mechanisms34–36

and current/velocity saturation in graphene,37 which plays an
important role in electronic RF applications11 and also for
transport38,39 in the similar system of carbon nanotubes. Inelas-
tic scattering either by intrinsic graphene optical phonons40

or surface polar phonons37,41–45 (SPPs) is thought to give
rise to the saturation of the current in graphene and affect
the low field carrier mobility.46,47 However, from transport
experiments alone it is difficult to identify the role played by
SPPs from the polar substrates because of the complications
arising from charge traps which can be populated thermally48

or by the high electrical fields.49

Here, we show that the temperature dependence of the
midgap absorption can be significantly stronger in the presence
of SPPs as compared to suspended graphene or graphene on a
nonpolar substrate such as diamondlike carbon. Our main goal
in this manuscript is to study the optical conductivity in the
presence of phonons. While the impact of optical phonons has
been studied in several earlier works,21–23 the effect of SPPs
on the optical conductivity in graphene has yet to be analyzed.
In this paper, we use linear response theory to derive a Kubo
formula for the optical conductivity, which is then evaluated
for suspended graphene as well as graphene on different polar
substrates, where SPPs are present.

II. MODEL

To describe the electronic (single-particle) band structure
of graphene, we use the Dirac-cone approximation, where the
Hamiltonian can be written as

Ĥe =
∑

k,s,v,λ

λεk ĉ
†
λksvĉλksv, (1)

with εk = h̄vFk. Here, k, s, and v denote the momentum, spin,
and valley quantum numbers, λ the conduction (λ = +1) and
valence (λ = −1) bands, ĉ

†
λksv and ĉλksv the corresponding

creation and annihilation operators, and vF ≈ 108 cm/s the
Fermi velocity in graphene.4

Since the goal of this work is to study and compare the
effects of several different phonons on the optical conductivity
of graphene, we need to take into account the interaction with
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these phonons. A general phononic Hamiltonian reads as

Ĥph =
∑
q,�

h̄ω�(q)p̂†
q�p̂q�, (2)

where different phonon branches are labeled as �, the phonon
momentum as q, and the corresponding frequencies and
creation (annihilation) operators as ω�(q) and p̂

†
q� (p̂q�).

Whereas Eqs. (1) and (2) describe isolated systems of electrons
and phonons, respectively, the coupling between those systems
is given by

Ĥe−ph =
∑
λksv

∑
λ′qv′�

Mλλ′
vv′,�(k,q)(p̂†

−q� + p̂q�)

× ĉ
†
λ(k+q)svĉλ′ksv′ , (3)

where Mλλ′
vv′,�(k,q) is the electron-phonon coupling matrix

element.50 Hence, the total Hamiltonian of our model reads
as

Ĥ = Ĥe + Ĥph + Ĥe−ph. (4)

In this paper, we investigate two different types of phonons
that couple to the electrons in graphene: intrinsic graphene
optical phonons and SPPs, that is, surface phonons of polar
substrates which interact with the electrons in graphene via
the electric fields those phonons generate. Intrinsic graphene
acoustic phonons are not included in our model because
their effect on the optical conductivity is negligible as
has been shown in Ref. 21. The dominant electron-optical
phonon coupling51–54 is due to longitudinal-optical (LO) and
transverse-optical (TO) phonons at the � point and TO phonon
at the K point. In the vicinity of the � point, the dispersion of
both LO and TO phonons (denoted by �LO and �TO) can
be approximated by the constant energy h̄ω� ≈ 197 meV.
Near the K and K ′ points, on the other hand, only the
TO phonon (denoted by KTO) contributes to the electron
self-energy and its dispersion in this region can again be
assumed as flat, h̄ωK ≈ 157 meV.55 Furthermore, we need to
know the products M̃� ≡ ∑

ṽ Mλλ̃
vṽ,�(k − q,q)Mλ̃λ′

ṽv′,�(k,−q)
of the electron-phonon coupling matrix elements for each
phonon branch in order to calculate the electron self-energy.
The coupling of both � phonons is given by51,52,54

M̃�LO + M̃�TO = h̄D2
�

2NMcω�

(1 + λλ′)δvv′ , (5)

where N is the number of unit cells, Mc the carbon mass,
and D� ≈ 11.2 eV/Å the strength of the electron-phonon
coupling.42 The coupling of the KTO phonon mode to the
electrons in graphene is twice as large as that of phonons at
the � point51–53 and is described by56

M̃KTO = h̄D2
�

2NMcωK
[1 + λλ′ − λ̃(λe−iθ + λ′eiθ )]δvv′ , (6)

where θ ≡ θk − θk−q and θk = arctan(kx/ky). Our choice of
the optical phonon deformation potential lies between the
LDA results of Refs. 51 and 52 and the GW results from

Ref. 57. A smaller electron-intrinsic optical phonon coupling
as suggested in Ref. 58 would further reduce the absorption
below 2|μ| in suspended graphene.

Here, we include SPPs in our model as follows: There
are two surface optical (SO) phonons in polar substrates that
interact with the electrons in graphene and whose dispersion
can again be approximated by substrate-specific, constant
frequencies ωSO1 and ωSO2 , and their electron-phonon coupling
matrix elements read as43,47

M̃� = π2e2F 2
�(q)

NAq
e−2qz0 [1 + λλ′ + λ̃(λe−iθ + λ′eiθ )]δvv′ ,

(7)

where e = |e| is the absolute value of the electron charge,
A = 3

√
3a2/2 the area of the graphene unit cell, a ≈ 1.42 Å

the distance between two carbon atoms, z0 ≈ 3.5 Å the van der
Waals distance between the graphene sheet and the substrate,
and the Fröhlich coupling F 2

�(q) describes the magnitude of
the polarization field.59 The Fröhlich coupling is given by34,60

F 2
SO1

(q) = h̄ωSO1

2π

[
1

εi + ε(q)
− 1

ε0 + ε(q)

]
(8)

and

F 2
SO2

(q) = h̄ωSO2

2π

[
1

ε∞ + ε(q)
− 1

εi + ε(q)

]
(9)

with the optical, intermediate, and static permittivities ε∞,
εi, and ε0 of the substrate as well as the static, low temper-
ature dielectric function ε(q) = 1 + 2πe2�g(q,ω = 0)/(κq),
where κ is the background dielectric constant and �g(q,ω)
the polarization function of graphene as calculated in Refs. 61
and 62. The dielectric function ε(q) accounts for the screening
of the Coulomb interaction in the graphene sheet above the
polar substrate. If the effect of screening is to be disregarded,
we set ε(q) = 1 in Eqs. (8) and (9), for which we obtain the
bare Fröhlich couplings presented in Table I.

Employing standard diagrammatic perturbation
theory50,66,67 and inserting the specific expressions for
the matrix elements Mλλ′

vv′,�(k,q) (for more details, we refer to
Appendix A), we find that, up to first nonvanishing order, the

TABLE I. Optical, intermediate, and static permittivities as well
as frequencies and bare Fröhlich couplings for the SPP scattering on
the substrates Al2O3, hexagonal BN, HfO2 SiC, and SiO2.

Al2O3
a h-BNb HfO2

c SiCd SiO2
e

ε0 12.53 5.09 22.0 9.7 3.90
εi 7.27 4.575 6.58 3.36
ε∞ 3.20 4.10 5.03 6.5 2.40
h̄ωSO1 [meV] 56.1 101.7 21.6 116.0 58.9
h̄ωSO2 [meV] 110.1 195.7 54.2 156.4
F 2

SO1
[meV] 0.420 0.258 0.304 0.735 0.237

F 2
SO2

[meV] 2.053 0.520 0.293 1.612

aReferences 60 and 63.
bReferences 42, 63, and 64.
cReferences 42, 60, and 63.
dReferences 42 and 65.
eReference 42, which uses averages of values from Refs. 43, 47,
and 60.
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electronic spectral function is diagonal in the four quantum
numbers λ, k, s, and v and is given by

Aλ(k,ω)

= −2 Im

{
1

ω + i0+ − [λεk − μ + �λ(k,ω + i0+)]/h̄

}
,

(10)

where �λ(k,iνn) denotes the imaginary-time self-energy at the
imaginary (fermionic) frequency iνn. In the lowest order, the
contribution to the self-energy due to phonons is just the sum of
the contributions from the different phonons � of our model.
Moreover, we include scattering at Coulomb impurities in our
model by adding the contribution �Co(k) = −ih̄/[2τ (k)] to the
self-energy, where we use the transport scattering time τ (k) as
calculated in Ref. 68, and the total self-energy reads as

�λ(k,iνn) = �Co(k) + ��(iνn) + �K(iνn)

+�
SO1
λ (k,iνn) + �

SO2
λ (k,iνn). (11)

The contribution �Co(k) has been added to the self-energy to
model the lineshape of the Drude absorption peak. Throughout
this work we use the impurity concentration of ni = 5 ×
1011 cm−2, which is low enough to not affect the midgap
absorption of graphene on polar substrates significantly.

The imaginary parts of the contributions from the optical
phonons at the � and K points (� = �,K) to the retarded
self-energy depend only on the frequency and have the form

Im[��(ω + i0+)]

= [n� + nFD(h̄ω� − h̄ω)] g�(h̄ω + μ − h̄ω�)

+ [n� + nFD(h̄ω� + h̄ω)] g�(h̄ω + μ + h̄ω�) (12)

with the functions g�(ε) = −AD2
�|ε|/(2Mch̄ω�v2

F).
Similarly, the effect of the two SPP modes (� = SO1,SO2)

is described by

Im
[
��

λ (k,ω + i0+)
]

= [n� + nFD(h̄ω� − h̄ω)] h�
λ (k,h̄ω + μ − h̄ω�)

+ [n� + nFD(h̄ω� + h̄ω)] h�
λ (k,h̄ω + μ + h̄ω�), (13)

where

h�
λ (k,ε) = − πe2

2(h̄vF)2

∫ 2π

0
dθ

F 2
�(q) e−2qz0

q
(|ε| + λε cos θ )

(14)

with q ≡
√

ε2 + ε2
k − 2εεk cos θ /(h̄vF). In Eqs. (12) and (13),

we have introduced the Fermi-Dirac and Bose-Einstein dis-
tribution functions, nFD/BE(ε) = 1/[exp(βε) ± 1], where β =
1/(kBT ) (with T and kB being the temperature and the Boltz-
mann constant, respectively), n� = nBE(h̄ω�), and the chem-
ical potential μ = μ(T ). In the following, we ignore the
effect of polaronic shifts, that is, the real parts of the self-
energies, and set �λ(k,ω + i0+) ≡ i Im[�λ(k,ω + i0+)]. The
total (retarded) self-energy in our model is thus completely
imaginary.

As detailed in Appendix B, the real part of the optical
conductivity can be calculated from the spectral function (10)
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FIG. 1. (Color online) Calculated frequency dependence of the
(real part of the) optical conductivity of suspended graphene and
graphene on several different substrates for ni = 5 × 1011 cm−2 and
μ = 0.3 eV at T = 300 K and T = 1 K (inset).

via the formula69

σ (ω) = σ0v
2
F

π2ω

∑
λλ′

∫ ∞

−∞
dω′

∫ ∞

0
dk kAλ(k,ω′)

×Aλ′ (k,ω′ + ω)[nFD(h̄ω′) − nFD(h̄ω + h̄ω′)],
(15)

which includes the universal ac conductivity σ0 = e2/(4h̄).
In the following, we will use Eqs. (10)–(14) to numerically
calculate the spectral function, which is in turn used to
calculate the real part of the optical conductivity numerically
via Eq. (15). Those calculations are conducted for several
different substrates (as well as suspended graphene) with the
corresponding parameters summarized in Table I.

III. RESULTS

In Fig. 1, the optical conductivities70 (for a fixed chemical
potential μ = 0.3 eV) at two temperatures T = 1 K (inset)
and T = 300 K are shown for suspended graphene as well as
graphene on several different substrates: Al2O3, hexagonal
BN, HfO2, SiC, and SiO2. For comparison, we have also
included the optical conductivity of suspended graphene and
graphene without any phonon contribution (at κ = 1). Figure 1
has been calculated using the parameters given from Table I,
the dielectric function ε(q), and κ = (1 + ε0)/2 as the
background62,68 dielectric constant.

The profiles in Fig. 1 illustrate the main features that
the effect electron-phonon coupling has on the optical con-
ductivity: Whereas there is a gap with a width 2|μ| in the
absorption spectrum of the purely electronic single-particle
model, where direct transitions between the electronic states
in the conduction and valence bands are forbidden for
energies 0 < h̄ω < 2|μ| due to Pauli blocking, there is a finite
absorption in this region in the presence of phonons. This finite
absorption is largely due to phonon-assisted transitions which
give rise to distinct sidebands, the onsets of which can clearly
be distinguished from the Drude peak at low temperatures and
low impurity densities (see the inset in Fig. 1). If the photon
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energy exceeds 2|μ|, direct (interband) transitions become
possible, resulting in a steep rise of the optical conductivity.

At higher temperatures, one can see that the Drude peak is
broadened as more phonons become available and electron-
phonon scattering becomes more probable. For HfO2 and
Al2O3 substrates, the phonon sidebands merge with the Drude
peak resulting in a very broad Drude peak at room temperature.
Furthermore, the profiles of the optical conductivity are much
smoother compared to those at T = 1 K and distinct onsets
of phonon sidebands can no longer be observed as the
profiles of the optical conductivity are smeared out by thermal
broadening. Finally, Fig. 1 shows that the so-called “midgap
absorption,” that is, the absorption at h̄ω = μ, is significantly
enhanced for graphene on polar substrates as compared to
suspended graphene or graphene on nonpolar substrates:
Whereas the midgap absorption at room temperature is about
5–6% of σ0 for suspended graphene, it can be as high as
20–25% of σ0 for graphene on HfO2 or Al2O3. Hence, the
midgap absorption strongly depends on the particular polar
substrate used and is, in particular, determined by the interplay
between the SPP frequencies ωSOi and the Fröhlich couplings
F 2

SOi
: the smaller ωSOi or the larger F 2

SOi
, the larger the midgap

absorption.
Impurity scattering also has an influence on the midgap

absorption: By calculating the absorption spectra using just the
Coulomb impurity scattering with κ = 1 and no phonons for
μ = 0.3 eV, the Kubo model shows that while at T = 300 K
the midgap absorption is 2.3% for ni = 5 × 1011 cm−2 (see
also Fig. 1), it increases to 4.3% for ni = 1012 cm−2. At
T = 500 K, these numbers are 5% and 7%, respectively. We
note that an obvious first estimate of the midgap absorption
could have been obtained by using a Drude model σ (ω)/σ0 =
4|μ|/[πh̄τ (ω2 + 1/τ 2)], where τ is a scattering time. For ni =
5 × 1011 cm−2 and ni = 1012 cm−2, the Coulomb scattering
mobilities are γ ≈ 13000 cm2/(Vs) and γ ≈ 6500 cm2/(Vs),
respectively, corresponding to midgap absorptions from the
Drude model of σ (μ/h̄)/σ0 ≈ 4h̄ev2

F/(πγμ2) = 0.7% and
1.4%, respectively. Thus, this simple estimate using the Drude
model significantly underestimates the results obtained from
the full calculations. Indeed, the deviations between the
estimate from the Drude model and the full Kubo formalism
calculation become even more pronounced if phonons are
taken into account.

Figure 2 shows the optical conductivity for graphene
on a SiO2 substrate at different temperatures and chemical
potentials. Apart from the trends in the behavior of the optical
conductivity discussed above, one can clearly see different
gaps in the absorption spectrum, given by 2|μ| for each
chemical potential. Another feature that can be discerned from
Fig. 2 is that the maximal value of the phonon-mediated
absorption in the gap increases with increasing chemical
potential (doping level). Moreover, we note that due to
the electron-hole symmetry of the Dirac Hamiltonian, the
profiles of the optical conductivity would look the same for
p-doped graphene. The dependence of the midgap absorption
on the chemical potential at room temperature is shown in
Fig. 3, again for suspended graphene and graphene on several
different substrates. In the region studied here between μ =
0.2 eV and μ = 0.4 eV, the midgap absorption decreases with
increasing chemical potential for graphene on substrates, with
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FIG. 2. (Color online) Calculated frequency dependence of the
(real part of the) optical conductivity of graphene on a SiO2 substrate
for ni = 5 × 1011 cm−2 and several different chemical potentials at
(a) T = 1 K and (b) T = 300 K.

the decay being most pronounced for HfO2. The differences
in the shape of the phonon mediated gap absorption reflect the
momentum dependence of the electron-phonon interaction in
Eqs. (5)–(7).

In particular, Fig. 4 reveals a striking difference in the
absorption if we use bare unscreened Fröhlich couplings.
If screening is not accounted for, we find that the optical
conductivity in the optical gap is greatly enhanced compared
to the situation where screening is used. The most noticeable
feature, if the bare Fröhlich coupling is used, is that a second
clearly distinguishable phonon sideband peak (due to the SPPs)
can now be observed in the absorption spectra even at room
temperature for SiO2 and SiC substrates. For BN substrates,
one can even find two such peaks at room temperature.
We suggest, therefore, that measurements of the midgap
absorption in graphene on different substrates could help to
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FIG. 3. (Color online) Calculated dependence of the midgap
absorption (at h̄ω0 = μ) on the chemical potential for suspended
graphene and graphene on several different substrates, ni = 5 ×
1011 cm−2, and T = 300 K.
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FIG. 4. (Color online) Calculated frequency dependence of the
(real part of the) optical conductivity of suspended graphene and
graphene on several different substrates for ni = 5 × 1011 cm−2 and
μ = 0.3 eV at T = 300 K and T = 1 K (inset) if bare Fröhlich
couplings are used.

clarify the still controversial34,43,44,60,63 issue concerning the
effect of screening on the electron-SPP coupling strength.

We also investigate the temperature dependence of the
midgap conductivity (that is, at h̄ω0 = μ) within our model in
Fig. 5 on several different substrates. At temperatures below
100 K, the midgap absorption does not depend strongly on
the temperature. At about 100 K, an increase of the optical
conductivity at h̄ω0 = μ is predicted to take place. Also, the
smaller the energy of the dominant phonon contributing to the
gap absorption, the stronger is the temperature dependence in
Fig. 5.

Finally, we relate the midgap absorption to the spectral
weight of the Drude peak. Describing the graphene optical
conductivity in the noninteracting single-particle picture, the
spectral weight of the bare Drude peak is I0 = ∫ ω′

0 dωσ (ω) =
2|μ|σ0/h̄ = D0/2, where D0 is the bare Drude weight and
ω′ is some characteristic frequency much larger than the
scattering rate, but smaller than both the lowest energy of
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FIG. 5. (Color online) Calculated temperature dependence of the
midgap absorption (at h̄ω0 = μ) for suspended graphene (black) and
graphene on several different substrates, ni = 5 × 1011 cm−2, and
μ = 0.3 eV.
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FIG. 6. (Color online) Calculated dependence of the (a) ab-
sorption at h̄ω0 = μ, (b) the Drude weight D, and (c) the inverse
scattering time h̄/τ on the relative strength of the electron-phonon
coupling γrel for suspended graphene and graphene on Al2O3 and
SiO2, ni = 5 × 1011 cm−2, T = 300 K, and μ = 0.3 eV.

the optical phonon h̄ωopt and 2|μ|. In the presence of phonons,
the total spectral weight has to be conserved. The spectral
weight contribution due to the midgap absorption can be
approximated at low temperatures as Igap = ∫ 2|μ|

ωopt
dωσ (ω) ≈

ασ0(2|μ| − h̄ωopt)/h̄, where α is the averaged value of σ (ω),
that is, of the real part of the optical conductivity, in units of
σ0. If we further assume that the entire spectral weight lost
at the Drude peak is transferred to the optical gap and that
h̄ωopt � 2|μ|, within this picture the remaining Drude weight
D can then be estimated as D/D0 = (I0 − Igap)/I0 ≈ 1 − α.
Thus, from this consideration we expect that, as α increases
with increasing temperature or strength of the electron-phonon
coupling, the Drude weight is reduced.

Figure 6 shows (a) the absorption in the optical gap as well
as the fitted (b) Drude weight and (c) inverse scattering time
for suspended graphene and graphene on Al2O3 and SiO2 sub-
strates with μ = 0.3 eV, T = 300 K, and ni = 5 × 1011 cm−2

as functions of the relative strength γrel of the electron-phonon
coupling. Here, the optical conductivities have been calculated
by scaling the (products of) electron-phonon coupling matrix
elements with M̃� → γrelM̃�, and the Drude weight D as well
as the inverse scattering time 1/τ have been extracted from the
optical conductivity by fitting the Drude peak to a Lorentzian.
As expected from the argument given above, the Drude weight
decreases with increasing γrel, although the simple relationship
between reduced Drude weight loss and the midgap absorption
as 1 − α does not hold. This is because the midgap absorption
does not coincide with the averaged value of σ (ω) in the gap
and because some of the spectral weight from the Drude peak
is transferred not only to the optical gap, but also to the spectral
region h̄ω > 2|μ|.

With increasing γrel, electron-phonon scattering becomes
more probable and consequently the scattering time decreases
as can be seen in Fig. 6(c). The corresponding increase of 1/τ is
most pronounced for graphene on Al2O3 and least pronounced
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for suspended graphene. Finally, we remind the reader that
for ni = 5 × 1011 cm−2 impurity scattering also contributes
to the absorption in the optical gap, which can be discerned
from the finite absorption at γrel = 0. Because suspended
graphene and graphene on different substrates each possess
different background dielectric constants and thus different
transport scattering times, the residual values at γrel = 0 are
also different.

IV. CONCLUSIONS

We have studied the effects of intrinsic graphene optical
phonons and SPPs on the optical conductivity of doped
graphene. Our focus has been on the absorption at frequencies
h̄ω < 2|μ|, where optical transitions are forbidden due to Pauli
blocking in a clean system (at T = 0), but which can occur if
phonons are present, giving rise to phonon sidebands. Here,
we have found that inelastic phonon scattering contributes
significantly to the absorption in the optical gap and strongly
depends on the substrate used: At room temperature (and
μ = 0.3 eV), the midgap absorption, which is mainly due
to intrinsic optical phonons, amounts to about 5–6% of the
universal ac conductivity for suspended graphene or graphene
on nonpolar substrates, while the midgap absorption can be as
large as 20–25% of σ0 for graphene on polar substrates (such
as Al2O3 or HfO2) due to the smaller SPP energy and strong
electron-SPP coupling. Moreover, the midgap absorption
depends on the doping level and decreases with increasing
|μ|, while the maximal value of the sideband absorption
at low temperatures increases. We have also investigated
the temperature dependence of the midgap absorption which
increases with increasing temperature. The Drude peak, on the
other hand, becomes broader with increasing temperature as
inelastic electron-phonon scattering becomes more important.
Consequently, the Drude weight decreases with increasing
temperature due to the stronger phonon coupling.
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APPENDIX A: SELF-ENERGY AND GREEN’S FUNCTION

We use standard diagrammatic perturbation theory (with
the unperturbed Hamiltonian Ĥe + Ĥph and the perturbation
Ĥe−ph) to calculate the electronic Matsubara Green’s function
of the system described by Eq. (4),

Gλλ′
vv′ (k,iνn) = −

∫ h̄β

0
dτ 〈T [ĉλksv(τ )ĉ†λ′ksv′ (0)]〉eiνnτ , (A1)

where τ and iνn denote the imaginary time and (fermionic)
frequency, 〈...〉 the thermal average, T the imaginary time-
ordering operator, and β = 1/(kBT ).50,66,67 By solving the
corresponding Dyson equation, we can express the elec-
tronic Green’s function via the self-energy �λλ′,vv′ (k,iνn). In
Eq. (A1), due to the conservation of momentum and spin, the

self-energy and thus the Green’s function are diagonal in k and
s and do not depend on s due to spin degeneracy.

Up to the first nonvanishing order (and omitting the tadpole
diagram, which yields a purely real self-energy contribution
that can be absorbed in the chemical potential), we find the
electronic self-energy due to phonons for arbitrary matrix
elements Mλλ′

vv′,�(k,q) to be50

�
ph
λλ′,vv′ (k,iνn) ≈ �

(2)
λλ′,vv′ (k,iνn)

= 1

h̄

∑
�,q,λ̃,ṽ

Mλλ̃
vṽ,�(k − q,q)Mλ̃λ′

ṽv′,�(k,−q)

×
[

nq� + 1 − fFD(λ̃ε|k−q|)
iνn − (λ̃ε|k−q| − μ)/h̄ − ω�(q)

+ nq� + fFD(λ̃ε|k−q|)
iνn − (λ̃ε|k−q| − μ)/h̄ + ω�(q)

]
, (A2)

with the Fermi-Dirac and Bose-Einstein distribution func-
tions, fFD(ε) = nFD(ε − μ) and nq� = nBE[h̄ω�(q)], and the
chemical potential μ = μ(T ) at the temperature T . Thus, in
the lowest order, the self-energy is simply the sum of the
contributions from the different phonons �.

In order to calculate the self-energy, we need to know
the products of the electron-phonon coupling matrix elements
entering Eq. (A2),

∑
ṽ Mλλ̃

vṽ,�(k − q,q)Mλ̃λ′
ṽv′,�(k,−q), for the

�, K , SO1, and SO2 modes. Since nq�TO = nq�LO , it follows
from Eqs. (A2) and (5) that the contribution due to the optical
phonons near the � point is diagonal in the valley and band
quantum numbers. We calculate the self-energy by using the
transformation k′ = k − q and replacing the sum

∑
k′ by the

2D integral S/(2π )2
∫

dk′k′ ∫ dθ , where S = NA and θ is
chosen to be the angle between k and k′.

Equation (6) describes the coupling of the KTO mode to the
electrons in graphene. As above, the self-energy contribution
from the K phonons is calculated by introducing k′ and writing
the sum as a 2D integral. After performing the integration over
the angle θ , the terms containing e±iθ in Eq. (6) vanish and
consequently the contribution to the self-energy is diagonal
with respect to the band quantum number. Moreover, Eqs. (6)
and (A2) make it clear that, even though the matrix element
Mλλ′

vv′,KTO
(k,q) describes intervalley scattering, the second-

order contribution from the K phonon to the self-energy is
diagonal also in the valley quantum number.

Using the SPP coupling matrix elements (7), the contribu-
tion from each SPP to the self-energy is again calculated by
introducing k′ and writing the sum as a 2D integral. Then, the
angular integration for the off-diagonal elements with respect
to the band indices λ and λ′ is of the type

∫ 2π

0 dθ sin θf (cos θ ),
where the function f depends only on cos θ and on the SPP
considered, and vanishes for screened as well as unscreened
SPPs. Thus, the lowest order contribution from each SPP to
the self-energy is also diagonal in the band and valley quantum
numbers.

Combining the results discussed so far, the total contribu-
tion from all phonons is given by

�
ph
λλ′,vv′ (k,iνn) = δvv′δλλ′�

ph
λ (k,iνn), (A3)

035414-6



EFFECTS OF OPTICAL AND SURFACE POLAR PHONONS . . . PHYSICAL REVIEW B 87, 035414 (2013)

where �
ph
λ (k,iνn) is given by

�
ph
λ (k,iνn) = ��(iνn) + �K(iνn)

+�
SO1
λ (k,iνn) + �

SO2
λ (k,iνn), (A4)

and each individual contribution is calculated from Eq. (A2)
as described above for λ = λ′ and v = v′. Here, we find that,
in contrast to the contributions �

SO1
λ (k,iνn) and �

SO2
λ (k,iνn),

the contributions from the graphene optical phonons ��(iνn)
and �K(iνn) do not depend on the band or momentum k.

The contribution due to Coulomb impurity scattering reads
as

�Co
λλ′,vv′ (k) ≡ δvv′δλλ′�Co(k), (A5)

where

�Co(k) = −ih̄

2τ (k)

= − iπni

2

∫
d2k′

(2π )2

∣∣∣∣ 2πe2

κqε(q)

∣∣∣∣
2

δ(εk − εk′)

× (1 − cos θ )(1 + cos θ ), (A6)

with θ ≡ θk − θk′ , q = k − k′, the dielectric function ε(q),
and the impurity concentration ni.68 Since this contribution is
also diagonal, the total self-energy

�λλ′,vv′ (k,iνn) = δvv′δλλ′

[
− ih̄

2τ (k)
+ �

ph
λ (k,iνn)

]

≡ δvv′δλλ′�λ(k,iνn) (A7)

and, consequently, the Green’s function

Gλλ′
vv′ (k,iνn) = δvv′δλλ′

iνn − [λεk − μ + �λ(k,iνn)]/h̄
≡ δvv′δλλ′Gλ(k,iνn) (A8)

are diagonal with respect to λ and v in our model. Finally, the
spectral function is obtained from the Green’s function via

Aλ(k,ω) = −2Im[Gλ(k,ω + i0+)]. (A9)

In this paper, we are interested only in the imaginary parts
of the retarded self-energy. Upon replacing iνn by ω + i0+ in
Eq. (A2), the imaginary part of each contribution � in Eq. (A2)
contains a Dirac-δ function [since there is no contribution from
Im(M̃�) as discussed above]. After introducing k′ and writing
the sum as a 2D integral, the Dirac-δ function can be used to
calculate the k′ integral, which then yields Eq. (12) for the �

and K phonons and Eqs. (13) and (14) for the SO1 and SO2

phonons.

APPENDIX B: KUBO FORMULA FOR THE OPTICAL
CONDUCTIVITY

1. Current density operator

Our starting point in the derivation of a Kubo formula
for the optical conductivity is the current operator. In the
presence of an arbitrary magnetic vector potential A(r), the
(first-quantized) 2D Dirac Hamiltonian of graphene reads as4

Ĥe = vFγ .π̂ , (B1)

with π̂ = p̂ + eA(r) being the 2D kinetic momentum operator,
p̂ the 2D momentum operator, and the matrices γx = σx ⊗ 1,

γy = σy ⊗ τz, γz = 0, where 1 is the 2 × 2 unity matrix and
σ and τ are Pauli matrices referring to the A/B sublattices
and the K/K ′ points, respectively. As discussed in Ref. 4,
the 2D momentum k and the valley K/K ′ are good quantum
numbers and the Hamiltonian (B1) has the (valley-degenerate)
eigenvalues

ελ(k) = λεk = λh̄vFk (B2)

and the corresponding eigenstates

�λ
K,k(r) = eik.r

√
2S

(
e−iθk/2

λeiθk/2

)
⊗ χK (B3)

near the K point and

�λ
K′,k(r) = eik.r

√
2S

(
eiθk/2

λe−iθk/2

)
⊗ χK′ (B4)

near the K ′ point, where S = NA denotes the surface area of
the graphene sample, λ = ±1, θk = arctan(kx/ky), and

χK =
(

1

0

)
, χK′ =

(
0

1

)
. (B5)

For an arbitrary (normalized) state �(r), the energy
expectation value as a functional of the vector potential A(r)
is given by

E[A] =
∑
αβ

∫
d2r �∗

α(x,y)(Ĥe)αβ�β(x,y), (B6)

where the sums over α and β refer to the matrix γ . The charge
current density j(r) of this state �(r) can be determined by a
variational method:

δE = E[A + δA] − E[A] = −
∫

d2r j(r)δA(r), (B7)

which yields

ĵ(r) = −evF

∑
αβ

�∗
α(r)(γ )αβ�β(r). (B8)

Promoting the wave functions in Eq. (B8) to field operators,
using the eigenbasis given by Eqs. (B2)–(B4), and taking
into account the spin degeneracy, the charge current density
operator can be determined as

ĵ(q) =
∑

kλλ′sv

dv
λλ′(k,q)ĉ†λksvĉλ′(k+q)sv (B9)

in reciprocal space and as

ĵ(r) = 1

S

∑
q

eiq.rĵ(q), (B10)

in real space. Here, the dipole matrix elements read as

dK
λλ′,x(k,q) = −evF

2
[λ′ei(θk+θk+q)/2 + λe−i(θk+θk+q)/2],

dK
λλ′,y(k,q) = ievF

2
[λ′ei(θk+θk+q)/2 − λe−i(θk+θk+q)/2], (B11)

dK′
λλ′,x/y(k,q) = [

dK
λλ′,x/y(k,q)

]∗
.
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2. Kubo formula

If an external electric field

E(r,t) = −∂A(r,t)
∂t

(B12)

is applied to the system considered here, its effect can be
described by

Ĥext(t) = −
∫

d2r ĵ(r).A(r,t) (B13)

with the charge current density operator (B10). The total
Hamiltonian of the problem then reads as Ĥ + Ĥext(t), where
Ĥ is given by Eq. (4).

Using linear response theory [for the unperturbed Hamilto-
nian Ĥ and the perturbation Ĥext(t)] and conducting a Fourier
transformation with respect to the time and position,50,66,67 we
find that the current density due to the external field is given
by

δ〈ĵα(q,ω)〉 = −1

h̄

∑
β

�R
αβ(q,ω)Aβ(q,ω), (B14)

with �R
αβ(q,ω) being the (Fourier transformed) retarded

current-current correlation function and α and β referring to
the in-plane coordinates x and y. The retarded correlation
function �R

αβ(q,ω) can be related to the imaginary-time
correlation function

�αβ(q,iωn) = − 1

S

∫ h̄β

0
dτ 〈T [ĵα(q,τ )ĵβ(−q,0)]〉eiωnτ

(B15)

by �R
αβ(q,ω) = �αβ(q,ω + i0+), that is, by replacing iωn with

ω + i0+ in Eq. (B15).50,66,67 Here, iωn denotes a bosonic
frequency. Hence, the Kubo formula for the real part of the
conductivity reads as

Re[σαβ(q,ω)] = − Im[�R
αβ(q,ω)]

h̄ω
. (B16)

If vertex corrections due to phonons in Eq. (B15) are
ignored, the phonon-dressed Green’s functions given by
Eq. (A8) expressed via their spectral functions (A9), and the
sum over k rewritten as a 2D integral, we arrive at

Re[σαβ(q,ω)] = 2

h̄ω

∑
λλ′

∫
d2k

(2π )2

∫
dω′

2π

×Dλλ′
αβ (k,q)[nFD(h̄ω′) − nFD(h̄ω + h̄ω′)]

×Aλ(k,ω′)Aλ′(|k + q|,ω′ + ω), (B17)

where

Dλλ′
αβ (k,q) ≡ dK

λλ′,α(k,q)
[
dK

λλ′,β(k,q)
]∗

= dK′
λλ′,α(k,q)

[
dK′

λλ′,β(k,q)
]∗

(B18)

is a real number.
Here, we are interested in the response to a uniform field,

that is, in the case q = 0, for which Eq. (B17) becomes

Re[σαβ(0,ω)] = δαβσ (ω), (B19)

with σ (ω) given by Eq. (15). In order to obtain Eqs. (15)
and (B19), we have used that only Dλλ′

αβ (k,0) depends on the
angle of the k integration in Eq. (B17) for q = 0 and that∫ 2π

0 dθk Dλλ′
αβ (k,0) = πe2v2

Fδαβ .
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