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Error accounting algorithm for electron counting experiments
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Electron counting experiments attempt to provide a current of a known number of electrons per unit time. We
propose architectures utilizing a few readily available electron pumps or turnstiles with modest error rates of
1 part per 104 with common sensitive electrometers to achieve the desirable accuracy of 1 part in 108. This is
achieved not by counting all transferred electrons, but by counting only the errors of individual devices; these are
less frequent and therefore readily recognized and accounted for. Our proposal thereby eases the route towards
quantum-based standards for current and capacitance.

DOI: 10.1103/PhysRevB.87.035312 PACS number(s): 73.23.Hk, 06.20.−f, 85.35.Gv

I. INTRODUCTION

The long pursued goal of closing the quantum metrological
triangle1–3 involves the comparison of a current given by
Josephson and quantum Hall effects, with one based on
counting electrons flowing through a constraint. An equivalent
alternative is to charge a capacitor with a counted number of
electrons.4

For metrologically precise measurements of current about
1 nA is required.5 This can be provided either by pumping
at frequencies higher than those that have shown satisfactory
accuracy or by parallelization. Higher operation frequencies
increase the error rates, while parallelization is hindered
by conflicting requirements on the devices, including yield
and accuracy. We propose here a concept to alleviate both
concerns; this is made possible by the relative simplicity of
nonadiabatic single gate devices providing a quantized current,
which have been realized in several technologies6–9 and even
parallelized.10,11

On the other hand, error rates akin to those of the shuttling
experiment conducted for adiabatic pumps4,5 have not been
demonstrated, while direct current measurements indicate that
error rates near � = 1 ppm can be achieved.12

To improve upon these results, we propose a circuit that
utilizes the high precision and accuracy provided by electron
pumps, but permits the correction of the remaining errors: We
connect several pumps in a series and observe the charges on
memory nodes between them. An example of such a circuit is
shown in Fig. 1.

Each of the aforementioned pumps will provide a current
very close to e�, when its gate is driven with periodicity 1/�,
−e being the electron charge, and will barely pass electrons
between the terminals in a suitable off state.

When all turnstiles move electrons with the same rate,
then only each node-charge averaged over a pump period is
constant. Whenever an error, a surplus (or deficit) electron
being shifted by pump j , occurs then the charge on node
j − 1 will drop by one electron, while the charge on node
j will rise by it, labeling the outside reservoirs as nodes 0
and N . Accordingly, th errors committed by different pumps
result in different charge signals on the nodes. Such different
signatures can be recognized and attributed. If this were to
be done flawlessly, it would be possible to tell with certainty
by how many electrons the charge transported by each pump
deviates from the intended value.

But when the characteristic time to identify the charge state
τM and the time between errors 1/�� are comparable then, if
all observed errors are attributed to the pump (or pumps) whose
error would most likely explain the observed signature, some
multipump errors will mistakenly be misattributed. Events,
where the first two pumps of a three pump circuit both pump
one electron more than intended, cannot be distinguished from
the—more likely—case of one too few electrons pumped
by the third pump. Only a four stage circuit would be able
to distinguish these two scenarios. Circuits with an odd
number of pumps N exhibit 2N !/[(N − 1)/2]![(N + 1)/2]!
different scenarios of errors of (N + 1)/2 pumps that cannot
be distinguished from the errors of all the other pumps. If
these happen within a time interval τM then they will be
misattributed. The relative rate of such misattributions is then
approximately

�N
corrected � 2

N !
N−1

2 !N+1
2 !

(��τM )
N+1

2
1

�τM

. (1)

So the corrected error-rate scales as the bare error rate � risen
to the power of half the number of stages employed. This
allows devices with a sufficiently low bare error rate to reach
any desired corrected error rate with additional stages. This
assertion is demonstrated numerically in Sec. III of this paper
after the required analytical framework is provided in Sec. II.

II. MASTER EQUATION TREATMENT OF THE
ARBITRARY ERROR-CORRECTION CIRCUIT

We identify the net errors the N pumps have committed in
time interval [0,t) with the stochastic process K with outcome
space ZN over time and denote the accompanying probability
distribution over ZN with �φ(t). With �i = (i1,i2, . . . ,iN ) the
entries of vector �φ are labeled φ(�i)(t) and are the joint
probabilities of ij errors having been being committed by
pump j for any j in the time interval [0,t). As the error events
we intend to observe are assumed to be rare, we can assume K

to be a Markov process. For the discrete time series at integer
multiples of a small time δt process K is described by the
Pauli-Master equation

�φ(t + δt) − �φ(t) = K �φ(t)δt, (2)

where K is the stochastic matrix describing K and constant if
K is stationary. K is composed of the probabilities of an error

035312-11098-0121/2013/87(3)/035312(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.87.035312


MICHAEL WULF PHYSICAL REVIEW B 87, 035312 (2013)

FIG. 1. (Color online) Schematic of a circuit for an error-
correction scheme in a typical electron counting experiment com-
posed of metallic single-electron transistors and electron pumps
utilizing dynamic quantum dots in a two-dimensional electron gas.

�F occurring during a time interval [kδt,(k + 1)δt) given initial
state of the errors �i as P δt

�F (kδt,�i) = δtK�i+ �F,�i . The probability

for the realization of a particular trajectory F , with �F (kδt)
errors committed in each time interval [kδt,(k + 1)δt), is then

πF =
T/δt∏
k=0

P δt
�F (kδt)

(
kδt,

k−1∑
k′=0

�F (k′δt)

)
. (3)

In addition to the random walk of Eq. (3) we utilize a number
s of the noisy measurements in the circuits of interest. For each
time the outcome of the s measurements can be written as a
vector �S in Rs . We assume that, given state �i of the random
walk, the measurement outcomes follow the form

�S[�i](kδt) = �f (�i(kδt),kδt) + �n(kδt), (4)

where �n(t) is stochastic additive noise and �f the deterministic
transfer-function-relating observed system to measurement
outcomes. We assume the noise to be independent of and
uncorrelated to the random walk, to be stationary, ergodic and
markov and, crucially, to be uncorrelated in time, which is a
valid approximation, when the errors are rare compared to the
noise’s autocorrelation time. For the noise averaged over an
interval of length δt we denote the noise probability density
over Rs with �νδt (t,�n). Equivalently to the time trajectories
of the error scenarios F , we define S to be time trajectories of
the measurement outcomes and note that the probability that
the circuit commits a particular random walk F and generates
electrometer outputs S over interval [0,T ) is

	F
S = πF

T/δt∏
k=0

�νδt

[
kδt,�S(kδt) − �f

(
k∑

k′=0

�F (kδt),kδt

)]
. (5)

By Bayes’ theorem the conditional probability 	F |S of a given
random walk F having occurred when output S is exhibited is

	F |S = 	F
S

/ ∑
F ′

	F ′
S , (6)

whenever the denominator is nonzero. Accordingly, given S
(over the entire time interval [0,T )) the probability that net
errors �E have occurred in the time interval [0,t) is the sum
of these conditional probabilities over all possible paths F
satisfying said condition

	( �E,t |S) =
∑
F | �E,t

	F
S

/ ∑
F ′

	F ′
S . (7)

While the probability of �E errors having occurred in time
interval [0,t), given measurement S over that time interval
and any measurement outside of it, is

	( �E,t |S,t) =
∑

S ′(t ′)=S(t ′)∀t ′�t

∑
F ′| �E,t 	F ′

S ′∑
S ′(t ′)=S(t ′)∀t ′�t

∑
F 	F

S ′
, (8)

where the interest is not in identifying one particular random
walk per se, but to identify the probabilities that the final
result of the underlying random walk has been �E net errors,
provided measurements S. In particular, if there is no need (or
possibility) to identify in what precise time interval an error
occurred then indeed 	( �E,T |S,T ) is going to be the variable
of interest. Obviously no more can be desired once δt is chosen
sufficiently small.

More convenient to compute is the probability that up
to time t �E net errors have occurred and the measurement
outcome S has been observed over the same interval, but
irrespective of S for times t ′ > t

ψ( �E,t |S,t) =
∑

�S ′(t ′)= �S(t ′)∀t ′�t

∑
F ′| �E,t

	F ′
S ′ . (9)

When stepping forward in time by δt , the change of ψ( �E,t |S,t)
then includes four terms: random walks leaving the second
sum because of an error-event �F (t + δt) �= 0; random walks
entering the second sum for the same reason, �F (t + δt) �=
0 and

∑
t ′�t+δt

�F (t) = �E and �S ′(t ′) = �S(t ′)∀t ′ � t + dt ; and

paths S ′ leaving the first sum because �S ′(t + δt) �= �S(t + δt),
but satisfying �F (t + δt) = 0, to avoid double counting with
respect to the first term. Of course there are also paths that stay
within both sums, with

∑
t ′�t

�F (t) = ∑
t ′�t+dt

�F (t) = �E, and
�S ′(t ′) = �S(t ′)∀t ′ � t + δt while no paths can enter the first
sum by its definition.

Accordingly

ψ( �E,(k + 1)δt |S,(k + 1)δt) − ψ( �E,kδt |S,kδt)

= −
∑

�F (kδt)�=�0
P �F (kδt, �E)ψ( �E,kδt |S,kδt) + �ν{ �S[(k + 1)δt] − �f [ �E,(k + 1)δt]}

∑
�F (kδt)�=�0

P �F (kδt, �E − �F )ψ( �E − �F,kδt |S,kδt)

− (1 − �ν{ �S[(k + 1)δt] − �f [ �E,(k + 1)δt]})P�0ψ( �E,t |S,t), (10)
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where �0 is the null vector. For each time ψ contains for each
trajectory S a number of elements equal to the number of
possible net error scenarios �E. For a given trajectory with
N pumps under consideration, at each time the set of all
ψ( �E,t,S,t) will be an element of [0,1]N . Analogous to �φ it is
convenient to summarize all ψ( �E,t,S,t) into �ψ(t). Dropping
the reference to S. Eq. (10) simplifies to

�ψ(t + δt) = (1 + Uδt)(1 + Kδt) �ψ(t) � eUδt (1 + Kδt) �ψ(t).

(11)

Here Uδt includes the dependence on measurements �ν of
Eq. (10) and is a diagonal matrix; while K does not depend on S

and is constant if the error rates do not depend on time, that is, if
K is stationary. Remarkably the evolution of �ψ is governed by a
linear difference equation akin to Eq. (2). While the definitions
both P �F and �ν depend on the choice of δt , we assume that it
can be chosen sufficiently small, such that neither K nor U do.

For all times t > 0, it is obvious that

‖ �ψ(t)‖1 =
∑

�E
ψ( �E,t |S,t) =

∑
S ′(t ′)=S(t ′)∀t ′�t

∑
F

	F
S ′ , (12)

so it is convenient to define that

ψ(�0,0,S,0) =
∑

�E

∑
S

ψ( �E,0,S,0) = 1, (13)

which implies that the set of all possible measurement
outcomes S prior to the first measurement has one element
of probability 1. With the initial condition Eq. (13) and the
time development of Eq. (10) or Eq. (11) the final probability
of �E errors having occurred in interval [0,T ) and trajecto-
ries S having been measured can readily be computed as
ψ( �E,T ,S,T ). The conditional probability of �E errors having
occurred in interval [0,T ) given trajectories S having been
measured is then ψ( �E,T ,S,T )/

∑
�E′ ψ( �E′,T ,S,T ), where the

denominator is just the 1-norm of vector ψ(T ). Equation (11)
is the master equation governing the net-error probabilities of
the shrinking set satisfying trajectories S.

The expectation value and variance of the errors given
trajectory S is then computed as

〈 �E|S〉 =
∑

�E

�Eψ( �E,T ,S,T )∑
�E′ ψ( �E′,T ,S,T )

,

(14)

σ �E|S =
∑

�E
( �E − 〈 �E|S〉)2 ψ( �E,T ,S,T )∑

�E′ ψ( �E′,T ,S,T )
.

Given measurement outcomeS this computes that (on average)
〈 �E|S〉 net errors have occurred in time interval [0,T ]; that
quantity has an uncertainty of σ �E|S , however, the entire

probability distribution �ψ(T ) is known. The mean of that
later quantity weighted over all possible trajectories will
be of particular interest below, 〈σ �E|S〉S = ∑

S 	Sσ �ES , the
expectation value of the uncertainty of the error-accounting
scheme. For computer-generated S and F the average error
of the error-accounting scheme can be computed as well as
the difference δS�E of the computed 〈 �E|S〉 and ex ante known
underlying error of the random walk. However, 〈σ �E|S〉S is a
sufficient proxy that is accessible when only S is known, as in
an experiment.

FIG. 2. Signal traces of first (black) and second (gray) electrom-
eter. Pump error rates are 1000/s, per pump and sign, electrometer
noise 10−5e/

√
Hz, and coupling capacitance ratio CC/Cnode = 0.04.

For any random walk governed by a known stochastic
matrix K and additive totally random noise described by U ,
Eq. (11) is readily integrated for any one set of measurement
outcomes. The expectation value of the occurred error and its
uncertainty according to Eq. (14) follows. The average over
all possible outcomes, however, can only be approximated by
summing over a large set of trajectories.

III. NUMERICAL EVALUATION OF THE
ONE-DIMENSIONAL PUMP CHAIN

The analytical treatment above is valid for an arbitrary
circuit, while for numerical studies we confine ourselves to
the simplest case, which is of particular experimental interest,
the one-dimensional chain of electron pumps. In Eq. (4)
this corresponds to fj (�i(t),t) = ij − ij+1, where subindex j

indicates the j th component of the vector of length s = N − 1.
The electrometer noise we assume to be ergodic, stationary,
Gaussian, and white. The random walk we assume to be
stationary—though the pulsed operation of the pumps may
be of interest—and independent of the charges accumulated
on the nodes. This case is understood even using only the
arguments yielding Eq. (1) and could experimentally be
realized by applying feedback voltages to the nodes. Then
the net errors will diffuse freely for each pump and will
accordingly diverge with

√
T . As the electrometers cannot

distinguish states that differ by the same number of errors
for all pumps, we combine charge equivalent states when
computing �ψ . For free error diffusion we need to compute
�ψ only over a few states around the most likely error scenario,
typically all states that deviate by up to three errors from
the most likely error scenario. The integration of Eq. (10) is
simplified as K is both constant and invariant under translation
by any possible error. This last is no longer the case when
the voltage dependence of the error rates is included; the
constant K is here only invariant under uniform translations
of errors on all pumps. Accordingly, d �ψ/dt needs to be
calculated over a larger configuration space. This is the case of
mesoscopic feedback;13,14 however, such a charge dependence
of the error rates does not add conceptual complication to our
treatment.

Figure 2 shows a typical set of signal traces15 that can
be expected from the combination of the diffusion dynamics
and electrometer noise realistic for the radio frequency single
electron transistor (RF-SET)16–18 and similar devices.19–21

These traces are used to numerically integrate Eq. (11) yielding
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FIG. 3. (Color online) Corrected error rates with respect to time
for three (upper curve) and five (lower curve) pump circuits as a
function of the uncorrected error rates. Dashed lines are a fit to Eq.
(1). Other parameters as in Fig. 2.

a perceived diffusion. The result of this perceived diffusion is
subtracted from the underlying diffusion. This difference is the
error that our algorithm misattributes. Nonetheless, the rate of
such errors after correction is much smaller than the rate of
errors of each single device. The numerical results for rates
of these reduced errors are shown for various parameters in
Fig. 3 in excellent agreement with Eq. (1).15 Even for a rate
of 200 errors per second a 1000-fold improvement of the error
rate is achieved with only three pumps and two intermediate
electrometers, so that even devices exhibiting a relative error
rate of 10 ppm can reach the metrologically desirable error
threshold of 10 ppb due to the proposed architecture. The five
pump version achieves a 10 000-fold improvement even at a
rate of 3000 errors per second. Pumps with intrinsic error rates
of 100 ppm at pump rates of 30 MHz could thus be corrected
to the required 10 ppb accuracy. If devices with 10 ppm were
to be used, a 1000-fold improvement were to suffice, so that
more than 8000 errors per second could be accounted for. This
would correspond to a pump rate of 800 MHz, so that both
the requirements of current magnitude and accuracy are met.
Recall that the lowest reported error rate for single parameter
pumps is about 1 ppm.12

IV. CONCLUSION

In summary, we have proposed a family of architectures
utilizing either conventional electron pumps of modest quality
or one of the single-gate devices that are capable of producing
quantized current steps with the now common RF-SET or
a similar device. The algorithm constructed in this work
determines the charge transported by such a structure to a
much greater precision than would be feasible by any single
of the devices used. The relaxation on the requirements
for the quality of the individual devices used simplifies the
experimentation, even at a higher operation frequency, and
increases the sample yield. It thereby opens the prospects
towards the parallelization needed to increase the provided
current. We note that the proposed architecture allows to
monitor the error rates of individual pumps on the level
of single electrons,22 similar to those stated for adiabatic
electron pumps in their shuttle mode.4 This has not been
possible for the single gate devices6,8,9 in currently employed
circuits. Accordingly, the architecture proposed here allows
further research on these devices and thereby a determination
regarding their suitability for metrological applications, while
easing the required thresholds. During the preparation of this
paper we participated in work demonstrating the integrated
operation of the components required for the experimental
realization of this concept.23,24
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