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Self-sustained current oscillations in spin-blockaded quantum dots

B. Hu (��)1 and X. R. Wang (���)1,2,*

1Physics Department, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
2School of Physics, Wuhan University, Wuhan, P. R. China

(Received 18 July 2012; published 23 January 2013)

Self-sustained current oscillations observed in spin-blockaded double quantum dots are explained as a
consequence of periodic motion of dynamical nuclear spin polarization (along a limit cycle) under an external
magnetic field and a spin-transfer torque. Based on the Landau-Lifshitz-Gilbert equation, it is shown that a
sequence of semistable limit cycle, Hopf, and homoclinic bifurcations occur as the external field is tuned. The
divergent period near the homoclinic bifurcation explains well why the period in experiments can be many orders
of magnitude longer than all microscopic time scales.
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I. INTRODUCTION

Quantum dots, also known as artificial atoms, have many
properties of natural atoms such as discrete energy levels and
shell structures.1,2 The physics involved in quantum dots is
very rich because of tunability and comparability of three
energy scales: level spacing, Coulomb interaction, and thermal
energy. Unlike natural atoms, quantum dots allow transport
measurements. Many interesting transport phenomena such as
resonant tunneling, Coulomb blockade, spin blockade, Kondo
effects, quantum conductance, etc., have been observed and
explained. Applications in nanoelectronics, spintronics, and
quantum computing due to possible long coherence time have
been proposed and in some cases implemented. It is known
that both the nuclear and electron spin degrees of freedom
in semiconductor nanostructures can be manipulated by the
hyperfine interactions.3–6 In the endeavor of using hyperfine
interaction to manipulate the electron transport in quantum
dots, one long-term unexplained intriguing phenomenon was
observed by Ono and Tarucha in 2004 (Ref. 6) in spin-
blockaded double quantum dots: tunneling current I under a dc
bias, as artistically shown in Fig. 1, oscillates with a period up
to minutes under certain conditions. In this paper, we show that
dynamical nuclear spin polarization (DNSP), governed by the
generalized Landau-Lifshitz-Gilbert equation, can oscillate
with time under a dc bias in a magnetic field window. The
back-effect of the DNSP oscillation on the electron tunneling
leads to the experimentally observed self-sustained current
oscillation.

A coherent theory should be consistent with the following
experimental findings: (1) Oscillation was observed only in the
spin-blockaded regime in a magnetic field window accompany
by a current jump. (2) Both the period and amplitude increase
with the field before the oscillation disappears. (3) The
oscillation period varies from seconds (apparatus limit6) to
several minutes, many orders of magnitude longer than the
typical spin precession time in a Tesla field and electron
tunneling time through the double quantum dots.6 (4) The
oscillation is closely related to the motion of the DNSP.6–10

So far, no existing theoretical attempts7–11 can satisfactorily
explain all these features. It is clear that the oscillation theory
for semiconductor superlattices12 is not applicable because
the period would be on the order of 100 ns electron tunneling
time, instead of observed seconds and minutes. Thermal and

impurity effects were also ruled out.6 Although the nuclear
spins in a quantum dot are known to have a very long (up
to seconds) relaxation time, the relaxation process is not a
periodic motion so that it can not be the cause of the oscillation.

II. MODEL AND METHOD

In order to construct a sensible model, let us examine
the plausible microscopic process of electrons and nuclei in
spin-blockaded double quantum dots. In the experiment,6 two
vertical disklike quantum dots (InGaAs-AlGaAs multilayer
structure) are weakly connected in series between source and
drain [illustrated in Fig. 1(a)]. Four possible configurations
in the spin-blockaded regime are shown in Fig. 1(b): One
electron is trapped in the right dot (configuration A). The
second electron, hopping from the source lead to the left dot,
forms either spin singlet (B) or triplet (D) states. Electron
tunneling cycle A → B → C → A is allowed, while tunneling
is blockaded in D, and here C is a spin-singlet state of two
electrons on the right dot. The three triplet states (|T 0〉, |T ±〉)
are degenerated in the absence of an external magnetic field.
As shown in Fig. 1(c), in the presence of interdot tunneling at
finite external field, the spin triplets are below the singlet state
|S〉 by an energy J depending on source-drain bias.7,13,14,20

Increasing the external field will lift the triplet degeneracy,
and |S〉 and |T −〉 states anticross at a field Br around 0.5 T.6

Due to the spin blockade and weak coupling of dots with two
leads, a leakage current of order of 1 pA, corresponding to 100
ns electron tunneling time, exists. The current experiences a
jump near Br because spin blockade is partially removed by
spin flipping and the transition from configuration D to B is
possible. The longitudinal component of this spin-flip process
dynamically polarizes the nuclear spins, resulting in DNSP
with a magnetization �M .13 This spin-flip process mediates also
an effective transversal spin transfer from electron spins to the
nuclear spins which can affect DNSP dynamics. Adopting the
view that dynamical motion of DNSP is responsible to the
observed self-sustained current oscillation, we concentrate on
the DNSP dynamics under the influence of both magnetic field
and the above spin-flip process mediated spin-transfer torque.

It is well known that the Landau-Lifshitz-Gilbert equation
governs the generic dynamics of a macrospin preserving
its magnitude while the so-called Landau-Lifshitz-Bloch
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FIG. 1. (Color online) (a) Schematic setup of spin-blockaded
double quantum dots device. Current I pass through dots, QD1 and
QD2 in series, under a dc bias V . External field is applied along
the x direction. (b) Four possible configurations in spin-blockaded
regime. One spin-up electron is in the right quantum dot below the
chemical potentials (μi , i = 1,2) in configuration A. In configuration
B, two electrons each on one of the two dots form a spin-singlet
state. Configuration C is a spin-singlet state of two electrons in the
right dot. Spin-blockaded configuration D is a spin-triplet state of two
dots with one electron on each. (c) Schematic of field dependence of
triplet and singlet states. Triplet state |T −〉 cross with singlet state
|S〉 at field Br ≈ 0.5 T (red circle). It is noted that the triplets are
below the singlet at finite magnetic field in the spin-blockade region
(Refs. 7, 13, and 20).

equation is for the dynamics of a macrospin whose magnitude
can also vary. For simplicity and the well-known fact that the
Landau-Lifshitz-Gilbert equation with the Slonczewski torque
has oscillatory solution, we assume the following dynamics for
�m = �M/| �M| (Ref. 15):

d �m
dt

= − �m × �Heff + α �m × d �m
dt

+ a �m × ( �m × x̂). (1)

Here, t is in the units of (γM)−1, order of submicron second
for GaAs with M = 106 A/m and the nuclear gyromagnetic
ratio γ = 10 (A s/m)−1.16 The first term on the right-hand
side of Eq. (1) describes the Larmor precession around the
effective field �Heff = �H − D �m from both external magnetic
field �H along the x axis, and demagnetization field D �m (in
the units of |M|). The presence of this term, depending on the
DNSP distribution in the dots, is due to the magnetic charges
on the sample boundary. Under uniform DNSP distribution
approximation, the cylindrical disklike dots in experiment6

have diagonal demagnetization factors with Dx ≈ Dy � Dz.
In this paper, we assume Dx = Dy = 0,Dz = 1. In reality, a
small difference between Dx and Dy may exist either due to the
inhomogeneity or deviation of dots from the perfect cylindrical
shape. Our numerical results show that the physics reported
here remain the same for Dx �= Dy . The second term in the
right-hand side of Eq. (1) is the phenomenological Gilbert
damping with a dimensionless constant α. This empirical term,

universally presented in all systems coupled to other outside
degrees of freedom and testified by various experiments, has
multiorigins, including eddy current in a bulky magnetic metal,
the spin-lattice interaction, and spin-orbital coupling. Unlike
the dipole-dipole relaxation which is longitudinal, the Gilbert
damping preserves spin magnitude. The third term is the Slon-
czewski torque (per spin) which is universal in spin exchange
between two spin baths with different polarizations.17 In the
current setup, it is originated from the biased electron-nuclear
spin flip-flop due to transition from |T −〉 to |S〉 mentioned
earlier [Fig. 1(c)]. The Slonczewski coefficient a = ηW/N is
proportional to transition rate W from |T −〉 to |S〉 and inversely
proportional to the polarized nuclear number N ∼ 105–106.6

Dimensionless coefficient η = S⊥/h̄ measures the average
spin angular moment quanta transferred from one electron
to nuclei. In the Fermi golden rule approximation, W reads
as8,11,18

W = W0
�2

�E2 + �2
× ξ, (2)

where

ξ =
{

1, �E > 0

exp
(

�E
kBT

)
, �E < 0

�E ≡ |gμBB| − J is the level spacing between |T −〉 and |S〉
states. Note that the back-effect of DNSP on �E is neglected
here. The inclusion of this effect is expected to make some
quantitative modifications on the results reported below, but
shall not change any physics. The effective Lande g factor for
GaAs is g = −0.44.19 kB is the Boltzmann constant and T =
1.8 K is the experimental temperature. The level broadening
� of state |T −〉 is order of phonon energy of μeV,11 and W0 ∼
103–104 s−1 (Ref. 20) is the typical resonant spin flip-flop rate.

III. RESULTS AND DISCUSSIONS

In the absence of the external field, all points on the
equator of the �m sphere are marginal stable fixed points
while �m = (0,0, ± 1) are unstable. Under a very small field,
�m = (−1,0,0) becomes the only saddle point (SP in Fig. 2) and
�m = (1,0,0) the only stable attractor (P+ in Fig. 2). The two
unstable fixed points (one of them is P− in Fig. 2) move toward
SP along the big cycle in the x-z plane as B increases [indicated
by the arrow in Fig. 2(a)]. In terms of energy, the α term is
always an energy sinker while the a term could be both energy
sinker and source.15 In the vicinity of P+, the a term serves as
an energy source that can be seen from the fact that the a term
tends to push the system away from P+. As B approaches Br ,
the a term may become large enough to destabilize P+. This
is confirmed by the standard stability analysis21 by calculating
the Liapunov exponent at P+. The Liapunov exponents at P+
become positive at about B = 0.42 T, and the system has no
stable fixed point at this value. This entails the existence of
limit cycle(s) in two dimensions (current case). Indeed, our
numerical calculations support this scenario. Figure 2 shows
the locations of various attractors of Eq. (1) at various B. For
a field much smaller than Br [Fig. 2(a)], all phase flows end
at P+, the only stable fixed point of the system. At a critical
field B0, slightly smaller than 0.40 T, the system undergoes
a semistable limit-cycle bifurcation [shown in Fig. 2(b) at
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FIG. 2. (Color online) Change of attractors as external magnetic
field increases [from (a) to (b)]: Only fix points/limit cycles on the
upper sphere were showed for clarity. Solid (dashed) black line L+
(L−) denotes stable (unstable) limit cycle. P+ (P−) labels stable
(unstable) fixed point, and red dot SP is the saddle point at �m =
(−1,0,0). (a) For B � Br , the only stable attractor is P+; (b) B =
0.40 T, slightly above the critical field at which semistable limit-cycle
bifurcation occurs and L+ and L− are generated; (c) B = 0.42 T,
slightly below subcritical Hopf bifurcation field at which L− and P+
merges and becomes an unstable fixed point; (d) B = 0.62 T, slightly
below the homoclinic bifurcation field at which L+ touches SP.

which a pair of limit cycles, one stable (solid black line)
and the other unstable (dashed line), appear simultaneously.
The two limit cycles move in opposite direction as the field
increases further. At a critical value B = B1 around 0.42 T,
the unstable cycle merges with P+, undergoing a subcritical
Hopf bifurcation and turning P+ into an unstable fixed point
P−. DNSP changes from a static state to a limit-cycle state, the
onset of self-sustained oscillation [Fig. 2(c)]. The limit cycle
touches the saddle point at another critical value B = B2 of
about 0.62 T, undergoing a homoclinic bifurcation [Fig. 2(d)].
The corresponding period diverges when B goes to B2 because
the phase velocity vanishes at the saddle point. These are
exactly what were observed in the experiment: Below the
onset field B1, no self-sustained current oscillation could be
observed because DNSP takes the steady state of (1,0,0).
For the field between B1 and B2, oscillating current appears
because the only stable attractor is the limit cycle. The
current period diverges as B approaches B2. The end of
oscillating current was attributed to the homoclinic bifurcation
at B2.

In order to obtain the field dependence of the oscillation
period, one needs to locate first the limit cycle for a given
field. This can be done by using the Melnicov theory21,22 valid
for a nearly conserved system of small α and a. It is well

known that the energy dissipation rate23

f (U ) ≡
∮

L(U )

(
−α

d �m
dt

− a �m × x̂

)
· d �m (3)

is a function of equal energy contour L(U ), thus also a function
of energy U ≡ 1

2 (Dxm
2
x + Dym

2
y + Dzm

2
z) − �H · �m. f is the

dissipated energy after the system moves along L(U ) once.
Interestingly, the Melnicov functions of stable and unstable
fixed points and limit cycles are zeros by definition. According
to the Melnicov theory, the limit cycle is approximated by one
particular L(U ∗) that satisfies f (U ∗) = 0. Figure 3(a) is the
U dependence of f (U ) for B = 0.40, 0.42, and 0.62 T (from
top to bottom) in the vicinity of B0, B1, and B2, respectively.
By definition, the energy contours for energy extremes (P±
minima and maxima) are points, and the Melnicov function
is zero there. These correspond to the far left and far right
nodes in the figure. The origin (crossing of x and y axes) was
chosen to be the energy of the saddle point. Zeros at which the
f curve have positive (negative) slopes correspond to stable
(unstable) energy contour. To see this, consider a node U ∗ with
∂f

∂U
|U∗ > 0 and a slight deviation of U from U ∗, say, U > U ∗,

U should decrease after the system moving along the L(U )
once because f (U ) > f (U ∗) = 0. Thus, the system tends to
push U back to U ∗. For B = 0.40 T, the zero slope of f (U ) at
the node around U = 0.1 corresponds to generation of a pair
of limit cycles, leading to a semistable limit-cycle bifurcation
[f (U ∗) = 0,

∂f

∂U
|U∗ = 0]. A slight increase of B lowers the

f (U ) curve near U ∗ = 0.1 and the node splits into two. The left
(right) one with negative (positive) slope corresponds to stable
(unstable) limit cycle. The stable cycle L+ moves towards
the SP, while the unstable cycle L− moves towards P+ as B

increases. The L− merges with P+ around 0.42 T, and turns
P+ into an unstable fixed point P− (negative slope). This is
a subcritical Hopf bifurcation. After further increase of B to
0.62 T, L+ touches saddle point SP and becomes a homoclinic
loop, resulting in a homoclinic bifurcation. With the limit cycle
for a given field in the window of [B1,B2] located, the period
of DNSP can be evaluated by

τ =
∮

L(U∗ )

d �m
d �m
dt

, (4)

where d �m/dt is given by Eq. (1). As shown in Fig. 3(b), the
period increases monotonically with field and diverges at B2.

The electron in triplet state (|T −〉) plays dual roles. It
not only interacts with the nuclear spins by which spin flips
generate DNSP, but also exerts a transversal torque on the
DNSP. The self-sustained current oscillation comes from the
periodic motion of DNSP along a limit cycle. The limit
cycle originates from the instability of a static DNSP state
under two competing forces: One is energy input from the
tunneling electrons that drives the DNSP away from its static
state, a fixed point. The other is the dissipation of the α

term that tends to push the DNSP to its fixed point.24 The
periodical motion of DNSP leads to the current oscillation.
This theory explains why the current oscillation was only
observed in the spin-blockaded regime and under a magnetic
field. It also explains why the period can be several orders of
magnitude longer than the typical spin precession period.25

In principle, the current oscillation reported here should exist
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FIG. 3. (Color online) (a) The Melnicov curves f (U ) for B =
0.40, 0.42, and 0.62 T (from top to bottom). Zeros with positive
(negative) slopes are stable (unstable) attractors. The far left node
corresponds to P+ and the far right node corresponds to P− on the
spheres of Fig. 2, while the origin (crossing of the two coordinate
axes) was chosen to be at the value of the energy of SP. (b) Field
dependence of self-sustained current oscillation frequency ω. The
oscillation occurs at B1 and the period diverges at B2. (c) Phase
diagram in B − a/α plane. Dotted, dashed, and solid curves are for
homoclinic, subcritical Hopf, and semistable limit-cycle bifurcations,
respectively. FP, LC, LC/FP, and 2LCs denote one stable fixed point,
one stable limit cycle, coexistence of stable limit cycle and fixed
point, and two stable limit-cycle phases, respectively.

in systems with more than two dots in the spin-blockaded
regime. However, it would be more likely to observe the current
oscillation in a spin-blockaded double quantum dots given that
it is easier to interact with fewer nuclear spins in a smaller
space because there is no direct exchange coupling among
nuclear spins, and nuclear spin alignment is mediated by
polarized itinerant electron spins that suffer from the relaxation
in a larger system. This is in a sharp contrast to the current
oscillation observed in superlattices that originates from the
negative differential resistance15 where it is only observed
in superlattices with more than four wells.26 Although we
believe that magnitude change of DNSP is irrelevant for the
experimentally observed self-sustained current oscillation, a

belief can not replace a scientific proof. Thus, it shall be
interesting to see whether there are also field-induced Hopf and
homoclinic bifurcations in Landau-Lifshitz-Bloch dynamics
that govern spin dynamics, the magnitude of which can also
vary.

Interestingly, if a in Eq. (1) can vary independently from the
field B, one can obtain the homoclinic bifurcation, subcritical
Hopf bifurcation, and semistable limit-cycle bifurcation curves
as a function of B and a/α in a similar way as what we ex-
plained earlier. Our results are shown in Fig. 3(c). The phase di-
agram shows that Eq. (1) supports various stable phases (stable
attractors), including single stable fixed point, coexistence of a
stable fixed point and a stable limit cycle, and existence of two
stable limit cycles. In summary, there are a number of predic-
tions in our theory to be confirmed. According to our analysis,
a limit-cycle solution can only exist when spin-transfer torque
is large enough and self-sustained current oscillation appears
and disappears when the tunneling current varies. Also, our
theory predicts multiple stable attractors [Fig. 3(c)] in certain
parameter regions, either the coexistence of limit cycle and
fixed point or the existence of two limit cycles.

IV. CONCLUSIONS

In conclusion, we showed that an external magnetic field
can induce a Hopf bifurcation at a low field and a homoclinic
bifurcation at a high field for DNSP in a spin-blockaded double
quantum dot, between which is the magnetic field window
for the self-sustained current oscillation. The amplitude and
period of the oscillation become bigger and bigger as the field
increases, in good agreement with the experimental findings.
The period diverges at the homoclinic bifurcation in our model,
which explains well why the period is of several orders of
magnitude longer than the fundamental time scales.
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