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Implementations for quantum computing require fast single- and multiqubit quantum gate operations. In the
case of optically controlled quantum dot qubits, theoretical designs for long-range two- or multiqubit operations
satisfying all the requirements in quantum computing are not yet available. We have developed a design for a
fast, long-range two-qubit gate mediated by a photonic microcavity mode using excited states of the quantum-
dot-cavity system that addresses these needs. This design does not require identical qubits, it is compatible with
available optically induced single-qubit operations, and it advances opportunities for scalable architectures. We
show that the gate fidelity can exceed 90% in experimentally accessible systems.
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I. INTRODUCTION

Quantum information processing involves the manipulation
of entanglement carried out by unitary gate operations between
different quantum bits (qubits). Realistic quantum computing
architectures require entangling gates between distant qubits.
Optical photons provide a natural vehicle to implement
such interactions in many physical systems.1 As a result,
architectures based on optically active qubits that can couple
to photonic modes in optical cavities and waveguides, such as
quantum dots, nitrogen-vacancy (NV) centers, and trapped
ions are attractive for large-scale quantum computing.2–5

Quantum dots (QDs) in particular hold promise as qubits
for such architectures, in part owing to their large dipole
moments, which allow them to couple efficiently to the optical
cavity modes and to photonic flying qubits for extended
architectures. Qubits encoded by the spin of an electron in
a QD have long coherence times which are five to six orders of
magnitude longer than the typical picosecond scale of optical
control. Successful initialization and readout, as well as fast
optical single-spin rotations, have been demonstrated in these
systems.6,7 In addition, important advances have recently been
achieved in work on coupled cavity-QD systems, including
demonstrations of strong coupling and tunability,5,8–15 and
very recently full single-qubit control.16

A critical step needed to advance the field is the design of
a two-qubit controlled gate operation mediated by an optical
cavity mode. A viable two-qubit quantum gate requires that
several criteria are met: (i) a long-range switchable physical
interaction between qubits is available, (ii) the gate performs
a unitary operation on one qubit depending on the state of
the other qubit to provide a controlled operation, (iii) the
operations are sufficiently fast compared to decoherence rates,
(iv) the gate is compatible with single-qubit rotations (to form
a universal set of gates), and (v) the gate design is consistent
with a multiqubit system for scalability.

So far, only local control of entanglement in closely
spaced quantum dots (QD “molecules”) has been demon-
strated experimentally.17 For an experimental demonstration
of cavity-mediated entangling gates, a theoretical design is
needed that satisfies the above criteria (i)–(v), while being
experimentally simple and compatible with current technol-
ogy. Existing proposals for cavity-mediated gates have not met

these requirements; they are either incompatible with single-
qubit gates,18 limited to nearest-neighbor qubits,19 and/or
require adiabaticity, either through adiabatic evolution19 or
through adiabatic elimination of the auxiliary state.20 As
a result, they are much slower than what is needed from
a quantum information processing perspective. Moreover, a
careful assessment of the performance of such gates as a
function of system parameters has not been given in the
literature, despite the key role it would play in experimental
demonstrations.

In this paper we give a novel design for an entangling
control-z (CZ) two-qubit gate21 that satisfies all the above
criteria. Our design does not require the QD energies to be
equal or dynamically tunable. As a result, our approach is
compatible with single-qubit operations and has a potential
for many-qubit scalable architectures. We obtain fidelities
in excess of 90% for realistic parameters. In the following
we explain the concept of this all-optical gate, formulate the
model, calculate the QD-cavity system spectrum, and analyze
our design of the two-qubit gate protocol. The fidelity of the
gate operation as a function of the system parameters is also
calculated and provides a guide for experiment.

II. TWO-QUBIT GATES

The control-z gate is a maximally entangling two-qubit
gate, and it is given by UCZ = diag(1,1,1, − 1). It is equivalent
to the more familiar control-NOT (CNOT) operation up to single-
qubit gates. Specifically, UCNOT = (1 ⊗ H)UCZ(1 ⊗ H),
where

H =
(

1 1

1 −1

)/√
2

is the Hadamard gate. To see the entangling capability of CZ

we can look at its action on a product state of two qubits. In
particular, when each qubit is in an equal superposition of the
basis states, we have

UCZ(|1〉 + |0〉) ⊗ (|1〉 + |0〉) = |11〉 + |10〉 + |01〉 − |00〉,
which is a maximally entangled two-qubit state, also known
as a two-qubit “cluster state.” Such a state is equivalent to a
Bell state up to single-qubit rotations.
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To implement the CZ gate, we need to accumulate a phase
factor of −1 selectively to only one of the two-qubit basis
states, taken to be |00〉 above. Meanwhile, to be able to
perform single-qubit gates, the transition involving state |00〉
and an auxiliary state should be performed in parallel with that
involving |01〉 (or |10〉 for rotations of the second qubit) and
its corresponding auxiliary state. To avoid dynamically tuning
energies—a process that is costly in time and can compete with
coherence times—we will use different classes of auxiliary
states for single-qubit and two-qubit operations. In particular,
we will use a near-resonance between the two-photon state of
the cavity and the state where both QDs are excited.

III. QUANTUM DOTS IN A CAVITY

We focus on a system of two (singly) charged self-
assembled InAs QDs in a photonic crystal microcavity. This
structure can support in- and out-of-plane polarizations.22 Due
to strain the optical dipole transition matrix elements in the
InAs dots are anisotropic, resulting in efficient absorption
of light with electric field polarization perpendicular to the
QD growth axis. As a result, only the mode with electric
field polarized in the plane of the crystal can be coupled to
transitions in QDs. We take an external magnetic field to be
applied in plane (Voigt configuration), perpendicular to the
QD growth direction. This will enable full single-qubit control
as explained in Ref. 20.

The system can be represented by two separate four-state
QDs interacting with a single photon mode, as shown in
Fig. 1(a). The two lowest-energy states of each four-state
system are the spin states of the electron in each dot, which
represent the qubit, |↑〉 = c

†
n,↑|〉0 and |↓〉 = c

†
n,↓|〉0, where n =

1, 2 refers to the two dots and c
†
↑ (c†↓)creates an electron of spin

↑ (↓) relative to the uncharged QD state |〉0. The two excited
states in each dot are electron-exciton bound states, called
trions (or charged excitons). They are complexes having total
angular momentum 3/2. The two ±3/2 states (“heavy holes”)
are energetically lower than the ±1/2 (“light hole”) states and
thus form a pseudo spin |⇑〉 = t

†
n,↑|〉0 = c

†
n,↑c

†
n,↓h

†
n,⇑|〉0 and

similarly for |⇓〉, where h† is the creation operator for a heavy
hole. The trion states carry the pseudospin of the hole because
the two electrons are in a spin singlet. We choose the spin
quantization axis along the external magnetic field.

The cavity couples to the trion transitions and preserves the
(pseudo) spin orientation: |↑〉 ↔ |⇑〉 and |↓〉 ↔ |⇓〉. In the
rotating-wave approximation the cavity-dot interaction is

HQD−C = g
∑
n=1,2

(t†n,↑cn,↑a + t
†
n,↓cn,↓a + H.c.), (1)

where a annihilates a photon in the cavity and g is the coupling
between the trion transition and the cavity. We choose these
coupling constants to be the same for the two QDs to simplify
the presentation. This assumption is not important to the
proposed procedure and can be relaxed when necessary.

The spectrum of the cavity-QD system is shown in Fig. 1
as a function of the cavity frequency ω0. This representation
does not suggest the need to tune ω0 dynamically, but
it helps to identify the region of optimal ω0 values. The
spectrum is obtained by diagonalizing H0 = HQD + HC +

FIG. 1. (Color online) Cavity-dot system. (a) Energies and
relevant states of two QDs and cavity. (b)–(e) Interacting cavity-dot
spectrum as a function of the cavity mode frequency ω0. (b) Structure
of crossings and corresponding states. Panels (c) and (d) show the
anticrossing splittings in the two- and single-excitation subspaces, re-
spectively. Panel (e) shows the energy structure of the qubit subspace,
which is unaffected by the coupling to the cavity mode. The numbers
in (c)–(e) give the states of the diagonalized Hamiltonian, and the
↑, ↓ show the predominant spin character of each state far (to the right)
of the avoided crossings. Vertical dashed lines indicate (ε1 + ε2)/2.

HQD−C, where HQD = ∑
n,ξ ωeθ (ξ )c†n,ξ cn,ξ + ∑

n,ξ t
†
n,ξ [εn +

ωhθ (ξ )]tn,ξ , HC = ω0a
†a, ξ = ↑,↓, θ (↑) = 0, and θ (↓) = 1.

The Hamiltonian H0 conserves the total number of exci-
tations. As a result the Hilbert space of the system separates
into subspaces with different numbers of excitations. Each
subspace contains several states, corresponding to different
spin projections. The lowest set of four states (three energy
levels) defines the two-qubit subspace, |↑↑〉, |↑↓〉, |↓↑〉, and
|↓↓〉, and has zero cavity photons; we call this the “zero
excitation” subspace. The other relevant subspaces are the
“one-excitation” subspace, which has states with either one
cavity photon or one trion, and the “two-excitation” subspace,
which has states with two trions (one per dot), states with
one trion and one cavity photon, and states with two cavity
photons; see Appendix A. States in the “one-excitation” part
of the spectrum are approximately local to each quantum dot
and interact with each other only very weakly, ∼(g/�ε)2. They
are the states that can be used for single-qubit control.23 The
two-excitation subspace involves hybridized states of the two
QDs and are ideal for a two-qubit gate. These states, however,
are not directly accessible from the qubit subspace with a
single pulse, so we make use of a series of control pulses.
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The laser pulses have momentum perpendicular to the
photonic crystal plane to avoid Bragg shielding due to the
photonic crystal. For definiteness we choose pulses with
the same linear polarization as the cavity mode,24

V(t) =
∑

p; n>m

�p(t − tp)2 cos ωpt(Mnm|n〉〈m| + H.c.). (2)

The total Hamiltonian becomes H(t) = H0 + V(t), where
H0 = U †H0U = ∑

n En|n〉〈n| and Mn,m = ∑
j=1,2,ξ 〈n|U †

(t†j,ξ cj,ξ + c
†
j,ξ tj,ξ )U |m〉. The subscript p enumerates the

pulses used to perform the gate where each has frequency
ωp and is centered at time tp.

IV. IMPLEMENTATION OF CZ GATE

The CZ gate has a simple diagonal form, which allows for
a relatively straightforward design based on phases induced
by resonant cyclic excitation of an auxiliary excited state. The
idea is to use the property of quantum two-level systems, in
which a cyclic evolution from the ground state to the excited
state and back to the ground state induces a minus sign to
the latter. In the presence of additional, uncoupled states
the minus sign is relative and thus constitutes a nontrivial
quantum evolution. The pulse performing such an evolution
is known as a “2π” pulse. Optical 2π pulses were proposed
theoretically for single-qubit rotations in quantum dots23 and
two-qubit gates in quantum dot molecules25 and later used in
their experimental demonstrations.7,17

In our approach, the phase accumulation will be on state
|↑↓〉, while keeping the phases of other basis states unchanged.
This can be done by the following pulse sequence: (i) a
population-inversion π pulse (pulse A) tuned to transition
ω1 = ωA = E4 − E0 between qubit state |↑↑〉 and the excited
state with similar spin configuration [see Figs. 1(d) and 1(e)].
The pulse is also in resonance with the E6 − E2 transition, and
thus it creates a trion in the first QD only: both |↑↑〉 and |↑↓〉
are transformed in the same way and accumulate a phase factor
of −i each. (ii) A 2π , or phase, pulse (pulse B) with frequency
ω2 = ωB = E16 − E4 [see Figs. 1(c) and 1(d)]. This induces a
transition between the one-excitation states previously created
and one of the two-excitation states. Note that if g = 0 or we
are far detuned, ω � �ε, the transition E10 − E2 would also
occur. This would correspond to a single-qubit operation on the
second qubit, i.e., |⇑↑〉 and |↓↑〉 would both acquire a phase
factor of −1. A nonzero g induces formation of two-excitation
states that have different energies, cf. the energy of state 16 and
the sum of energies of states 4 and 8. As a result, the state ⇑↑,
or state 4, acquires the factor of −1 after the pulse, while state
|↓↑〉 does not. (iii) Finally, we apply the population-inversion
pulse A again, ω3 = ωA, to restore the system to the qubit
subspace. This gives additional factors of −i to both |↑↑〉
and |↑↓〉, as mentioned above. The two phase factors of (−i)
induce a minus sign to states |↑↓〉 and |↑↑〉, while the 2π pulse
cancels that sign in state |↑↑〉. The phase between the control
pulses A and B does not enter the result and therefore pulses
with unequal frequencies do not have to be phase locked, which
is a significant experimental convenience.

A physical explanation of this approach is the following:
because each QD is off resonance from the cavity, when only

one of the QDs is excited and no other excitations are present
in the system, the excited QD can be roughly thought of as
isolated, i.e., decoupled from the cavity and from the other QD.
Thus, single excitations can implement single-qubit operations
without disturbing the rest of the system. On the other hand,
when both QDs are excited they are closer to the resonance
with the cavity state. As a result, there is a large mixing
between cavity states and the states of both QDs. Thus, using
the two-excitation regime is a natural venue for performing
two-qubit conditional operations while maintaining the ability
to manipulate each QD spin separately.

V. FIDELITY

Now we consider the gate fidelity, which is a measure of
how close our operation is to the target gate. There are two
types of fidelity losses: those caused by unintended coherent
dynamics due to coupling of the lasers to off-resonance
transitions and those originating from random processes
such as trion recombination. First we focus on the former
mechanism. The unintended transitions can cause Ug to deviate
from the ideal UCZ and effectively cause loss of coherence in
the qubit subspace, even though the entire operation involving
excited states is unitary and coherent.

To analyze this type of decoherence we compute the average
fidelity F of the gate operation, as explained in detail in
Appendix B, including transitions 0-4, 4-6, 2-5, 3-7, 0-8, 2-10,
1-9, and 3-11 for pulse A and transitions 4-16, 6-18, 0-8, 2-10,
1-9, and 3-11 for pulse B. Other transitions are negligible
either due to vanishing matrix elements or to large detuning.
We chose different pulse widths for pulse A and pulse B:
σA = 2σB = 2σ . In Fig. 2(a) the fidelity is plotted as a function
of the difference between the cavity mode frequency ω0 and
the transition frequency of QD1 ε1 for varying values of the
frequency of QD2 ε2. The qualitative features of the plots can
be understood as follows: when the cavity mode frequency
is much smaller or much larger than the QD frequencies,
QD-cavity hybridization is negligible, and we are in a regime
of two independent qubits. This causes attenuation of fidelity
towards both sides of the plot. The dip in the middle occurs
because, as the cavity is tuned, the target transition of pulse
B (transition 4-16) becomes degenerate with transition 3-11,
and therefore state | ↓↓〉 is also affected by pulse B, resulting
in strong unintended dynamics. Note that at its high values the
fidelity does not vary strongly with ε1 and ε2. As a result, gates
between several different pairs of quantum dot spin qubits can
be performed with high fidelity using only one cavity mode
to mediate the interactions, which is an intriguing opportunity
for scalable architectures.

Figure 2(b) shows the fidelity as a function of the spectral
separation �ε between the trions in QD1 and in QD2 for
different pulse bandwidths σ . When �ε is small (comparable
to ωe) the fidelity drops appreciably. This drop is the result of
coupling in the one-excitation subspace, i.e., the assumption
that an excited QD is isolated from the rest of the system is
no longer valid. Thus, it also identifies the regime where fast
optical single-qubit control is not possible. In the region of
higher fidelities, where �ε/ωe � 10, the fidelity approaches
its maximal value for longer pulses and starts decreasing more
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FIG. 2. Fidelity of CZ gate with imperfections resulting from coupling of the pulses to neighboring off-resonance optical transitions (a)
as a function of ω0 for σ/ωe = 0.1 for �ε/ωe = 8.33, 16.67, 25.00, 33.33, as indicated, and (b) as a function of the spectral separation �ε

between the QDs for different values of the pulse bandwidth, σ/ωe = 0.01, 0.02, . . . ,0.1,0.15, . . . ,0.3 as indicated by the dashed arrow. Each
point is computed for the optimal value of ω0 from Fig. 2(a). The vertical lines mark the values of ω2 from panel (a). In both panels (a) and (b)
we used g/ωe = 3.33 and ωh = ωe/3.

rapidly for σ/ωe � 0.2 due to involvement of a larger number
of unintended transitions.

Next, we consider the effects of decoherence due to
losses during the gate. The main contributions come from
trion recombination and cavity photon leakage. The typical
linewidth of the trion state, 
tr, in InAs QDs is ∼1 μeV.26 The
loss rate associated with the cavity is 
c = ω0/Q. State-of-
the-art microcavities15 can have Qs up to ∼105, which gives

c ∼ 10 μeV. We calculate the fidelity using the standard
master equation formalism21,27 and include states from 0 to
19; see Appendix B. The fidelity as a function of Q and 1/
tr

in shown in Fig. 3. It is maximized when the pulses overlap to
reduce the time the excited states are occupied. We choose ω0

from the maximal fidelities, as in Fig. 2(a), for each point of
Fig. 3. We see that fidelities in excess of 90% are possible for
realistic values of the parameters.

VI. CONCLUSIONS

In summary, we have developed a design for a cavity-
mediated entangling gate between two spin qubits that satisfies
the criteria for a realistic two-qubit operation. Our control-z
gate is compatible with available single-qubit operations

and with natural inhomogeneities in optical resonances. It
can thus accommodate several qubits that couple pairwise
with appropriate control laser frequencies, opening a path to
scalable architectures. It may also be useful for hybrid quantum
computing approaches with various physical systems.28 We
have shown that the gate fidelity is at least 90% for current
experimental parameters. Higher fidelities can be achieved in
various ways such as using pulse shaping techniques29,30 and
engineering higher finesse cavities.
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APPENDIX A: THE SPECTRUM

In the rotating-wave approximation, the Hamiltonian
[Eq. (1) from the main text] conserves the total number of
excitations. Therefore it can be diagonalized independently
in each excitation-number subspace. The lowest-energy set of
four states (three energy levels) corresponds to a subset with
zero excitations. It represents the two-qubit subspace with zero

FIG. 3. (Color online) (a) Fidelity of the two-qubit CZ gate in presence of decoherence due to trion recombination and cavity decay. The
fidelity is plotted as the function of the trion decay time and the cavity mode quality factor. (b) The temporal profiles of the pulse sequence for
σ/ωe = 0.2, ωh = ωe/3, �ε/ωe = 8.33, g/ωe = 3.33, and ωe = 0.12 meV.
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cavity photons,

0 → |↑↑〉|0〉, 1 → |↑↓〉|0〉, 2 → |↓↑〉|0〉, 3 → |↓↓〉|0〉,
(A1)

where |0〉 is the vacuum state of the cavity. The corresponding
energies are controlled by the magnetic field via Zeeman
splitting. For typical values of magnetic field of ∼1 T used
in the initialization and readout and single-qubit experiments
the splitting between E0, E3, and E1,2 is ∼0.1 meV. The
microcavity optical mode is coupled to the excitonic transitions
in each quantum dot with the transition energies ∼eV. As a
result, the qubit subspace is not affected by the cavity.

The one-excitation subspace occurs at the optical frequency,
∼eV from the qubit subspace energies:

dot1: |⇑↑〉|0〉, |⇓↑〉|0〉, |⇑↓〉|0〉, |⇓↓〉|0〉, (A2)

dot2: |↑⇑〉|0〉, |↑⇓〉|0〉, |↓⇑〉|0〉, |↓⇓〉|0〉, (A3)

cavity: |↑↑〉|1〉, |↑↓〉|1〉, |↓↑〉|1〉, |↓↓〉|1〉, (A4)

where |1〉 denotes the state with a single photon in the cavity.
The energy gap �ε between states (A2) and (A3) is due to
the fact that the two dots are not identical in size, shape, and
strain environment, which affects the excitonic transitions. The
typical variation in trion transition energies is ∼1 to 20 meV.
The energy of the cavity mode, ω0, is fixed during the gate
operation but can be set to an optimal value during sample
growth. The interaction with a cavity photon shifts the energies
and mixes trion and photon states. The energies of the resulting
states can be found analytically: note that states (A2)–(A4)
are always coupled in triplets. For example, the state |↑↑〉|1〉
interacts only with |⇑↑〉|0〉 and |↑⇑〉|0〉. For each triplet we
have

(E − ε1,ξ )(E − ε2,ξ )(E − ω0) = g2(E − ε1,ξ ) + g2(E − ε2,ξ ),

(A5)

where ξ =↑ or ↓, εn,↑ = εn, and εn,↓ = εn + ωh − ωe. Each
triplet forms two anticrossings when ω0 is swapped across
the trion energies [see Figs. 1(b) and 1(d) of the main text].
When g ∼ �ε or g � �ε, the two excited quantum dot states
can mix and form spin-entangled states. For experimentally
accessible systems of quantum dots in a microcavity, the
coupling strength g is substantially smaller than the variation
in trion energies �ε and the mixing is negligible. In the limit
g � �ε the interaction between one-excitation states from
different QDs can be estimated by analyzing the difference
δω↑ in transition energies between ω↑ : |↑↑〉 → |⇑↑〉 and ω′

↑ :
|↑↓〉 → |⇑↓〉. From Eq. (A5) we find ω↑ = ε + g2/f (ωA,�ε)
and ω′

↑ = ε + g2/f (ω′
A,�ε + ωe − ωh), where f (y,x) = x −

ω0 − g2/(x − ε + y). Since ωe ∼ ωh ∼ g � �ε it is easy to
show that δω↑ � −g2ωe/�ε2. This should be compared to
the typical inverse lifetime of the trion state, ∼1 μeV (in
energy units) or ∼ωe/100. As a result for ωe/�ε ∼ 10, ω↑ and
ω′

↑ are practically indistinguishable. This result is confirmed
numerically by computing the spectrum (and the states) for
different values of �ε. It also holds for other transitions
between the qubit and the one-excitation subspace states.
Therefore we conclude that the one excitation subspace cannot
be used for a two-qubit operations. It can, however, be used

to perform fast single-qubit operations as described in Ref. 23
by using the localized trion state.

In order to find useful nonlocal states that can mediate a
two-qubit gate we investigate the two-excitation subspace.
In this subspace the states are coupled in groups of four,
e.g. |⇑⇑ ,0〉, |⇑↑ ,1〉, |↑⇑ ,1〉, |↑↑ ,2〉:

(ε2,ξ + ε1,ξ − E)(ω + ε1,ξ − E)(ω0 + ε2,ξ − E)(2ω − E)

= g2(ε2,ξ + ε1,ξ + 2ω0 − 2E)2. (A6)

The spectrum has a more complex structure, see Fig. 1(c) of
the main text. The two-excitation subspace provides nonlocal
quantum-dot-cavity states, such as state 16, which has two
trions (one in each dot). The energy of such state is different
from the combined energy of two trion states localized in each
dot, such as E4 and E8,

�E16,4 �= �E4,0 + �E8,0, (A7)

where �En,n′ = En − En′ . This is the basis for the two-qubit
conditional phase gate in this work. Using a perturbative
approach like that above, we obtain �E16,4 − (�E4,0 +
�E8,0) ∼ −g2/�ε.

APPENDIX B: GATE FIDELITY

The fidelity of the gate described in the main text is affected
by two types of processes: (i) induced unintended transitions
between the states of the qubit-cavity system and (ii) real
losses due to cavity leakage and trion recombination. We first
estimate losses due to unintended but coherent dynamics. We
include transitions 0-4, 4-6, 2-5, 3-7, 0-8, 2-10, 1-9, and 3-11
for pulse A, and 4-16, 6-18, 0-8, 2-10, 1-9, and 3-11 for pulse
B (ωB). Other transitions are negligible either due to vanishing
matrix elements or to large detuning. We compute the wave
function after the A-B-A pulse sequence for each basis
configuration of the qubit subspace as initial state (evolution is
linear and therefore the resultant wave function for any initial
qubit state can be easily recovered). To simplify calculations
here we resort to analytically solvable Rosen-Zener pulse
shapes,31 i.e., �p(t) = �psech(σpt) with σA = 2σB = 2σ , to
calculated transition amplitudes and phases for resonant and
off-resonance transitions for each pulse. Given the initial, |ψ0〉,
and final, |ψ〉 = U |ψ0〉, wave function, the fidelity can be
computed as

F (ψ0,ψ) = |〈ψ0|U †
CZ|ψ〉|, (B1)

where U
†
CZ is the evolution operator corresponding to the ideal

CZ gate. The value of F (ψ0,ψ) depends on the initial state of
the two-qubit system and therefore can vary depending on the
choice of algorithm and initial data. We therefore compute the
average fidelity F by taking average over all possible initial
states of the two-qubit system,

F 2 =
∫

dψ0F (ψ0,ψ{ψ0})2

=
∑
ijnm

δinδjm + δij δnm

20
〈n|U †

CZU |i〉〈j |U †UCZ|m〉. (B2)

The integration
∫

dψ0 is performed over all complex ampli-
tudes that define the initial state in the basis |i〉, and i, j, n,m
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run over all basis states ↑↑ , ↑↓ , ↓↑ , ↓↓.32 The results are
presented in Fig. 2 and the discussion is given in the main text.

In order to account for both unintended dynamics and actual
losses we have to calculate the reduced density matrix ρ(t) of
the two-qubit subsystem for the duration of the pulse sequence.
The reduced density matrix can be found within the Bloch-
Redfield master-equation (ME) formalism:

iρ̇ = [H + V (t),ρ] +
∑

s

i
s

[
PsρP †

s − P
†
s Psρ + ρP

†
s Ps

2

]
,

(B3)

where Ps = |fs〉〈is |, and |is〉 and |fs〉 are initial and finial
states (in the spin basis) corresponding to the sth decay
process with rate 
s . Solving the above equation directly is
computationally involving due to the presence of two different
time scales: fast, associated with the laser driving frequency,
and slow, coming from the time dependence of the pulse
shaped envelope. To simplify the computation we transform
the ME to the eigenbasis of H and use the rotating-wave
approximation,

˙̃ρ = −i[V (t),ρ̃] +
∑

s


s

[
Ps ρ̃P†

s − P†
sPs ρ̃ + ρ̃P†

sPs

2

]
,

(B4)

where ρ̃ = eiH0tU †ρUe−iH0t , Ps = U †PsU , and V (t) =
eiH0tV(t)e−iH0t . Note that the trion decay processes can involve
photons with any in-plane polarization (along or perpendicular
to the applied magnetic field). Therefore, for each trion we have


s = 
tr: Ps → {|↑〉〈⇑|, |↓〉〈⇑|, |↑〉〈⇓|, |↓〉〈⇓|}. Leakage of
photons from the cavity is modeled as 
s = 
c: Ps →
{|0〉〈1|,√2|1〉〈2|, etc.}. Due to additional (pseudo) spin-flip
electron-hole recombination processes, more states are in-
volved than for the coherent case discussed above and we
include states from 0 to 19. We chose to use Gaussian pulse
shapes �p(t) = (�p/

√
π/2) exp{−2t2σ 2

p/π2} for numerical
convenience and apply the same pulse sequence as before
with σA = 2σB = 2σ .

Since a separable quantum wave function is no longer
accessible, fidelity has to be defined differently:

F (ψ0,ρ{ψ0}) =
√

〈ψ0|U †
CZρUCZ|ψ0〉. (B5)

In this case the average fidelity is computed as

F 2 =
∑

ijnm={1,4}

δinδjm + δij δnm

20
〈n|U †

CZρ{|i〉〈j |}UCZ|m〉,

(B6)

which is the generalization of Eq. (B2) for the case of
nonunitary evolution of pure initial state. This is possible
due to the fact that the evolution of the density matrix is
still described by a linear (but nonunitary) superoperator, i.e.,
ρ(t) = T exp (−i

∫ t

0 dtLH (t) − tL)|ψ0〉〈ψ0|, where LHO =
[H,O]. As a result, the complex coefficients that define initial
(|ψ0〉) and target (UCZ|ψ0〉) states in the basis |i〉 can be
integrated out in exactly the same way as for Eq. (B2).
The results are presented in Figs. 2 and 3 in the main
text.
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