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Anisotropic optical properties of excitons in strain-controlled InAs quantum dots
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We report the optical anisotropy of excitons in self-assembled InAs quantum dots (QDs), the strain of which is
controlled by tuning the lattice constant of the spacer layers between stacked QD layers. The strain dependence
of the energy structure for excitons is investigated using the four-wave mixing technique. The fine-structure beat
and the exciton-biexciton beat in four-wave mixing measurements clearly show that the fine-structure splitting
of exciton states increases with increasing strain in the growth plane. The strain also causes significant optical
anisotropy, which is observed by the angular-dependent measurements of the collinear polarization of excitation
pulses. The strain dependence of the optical anisotropy is accurately reproduced by a model calculation in which
the valence band mixing between heavy- and light-hole bands is taken into account. We demonstrate that the
optical properties of excitons in QD ensembles are successfully controlled by tuning the lattice constant of the
spacer layers.
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I. INTRODUCTION

Electrons and holes in semiconductor quantum dots (QDs)
construct discrete energy structures. The optical and electronic
properties of QDs have attracted considerable attention due to
characteristic features induced by the confinement potential
in zero-dimensional nanostructures. These carriers in QDs
exhibit long coherence times due to their isolation from other
carriers; this phenomenon has been widely investigated for
control of quantum states.1–5 Furthermore, the confinement
potential creates neutral and charged excitonic complexes
including many-particle states, which are not generated in
bulk semiconductors.6–8 The energy structure of QDs varies
depending on several factors, and the size and shape de-
pendence of the energy structure has been investigated both
experimentally and theoretically.9–14

The strain dependence of the energy structure is a topic
that is still to be addressed because the strain induced by
lattice mismatch is essential for the fabrication of QDs in the
Stranski-Krastanov growth mode. The strain causes optical
anisotropy of QDs as a result of the valence band mixing
between heavy-hole (hh) and light-hole (lh) bands; such
mixing has been observed via single-dot spectroscopy.15–17

The growth technique of QDs is also related closely to
the strain. Self-assembled QDs with high density have been
fabricated using the stacked structure of QD layers.18,19 The
influence of strain, which is accumulated with the increase
in the number of stacked QD layers, is controlled by the
spacer layers between the QD layers. Single-dot spectroscopy
is a useful technique to study the energy structure in low-
density QDs; however, it is quite difficult to investigate
the energy structure of high-density QDs in the frequency
domain. Instead of the measurements in the frequency domain,
four-wave mixing (FWM) measurements in the time domain
can provide information regarding the energy structure of
QDs. In the FWM measurements, the energy structure has
been investigated as quantum beats due to the fine-structure
splitting and the biexciton formation.4,20 In order to control

the collective optical properties of highly stacked QDs, it is
necessary to examine the influence of spacer layers stacked
between QD layers.

In this paper, we examine the strain dependence of optical
anisotropy for excitons in self-assembled InAs QDs. The
highly stacked QDs exhibit fairly uniform anisotropy depend-
ing on the lattice mismatch between the QDs and spacer layers.
The strain dependence of the energy structure for excitons has
been measured using the FWM technique for collinearly and
cocircularly polarized excitations. We have investigated the
strain dependence of the dipole moments of excitons by using
a model calculation including the mixing of hh and lh excitons
due to the strain induced by the spacer layers.

II. EXPERIMENTAL DETAILS

A. Samples

The investigated samples were grown on a InP(311)B
substrate by molecular beam epitaxy. These samples contain
60 layers of InAs self-assembled quantum dots separated by
20-nm-thick In1−x−yGaxAlyAs spacers. Highly stacked InAs
QDs are realized by the strain-compensation technique.18,19

In this technique, the spacer layers are fabricated with lattice
constants slightly smaller than that of the substrate. Therefore,
the spacer layers enable the removal of the strain accumulated
in the InAs QD layers, the lattice constant of which is larger
than that of the substrate. Tuning the compositions of the
spacer layers, we prepared five samples with different lattice
constants of spacer layers, which are denoted as S1, S2, S3,
S4, and S5. The topographic image of InAs QDs for sample S3
is shown in Fig. 1(a), which is measured using an atomic force
microscope. The average lateral sizes of QDs are obtained
to be 35 and 51 nm along the [011̄] and [2̄33] directions,
respectively. The average height of QDs is 4.1 nm. The sizes
of QDs for the other samples are similar to these values.
The lattice constants of these samples aspacer are indicated in
Fig. 1(b). The lattice constant aspacer is plotted as a function of
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FIG. 1. (Color online) (a) Topographic image of InAs quantum
dots. (b) Lattice constant of spacer layers as a function of the
lattice mismatch between the InAs quantum dots and spacer layers.
(c) Photoluminescence (PL) spectrum of InAs quantum dots at a
temperature of 3.4 K. The signals are normalized by the peak intensity
of sample S3.

the lattice mismatch between the InAs QDs and spacer layers,
and this lattice mismatch is expressed as (aInAs − aspacer)/aInAs

using the lattice constant of InAs aInAs. The sample S1 was
fabricated with the lowest strain in the samples, and the lattice
mismatch increases from S1 to S5.

The photoluminescence (PL) of InAs QDs is shown in
Fig. 1(c). The PL spectra of the five samples were measured at
3.4 K with an optical pulse excitation of wavelength 800 nm.
The wavelength of the emitted light is approximately 1.5 μm
for the five samples. The full width at half maximum (FWHM)
of the PL spectra increases from S1 to S5. The broad spectral
width of the exciton resonance is characterized by variation in
the size and shape of QDs. The sample S5 with the highest
strain exhibits a FWHM of 77.0 meV, which is twice the
FWHM value of 36.7 meV observed in the spectrum of sample
S1.

B. Experimental setup

In order to investigate the energy structure of InAs QDs,
time-integrated four-wave mixing (TI-FWM) measurements
were performed. Optical pulses were generated by an optical
parametric oscillator pumped by a mode-locked Ti:sapphire
laser tuned to the exciton resonant wavelength of 1470 nm.
The pulse duration was 130 fs and the repetition rate was
76 MHz. The first and second excitation pulses were incident
on the sample with wave vectors of k1 and k2, respectively. The
TI-FWM signal in the direction of 2k2−k1 was detected by
a photodetector in transmission geometry. The samples were
mounted in a closed-cycle refrigerator at a temperature of
3.4 K. The FWM measurements were performed for different
excitation configurations by changing the polarization of
the excitation pulses. In this paper, we use the notations
X, Y , and Z for the [011̄], [2̄33], and [311] directions,
respectively. The excitation pulses were set to be collinear
and cocircular polarizations in the XY plane. The notations
X, D, and Y are used for linear polarization angles of 0◦,
45◦, and 90◦, respectively, in the XY plane, where the angle

FIG. 2. (Color online) Four-wave mixing intensity for sample S3
at a delay time of (a) 0 to 200 ps and (b) 0 to 6 ps with Y -, D-, and
X-polarized excitations.

of linear polarization is measured from the X direction. The
right-circularly polarized light is denoted by R for cocircularly
polarized excitation.

III. RESULTS AND DISCUSSION

A. Fine-structure beat and exciton-biexciton beat

The TI-FWM signals of sample S3, measured with Y -,
D-, and X-polarized excitations, are shown in Figs. 2(a) and
2(b). In Fig. 2(a), a quantum beat is observed for D-polarized
excitation; however, it disappears for X- and Y -polarized
excitations. This result shows that the exciton states in QDs
are characterized by X- and Y -polarized states. In our study,
these excitons are called the X and Y excitons, respectively.
From the period of the quantum beat, the energy splitting
between these states h̄�XY is obtained to be 87 ± 1 μeV. This
so-called fine-structure splitting is caused by the anisotropic
confinement potential of QDs in the XY plane; this splitting
has been investigated in terms of the long-range electron-hole
exchange interaction.11,12,21,22 In the range from 0 to 6 ps, an
exciton-biexciton beat is observed for all linearly polarized
excitations as shown in Fig. 2(b). The exciton-biexciton
beat is caused by the interference of the signals from the
following two transitions: transition from the exciton state
to the ground state, and that from the biexciton state to
the exciton state. The signal of the biexciton transition is
energetically different from that of the exciton transition by
the biexciton binding energy h̄�B. The beat periods for X-
and Y -polarized excitations correspond to energy differences
of 3.35 ± 0.02 and 3.52 ± 0.02 meV, respectively. The slight
difference between these values is explained by the fine-
structure splitting between the X and Y excitons.4,20 As derived
in Appendix C, the phase factors ei(�B−�XY )τ and ei(�B+�XY )τ

express the exciton-biexciton beats for X- and Y -polarized
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excitations as a function of the delay time τ . The biexciton
binding energy h̄�B and the fine-structure splitting h̄�XY

are obtained from the relations h̄�B = h̄(ωY + ωX)/2 and
h̄�XY = h̄(ωY − ωX)/2, where the energies of h̄ωX and h̄ωY

are determined from the periods of the exciton-biexciton beat
with X- and Y -polarized excitations, respectively. Using these
relations, the biexciton binding energy and the fine-structure
splitting are obtained to be 3.43 ± 0.01 meV and 83 ± 15 μeV.
The value of the fine-structure splitting shows a large error
because it is obtained from the slight difference of the beat
periods; however, it corresponds to that directly obtained from
the fine-structure beat. The fine-structure splitting between the
X and Y excitons h̄�XY is one order of magnitude smaller
than the biexciton binding energy h̄�B. This relation exhibits
the difference of observed range of the quantum beats in the
time domain.

In order to investigate the strain dependence of the
fine-structure splitting and the biexciton binding energy, we
measured the quantum beats for the five samples. The fine-
structure beat exhibits a damped oscillation due to the inhomo-
geneous broadening of the fine-structure splitting. The damped
quantum beat for D-polarized excitation is expressed as
|1 + CXY ei�XY τ e−(σ 2

XY /4)τ 2 |2, where CXY denotes the beat am-
plitude. The inhomogeneous broadening of the fine-structure
splitting is assumed as a Gaussian distribution with a central
value h̄�XY and a linewidth h̄σXY . These values are obtained as
shown in Figs. 3(a)–3(c). The central value of the fine-structure
splitting h̄�XY increases from 75.8 ± 0.8 μeV to 126 ± 5
μeV with increasing lattice mismatch as shown in Fig. 3(a).
This result shows that the anisotropy of the QD confinement
potential is increased by the strain induced by the spacer layers.
The linewidth h̄σXY also shows an increasing tendency, corre-
sponding to increase in h̄�XY [see Fig. 3(b)]. The amplitude
of the fine-structure beat between the X and Y excitons is
smaller than 1 as shown in Fig. 3(c) because the FWM signal
from the X exciton is significantly weaker than that from the Y

exciton as shown in Fig. 2(a). To obtain the biexciton binding
energy, the exciton-biexciton beat is analyzed using the beat
component |2 − CBei(�B−�XY )τ e−(σ 2

B/4)τ 2 |2 for X-polarized ex-

FIG. 3. Strain dependence of (a) fine-structure splitting h̄�XY ,
(b) inhomogeneous broadening of fine-structure splitting h̄σXY , and
(c) beat amplitude CXY . These values are obtained from the fine-
structure beat with D-polarized excitation.

FIG. 4. Strain dependence of (a) fine-structure splitting h̄�XY ,
(b) biexciton binding energy h̄�B, (c) inhomogeneous broadening
of biexciton binding energy h̄σB, and (d) beat amplitude CB. These
values are obtained from the exciton-biexciton beats with X- and
Y -polarized excitations.

citation. The signal for Y -polarized excitation is expressed
as this equation by replacing �B − �XY with �B + �XY . In
the equation, the inhomogeneous broadening of the biexciton
binding energy is also assumed to be a Gaussian distribution
similar to that of the fine-structure splitting. The results for
the exciton-biexciton beat are shown in Figs. 4(a)–4(d). The
fine-structure splitting in Fig. 4(a), which is obtained from the
exciton-biexciton beats, coincides with the results in Fig. 3(a),
which are directly measured from the fine-structure beat. The
central value of the biexciton binding energy h̄�B does not
show a clear dependence on lattice mismatch, as observed
in Fig. 4(b). However, the inhomogeneous broadening of the
binding energy h̄σB exhibits a decreasing tendency, as shown in
Fig. 4(c). The broad linewidth corresponds to the fast damping
of the exciton-biexciton beat in TI-FWM measurements. The
linewidth indicates the shape inhomogeneity of QDs in the
Z direction because the biexciton binding energy strongly
depends on the height of QDs.13,14 The decreasing tendency
shows that the biexciton binding energy relative to the exciton
energy becomes more homogeneous with increasing strain. It
should be noted that the exciton energy is fixed by the energy
of the excitation pulse because FWM signals are generated
by resonantly excited excitons. The beat amplitude of the
exciton-biexciton beat CB indicates the ratio of the biexciton
excitation in the excited QDs, which is smaller than 1 as shown
in Fig. 4(d).

B. Angular dependence of anisotropic four-wave mixing
intensity for collinearly polarized excitation

As shown in Figs. 2(a) and 2(b), the FWM intensity is
significantly changed for X- and Y -polarized excitations.
The ratio of these FWM intensities IY /IX is obtained to be
6.0 for sample S3 at a delay time of 0.5 ps. In order to
investigate the anisotropy of the FWM signal, we measured
the angular dependence of the collinear polarization of the
excitation pulses. The angular dependence of the FWM
intensity, measured at a delay time of 0.5 ps, for the five
samples is shown in Fig. 5. The FWM signals show strong
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FIG. 5. (Color online) Experimental results for angular depen-
dence of normalized four-wave mixing intensity at a delay time of
0.5 ps. The angle of linear polarization of the excitation pulse is
measured from the X direction.

anisotropy with the maximum intensity at Y polarization and
the minimum intensity at X polarization for all samples.
Because the FWM intensity is proportional to the eighth
power of the dipole moments for the exciton transitions, the
anisotropic signals directly reflect the difference of the dipole
moments between the X and Y excitons. It is significant that
the ratio IY /IX increases from 5.2 to 10.3 with increasing
lattice mismatch. It clearly shows that the optical anisotropy
of QDs depends on the strain due to the lattice mismatch
between the QDs and spacer layers.

The observed anisotropic signals in our measurements
can not be explained only by the hh excitons because
linear combinations of doubly degenerated hh exciton states
exhibit identical magnitudes of dipole moment. To explain
the anisotropic signals obtained from highly strained QDs,
the valence band mixing between the hh and lh bands should
be taken into account.9,15–17 In a quantum-confined structure,
the energy of lh excitons is considerably higher than that of hh
excitons due to the quantum confinement effect. Therefore, the
lowest exciton level is constructed as hh-like excitons, which
are the hh excitons partly mixed with lh excitons due to the
strain. Because the dipole moment of lh excitons is smaller
than that of hh excitons in the XY plane, the mixing causes
optical anisotropy. Furthermore, the hh-like exciton states are
characterized by the crystal symmetry along the X and Y

directions due to the anisotropic confinement potential induced
by the strain. These states show the fine-structure splitting due
to the long-range electron-hole exchange interaction in QDs.

C. Theoretical treatment of exciton states in strained QDs

The valence band mixing between hh and lh bands is taken
into account for the calculation of the exciton states in strained
QDs. The mixing is expressed by the Bir-Pikus Hamiltonian.23

The contribution of the split-off bands is negligible because
the split-off bands are sufficiently separated from the hh and lh
bands due to the spin-orbit interaction. We use the notation of
hh± for the hh exciton with J h

Z = ± 3
2 and lh± for the lh exciton

with J h
Z = ± 1

2 , where J h
Z denotes the Z component of the total

angular momentum of the hole, which is denoted as Jh. In

consequence of the valence band mixing, the exciton states
are reconstructed as combinations of hh± and lh± excitons.
As derived in Appendix A, the mixing of exciton states in the
strained condition is expressed by the following Hamiltonian:

Hexciton =

⎛
⎜⎜⎜⎝

0 H I 0

H ∗ h̄�hl 0 I

I ∗ 0 h̄�hl −H

0 I ∗ −H ∗ 0

⎞
⎟⎟⎟⎠ (1)

in the basis of (hh+, lh+, lh−, hh−) excitons. The energy
difference between hh and lh excitons is denoted by h̄�hl. The
mixing between hh and lh excitons is caused by the presence
of the off-diagonal elements H and I , which represent the
interactions that change the total angular momentum J h

Z by
±1 and ±2, respectively. These off-diagonal elements are
determined as H = d(εZX − iεYZ) and I = (

√
3b/2)(εXX −

εYY ) − idεXY with the strain tensor εij (i,j = X, Y , and
Z), where the coefficients b and d are defined as the shear
deformation potentials in the growth plane. The strain H

disappears in the highly symmetric growth plane, such as
the (001) plane, due to one of the symmetries of the (001)
plane: εZX = εYZ = 0. In contrast, the symmetry of the (311)
plane does not exclude the strain H . The strains H and I

are restricted by H ∗ = −H and I ∗ = I obtained from the
symmetry of the (311) plane (see Appendix A).

By diagonalizing the Hamiltonian in Eq. (1), the lowest-
energy exciton states in QDs are determined as the hh-like
excitons, in which the lh exciton components are partly
involved due to the strain. The degenerate hh-like excitons are
split into X and Y excitons due to the long-range electron-hole
exchange interaction. This slight energy splitting is measured
from the long-period quantum beat, i.e., the fine-structure beat,
with D-polarized excitation as shown in Fig. 2(a). As derived
in Appendix B, the dipole moments of the X and Y excitons
are given by

μgX = 1

A−

{
I ′ − H ′ + 1√

3

(√
1 + S2 − 1

)}
, (2)

μgY = 1

A−

{
I ′ + H ′ − 1√

3

(√
1 + S2 − 1

)}
(3)

with

A− =
√

2
(

1 + S2 −
√

1 + S2
)
, (4)

where μgX and μgY denote the dimensionless dipole moments
of the X and Y excitons, respectively. The dimensionless strain
parameters are defined as S2 = |H ′|2 + I ′2, H ′ = 2H/h̄�hl,
and I ′ = 2I/h̄�hl. The magnitudes of the dipole moments
depend on the strain parameters H ′ and I ′. The anisotropic
signals shown in Fig. 5 are realized by the strains under
the conditions I ′ < 0 and |H ′| < |I ′|, which lead to |μgX| <

|μgY |. This result shows that the strong anisotropy is mainly
caused by the mixing of lh+ (lh−) exciton with hh− (hh+)
exciton owing to the strain I . The anisotropic FWM signals are
determined by tuning these strain parameters, which directly
indicate the difference in the dipole moments.

In order to analyze the strain parameters more accurately,
the biexciton contribution should be taken into account in
the FWM signal. The energy structure of excitons in strained
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FIG. 6. Energy structure of exciton states in strained QDs. The
transitions of exciton states and biexciton state are selected by the X

and Y polarizations, which are denoted by EX and EY . The thickness
of the arrows indicates the strength of the transition.

QDs is shown in Fig. 6. The energy of the Y exciton state is
higher than that of the X exciton state by the fine-structure
splitting because the period of the exciton-biexciton beat with
Y -polarized excitation is smaller than that with X-polarized
excitation.4,20 The fine-structure splitting h̄�XY and the biex-
citon binding energy h̄�B depend on the strain. The strain
dependence of these values is measured from the fine-structure
beat and the exciton-biexciton beat as shown in Figs. 3(a) and
4(b). The optical transitions depend on the polarization of
the excitation pulses. In Fig. 6, the transition matrix elements
are denoted by the light-matter interactions μE, which are
the products of the dipole moment and excitation pulse,
with the X-polarized (Y -polarized) electric field EX (EY ).
The thick arrows indicate the strong transitions reflecting the
optical anisotropy: |μgX| < |μgY |. The biexciton transitions
also depend on the X- and Y -polarized excitations as well as
the transitions of the X and Y excitons. The dipole moments of
the biexciton transitions are given by μXB = CμgX and μYB =
CμgY using the coefficient C because the beat amplitude is
independent of X- and Y -polarized excitations as shown in
Fig. 2(b). The coefficient C indicates the relative strength of
the biexciton transition, and it was often set to a value close to
1 in previous investigations.24–27

The strain H plays a significant role in the exciton-biexciton
beat. We measured the FWM intensity for cocircularly polar-
ized excitation, which is denoted as R-polarized excitation.
The exciton-biexciton beats with R- and D-polarized exci-
tations are shown in Figs. 7(a) and 7(b). The suppression
of biexciton excitation for cocircularly polarized excitation
has been investigated in QDs grown on the (001) plane.4,20

However, the exciton-biexciton beat is clearly observed with
R-polarized excitation in our samples. The beat amplitude
for R-polarized excitation completely coincides with that for
D-polarized excitation as shown in Figs. 7(a) and 7(b). The
same results are obtained for all samples. These amplitudes
are determined by the magnitude of biexciton excitation,
which are proportional to |μ2

Xg − μ2
Yg| and |μ2

Xg + μ2
Yg| for R-

and D-polarized excitations, respectively (see Appendix D).
If the strain H is equal to zero, |μ2

Xg − μ2
Yg| is one order

of magnitude smaller than |μ2
Xg + μ2

Yg| because the dipole
moments μgX and μgY become real values as determined by
Eqs. (2) and (3). Due to the destructive interference between
the biexciton transition from the X exciton and that from the Y

exciton, the biexciton excitation is suppressed by R-polarized

FIG. 7. Four-wave mixing intensity for sample S3 at a delay time
of 0 to 6 ps with (a) R- and (b) D-polarized excitations.

excitation in the highly symmetric sample with H = 0, which
is the case in QDs grown on the (001) plane. In contrast, the
strain H remains in our samples grown on the (311) plane.
The result that the exciton-biexciton beats with both R- and
D-polarized excitations shows an identical contrast gives us
the following equation:∣∣μ2

Xg − μ2
Yg

∣∣ = ∣∣μ2
Xg + μ2

Yg

∣∣, (5)

which is realized owing to the presence of the purely imaginary
strain H . This equation indicates the constraint between the
strain parameters H ′ and I ′, i.e., H ′ is determined by I ′ through
this equation as derived in Appendix D. The exciton-biexciton
beat with R-polarized excitation enables us to analyze the
characteristic feature of the strain H in strained QDs, which
causes the partial mixing of lh+ (lh−) exciton with hh+ (hh−)
exciton.

Theoretical FWM signals are treated for the four-level
system shown in Fig. 6, while considering the fine-structure
beat and the exciton-biexciton beat with the polarization
selection rules for the X exciton, Y exciton, and biexciton. As
derived in Appendix C, the angular dependence of the FWM
intensity for linearly polarized excitation at a short delay time,
e.g., at τ = 0.5 ps, is given by

I (τ,θ ) ∝ |μgX|8 cos2 θ

∣∣∣∣2
(

cos2 θ + AXY

|μgY |2
|μgX|2 sin2 θ

)

−CBei�Bτ

(
cos2 θ + μ2

Yg

μ2
Xg

sin2 θ

)∣∣∣∣
2

+ |μgY |8 sin2 θ

∣∣∣∣2
(

AXY

|μgX|2
|μgY |2 cos2 θ + sin2 θ

)

−CBei�Bτ

(
μ2

Xg

μ2
Yg

cos2 θ + sin2 θ

)∣∣∣∣
2

, (6)

where the phase factors of the exciton-biexciton beat
ei(�B±�XY )τ are replaced with the factor ei�Bτ because the
contribution of �XY is negligible compared to that of �B

at a delay time of 0.5 ps. The angle θ is measured from the
X direction. The magnitude of inhomogeneous broadening of
the fine-structure splitting is expressed as AXY , and that of
the biexciton binding energy is included in the beat amplitude
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FIG. 8. (Color online) Calculated results for angular dependence
of normalized four-wave mixing intensity at a delay time of 0.5 ps.
The angle of linear polarization of the excitation pulse is measured
from the X direction.

CB, which also includes the contribution of the coefficient C,
as derived in Appendix C. The amplitude CB and the angular
frequency �B are determined by the measurements of the
exciton-biexciton beats with X- and Y -polarized excitations,
as shown in Figs. 4(b) and 4(d). The dipole moments of the
X and Y excitons are determined by the strain parameters H ′
and I ′ with Eqs. (2) and (3).

D. Calculated results for angular dependence of four-wave
mixing intensity

The experimental data shown in Fig. 5 are fitted by Eq. (6)
with the constraint of Eq. (5). The anisotropic FWM intensity
is well reproduced by the calculation based on the valence
band mixing due to the strain, as shown in Fig. 8. In the
calculation, the only two variable parameters are H ′ (or I ′) and
AXY in Eq. (6). The other parameters are accurately obtained
from the measurements of the exciton-biexciton beats. The
calculated FWM intensity shows a maximum at Y polarization
and a minimum at X polarization. The signal between these
polarizations monotonically increases from the X direction to
the Y direction at a delay time of 0.5 ps because of the in-phase
signal in the fine-structure beat for D-polarized excitation. At
long delay times, e.g., for τ > 100 ps, the angular dependence
shows a minimum at the direction tilted by 30◦ from the X

direction as observed in a previous study.28 This minimum
is located at the crossover point of the signal from the X

exciton with the dependence of cos6 θ and the signal from the Y

exciton with the dependence of sin6 θ because the constructive
interference due to the fine-structure beat disappears for long
delay times (see Appendix C).

The variable parameters are obtained as shown in
Figs. 9(a)–9(c). In the calculation, H ′ and I ′ are determined
as purely imaginary and negative real values, respectively.
The magnitudes of the strain parameters |H ′| and |I ′| increase
with increasing lattice mismatch. This result provides evidence
regarding the crucial role of spacer layers in the valence
band mixing due to the strain. The exciton-biexciton beats
are not suppressed by R-polarized excitation for all samples
because the strain parameter H ′ changes depending on the

FIG. 9. Strain dependence of strain parameters (a) |H ′| and
(b) |I ′|, (c) magnitude of inhomogeneously broadened fine-structure
splitting AXY , and (d) dipole moments of X and Y excitons. The
magnitudes of the dipole moments are normalized by the value |μgY |
of sample S1.

strain parameter I ′. The suppression of the exciton-biexciton
beat due to the reduction of the strain I is canceled by the
reduction of the strain H . The strain parameter I ′ is more
than twice as strong as the strain parameter H ′. It shows
that optical anisotropy is mainly caused by the mixing of
hh+ (hh−) and lh− (lh+) excitons due to the strain I . These
hh+ (hh−) and lh− (lh+) excitons are strongly mixed with
each other because both states have the up (down) spin of
the hole. The magnitude of inhomogeneous broadening of
the fine-structure splitting AXY is nearly equal to 1.0 as
shown in Fig. 9(c). The suppression of the beat amplitude
AXY is caused by the presence of charged excitons because
charged excitons do not show the fine-structure splitting.20

Charged excitons contribute to the partial suppression of the
beat amplitude CB in the exciton-biexciton beat. Because
excitons and charged excitons are excited in different QDs,
beating phenomena between these states do not occur in
the FWM measurements due to the strong inhomogeneous
broadening of the resonant energies. The obtained value of
AXY in Fig. 9(c) indicates that almost all QDs contribute to
the fine-structure beat, and only a small number of charged
excitons are excited. From the slight decrease in Fig. 9(c), it
is found that the contribution of charged excitons to the FWM
signals is increased slightly. This result corresponds to the
change in the beat amplitude CXY for D-polarized excitation
as shown in Fig. 3(c), although CXY includes the influence of
the difference between the FWM intensities of the X and Y

excitons. By substituting the obtained strain parameters into
Eqs. (2) and (3), the dipole moments of the X and Y excitons
are obtained as shown in Fig. 9(d), where the magnitudes of the
dipole moments are normalized by the value |μgY | of sample
S1. The magnitude of μgX slightly decreases with increasing
lattice mismatch. In contrast, the magnitude of μgY shows an
increasing dependence. The separation between these values is
enhanced with increasing lattice mismatch because the valence
band mixing between the hh and lh bands becomes stronger
with increasing strain, which causes the optical anisotropy.
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IV. CONCLUSION

We have investigated the strain dependence of excitons in
self-assembled InAs quantum dots (QDs) grown on the (311)
plane. The strain in the highly stacked QDs is controlled
by tuning the lattice constant of the spacer layers. In the
four-wave mixing (FWM) measurements, the fine-structure
beat and the exciton-biexciton beat have been observed. These
quantum beats reveal the energy structure of excitons in
the strained QDs, and the energy structure is characterized
by the X- and Y -polarized exciton states along the [011̄]
and [2̄33] directions, respectively. The period of the fine-
structure beat becomes shorter with increasing the lattice
mismatch between the QDs and spacer layers. This result
shows that the fine-structure splitting is increased by the strain,
which deforms the QD confinement potential. The biexciton
binding energy does not show a clear dependence on the
strain. For the angular-dependent measurements of linearly
polarized excitation, we have observed anisotropy in the FWM
intensity. This anisotropy clearly indicates the difference in the
magnitudes of the dipole moments for the orthogonal X- and
Y -polarized exciton states. Furthermore, the optical anisotropy
between these states becomes stronger with increasing strain.

In order to understand the strain dependence of the dipole
moments for excitons, we have calculated the valence band
mixing between heavy-hole (hh) and light-hole (lh) bands.
The hh and lh excitons are mixed due to the strains H and I ,
which change the Z component of the total angular momentum
of the hole by ±1 and ±2, respectively. The anisotropic
angular dependence is well reproduced by our calculation.
The obtained strain parameters coincide with the increasing of
the strain induced by the lattice mismatch. The difference in
the dipole moments for X- and Y -polarized excitons is mainly
caused by the strain I , which causes the mixing of the exciton
states with the difference of ±2 in the angular momentum. The
strain H , which causes the mixing of the exciton states with the
difference of ±1 in the angular momentum, plays a significant
role in the biexciton excitation for cocircularly polarized exci-
tation. In the symmetry of the (311) plane, the presence of the
strain H enables the observation of the exciton-biexciton beat
with cocircularly polarized excitation. This phenomenon is a
characteristic feature of QDs grown on the (311) plane because
the biexciton excitation is suppressed in more symmetric
samples, such as QDs grown on the (001) plane.

These studies on the anisotropic optical properties explicitly
show that the control of the anisotropic exciton states in QDs
can be achieved by tuning the lattice constant of the spacer
layers. The strain in highly stacked QDs is conserved as the
homogeneous strain due to the spacer layers, which allows us
to homogenize the collective optical properties.
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APPENDIX A: EXCITON STATES IN STRAINED
QUANTUM DOTS

1. Valence band mixing due to strain

For the theoretical treatment of exciton wave functions in
quantum dots (QDs), we assume that the wave functions are
expressed as linear combinations of electron and hole wave
functions, and that the envelope functions vary slowly.29 In
this paper, the envelope functions of electrons and holes are
omitted because the strain mainly affects not the envelope
functions but the orbital functions. The heavy-hole (hh) and
light-hole (lh) wave functions are expressed as

|hh+〉 = − 1√
2

(PX + iPY ) ⇑ , (A1)

|lh+〉 = − 1√
6

(PX + iPY ) ⇓ +
√

2√
3
PZ ⇑ , (A2)

|lh−〉 = 1√
6

(PX − iPY ) ⇑ +
√

2√
3
PZ ⇓ , (A3)

|hh−〉 = 1√
2

(PX − iPY ) ⇓ , (A4)

where Pj (j = X, Y , and Z) denotes the orbital function along
the j direction, and it is defined as PX = (−1/

√
2)(Y 1

1 − Y−1
1 ),

PY = (i/
√

2)(Y 1
1 + Y−1

1 ), and PZ = Y 0
1 with the spherical

harmonics Ym
l (l = 1,m = ±1,0). The up (down) spin of the

hole is denoted as ⇑ (⇓). The valence band mixing due to
strain is expressed by the Bir-Pikus Hamiltonian as follows:

Hhole =

⎛
⎜⎜⎜⎝

F H I 0

H ∗ G 0 I

I ∗ 0 G −H

0 I ∗ −H ∗ F

⎞
⎟⎟⎟⎠ (A5)

in (hh+, lh+, lh−, hh−) basis.23 The matrix elements are given
by

F = −avε − b

2
(ε − 3εZZ), (A6)

G = −avε + b

2
(ε − 3εZZ), (A7)

H = d(εZX − iεYZ), (A8)

I =
√

3b

2
(εXX − εYY ) − idεXY , (A9)

where the coefficients av, b, and d are defined as the deforma-
tion potentials in the growth plane. The matrix elements are
determined by the strain tensor εij (i,j = X, Y , and Z) and
ε = εXX + εYY + εZZ .

Taking into account the optical selection rules of excitons,
the |hh+〉 (|hh−〉) state and |lh−〉 (|lh+〉) state are coupled to
the down (up) spin state of the electron as electron-hole pairs,
i.e., excitons. The excitons in QDs are also influenced by the
quantum confinement effect. The strain Hamiltonian for hh
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and lh excitons is expressed as

Hexciton =

⎛
⎜⎜⎜⎝

0 H I 0

H ∗ h̄�hl 0 I

I ∗ 0 h̄�hl −H

0 I ∗ −H ∗ 0

⎞
⎟⎟⎟⎠ (A10)

in the basis of (hh+, lh+, lh−, hh−) excitons. The energy of lh
excitons is separated from that of hh excitons by the energy
difference h̄�hl due to the confinement. The off-diagonal
elements due to the strain are determined by the crystal
symmetry of the growth plane. In the symmetry of the (311)
plane, i.e., εXY = εZX = 0, the strain parameters are rewritten
as

H = −idεYZ, (A11)

I =
√

3b

2
(εXX − εYY ). (A12)

These equations lead to the conditions H ∗ = −H and I ∗ = I .
By diagonalizing the Hamiltonian in Eq. (A10), the

eigenstates are determined as hh-like and lh-like exciton
states. Using the dimensionless strain parameters defined
as S2 = |H ′|2 + I ′2, H ′ = 2H/h̄�hl, and I ′ = 2I/h̄�hl, the
eigenenergies of hh-like excitons and lh-like excitons are ob-
tained to be h̄�hl(1 − √

1 + S2)/2 and h̄�hl(1 + √
1 + S2)/2,

respectively. The hh-like exciton states are given by

∣∣ψh1

〉 = 1

A−

⎛
⎜⎜⎜⎝

H ′

1 − √
1 + S2

0

I ′

⎞
⎟⎟⎟⎠, (A13)

∣∣ψh2

〉 = 1

A−

⎛
⎜⎜⎜⎝

I ′

0

1 − √
1 + S2

H ′

⎞
⎟⎟⎟⎠, (A14)

and the lh-like exciton states are given by

∣∣ψl1

〉 = 1

A+

⎛
⎜⎜⎜⎝

H ′

1 + √
1 + S2

0

I ′

⎞
⎟⎟⎟⎠, (A15)

∣∣ψl2

〉 = 1

A+

⎛
⎜⎜⎜⎝

I ′

0

1 + √
1 + S2

H ′

⎞
⎟⎟⎟⎠. (A16)

Here, the normalization constant A± is defined as

A± =
√

2
(

1 + S2 ±
√

1 + S2
)
. (A17)

We assume that the contribution of lh-like excitons to optical
response is negligible because the quantum confinement effect
along the Z direction is sufficiently strong in QDs. The hh-like
excitons are generated as the lowest-energy exciton states in
QDs by optical excitation.

2. Long-range electron-hole exchange interaction

In anisotropic QDs, these degenerate hh-like excitons are
split into nondegenerate states characterized by the anisotropy
of the QD confinement potential. The energy splitting between
these states is determined by the long-range electron-hole
exchange interaction in QDs. In our samples, these states are
characterized by X- and Y -polarized excitations, which are
polarized along the [011̄] and [2̄33] directions, respectively.
The energy difference between X- and Y -polarized states
h̄�XY is quite small compared to the strain interactions,
i.e., the mixing energies, between hh and lh excitons. The
slight splitting h̄�XY has been observed as a long-period
quantum beat, i.e., the fine-structure beat, in our studies. The
nondegenerate X- and Y -polarized excitons are expressed as
linear combinations of hh-like excitons. The X and Y excitons
are obtained as follows:

|ψX〉 = −1√
2

(∣∣ψh2

〉 − ∣∣ψh1

〉)
, (A18)

|ψY 〉 = i√
2

(∣∣ψh2

〉 + ∣∣ψh1

〉)
. (A19)

APPENDIX B: DIPOLE MOMENTS OF EXCITON STATES
AND BIEXCITON STATE

Using Eqs. (A1)–(A4), the dipole moments of hh and lh
excitons are given by the following (X, Y , Z) components:

〈g| p|hh+〉 =

⎛
⎜⎝

−1/
√

2

−i/
√

2

0

⎞
⎟⎠, 〈g| p|hh−〉 =

⎛
⎜⎝

1/
√

2

−i/
√

2

0

⎞
⎟⎠, (B1)

〈g| p|lh+〉 =

⎛
⎜⎝

−1/
√

6

−i/
√

6

0

⎞
⎟⎠, 〈g| p|lh−〉 =

⎛
⎜⎝

1/
√

6

−i/
√

6

0

⎞
⎟⎠, (B2)

where p denotes the electron momentum operator; |g〉 denotes
the ground state.29 The wave functions of the electron are
omitted because their contributions are eventually included in
the normalization constant. Using these dipole moments, the
dimensionless dipole moments of the X and Y excitons are
obtained as

μgX = 〈g| p|ψX〉 = μgX

⎛
⎜⎝

1

0

0

⎞
⎟⎠, (B3)

μgY = 〈g| p|ψY 〉 = μgY

⎛
⎜⎝

0

1

0

⎞
⎟⎠ (B4)

with

μgX = 1

A−

{
I ′ − H ′ + 1√

3

(√
1 + S2 − 1

)}
, (B5)

μgY = 1

A−

{
I ′ + H ′ − 1√

3

(√
1 + S2 − 1

)}
. (B6)

The complex conjugate of the dipole moment is denoted by
μXg (μYg), i.e., μXg = μ∗

gX (μYg = μ∗
gY ).
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The biexciton transitions from the X and Y exciton states
depend on the X- and Y -polarized excitations as shown in
Fig. 6. The dipole moments of the biexciton transitions are
given by

μXB = CμgX, μYB = CμgY , (B7)

where the coefficient C indicates the relative strength of the
biexciton transition. It has been previously shown that the
probability of the biexciton transition is nearly equal to that of
the exciton transition.24–27

APPENDIX C: FOUR-WAVE MIXING INTENSITY FOR
COLLINEARLY POLARIZED EXCITATION

The four-wave mixing (FWM) intensity is calculated by
solving the optical Bloch equations up to the third order of the
excitation field for a four-level system.24,27,30,31 The excitons in
QDs are modeled by four levels including the ground state, X

exciton, Y exciton, and biexciton as shown in Fig. 6. The first
and second excitation pulses with a delay time of τ are assumed
to be delta-function pulses. The inhomogeneous broadening
of the exciton resonant energy is considerably larger than the
spectral linewidth of excitation pulses as shown in Fig. 1(c).
The excitons contributing to the FWM signal are determined
by the linewidth of the excitation pulse. Therefore, the photon
echo signal also exhibits the shape of a delta function at twice
the delay time. The strong inhomogeneous broadening causes
the exciton-biexciton beat for positive delay times.27 The
FWM intensity for collinearly polarized excitation depends
on the polarization angle of the linearly polarized pulses in the
XY plane. Using the polarization angle θ measured from the X

direction, the linearly polarized excitation pulse is expressed
as

E(θ ) =

⎛
⎜⎝

cos θ

sin θ

0

⎞
⎟⎠. (C1)

The polarization selection rules are determined by the tran-
sition matrix elements μgj · E(θ ) for j = X,Y . The FWM
intensity I (τ,θ ) is obtained as follows:

I (τ,θ ) ∝ |μgX|8 cos2 θ

∣∣∣∣2
(

cos2 θ + fX(τ )
|μgY |2
|μgX|2 sin2 θ

)

−hX(τ )

(
cos2 θ + μ2

Yg

μ2
Xg

sin2 θ

)∣∣∣∣
2

e−(4/T2X)τ

+ |μgY |8 sin2 θ

∣∣∣∣2
(

fY (τ )
|μgX|2
|μgY |2 cos2 θ + sin2 θ

)

−hY (τ )

(
μ2

Xg

μ2
Yg

cos2 θ + sin2 θ

)∣∣∣∣
2

e−(4/T2Y )τ (C2)

with

fX(τ ) = AXY ei�XY τ e−(σ 2
XY /4)τ 2

, (C3)

fY (τ ) = AXY e−i�XY τ e−(σ 2
XY /4)τ 2

, (C4)

hX(τ ) = ABC2ei(�B−�XY )τ e−(σ 2
B/4)τ 2

, (C5)

hY (τ ) = ABC2ei(�B+�XY )τ e−(σ 2
B/4)τ 2

, (C6)

where the first and second terms correspond to the X- and
Y -polarized signals, respectively. The fine-structure beat is
expressed by the phase factor e±i�XY τ . The inhomogeneous
broadening of the fine-structure splitting should be taken
into account because the fine-structure splittings of QDs
differ from each other due to the difference in the QD
confinement potential. The inhomogeneous broadening is
assumed to be a Gaussian distribution given by gXY (ω) =
(AXY /

√
πσXY )e−(ω−�XY )2/σ 2

XY with a magnitude AXY , a central
value h̄�XY , and a linewidth h̄σXY . The linewidth contributes
to the damping factor e−(σ 2

XY /4)τ 2
. For the exciton-biexciton

beat, the inhomogeneous broadening of the biexciton binding
energy should also be taken into account. This broadening,
as well as that of the fine-structure splitting, is assumed to
be a Gaussian distribution: gB(ω) = (AB/

√
πσB)e−(ω−�B)2/σ 2

B .
The exciton-biexciton beat is expressed by the phase factor
ei(�B±�XY )τ and the damping factor e−(σ 2

B/4)τ 2
. The dephasing

times for the X and Y excitons are denoted by T2X and
T2Y , respectively. We use the experimental result |1/T2Y −
1/T2X|τ � (σ 2

XY /4)τ 2 for simplicity. The biexciton dephasing
times for the transitions to the X and Y excitons are assumed
to be the same values as T2X and T2Y , respectively. Even if
the dephasing times of the biexciton are different from those
of the excitons, the difference between the dephasing times
is sufficiently negligible because the damping factor e−(σ 2

B/4)τ 2

becomes reduced much faster than the difference.
For a short delay time (�XY τ,σXY τ,σBτ � 1), the FWM

signal exhibits constructive interference of the fine-structure
beat between the X and Y excitons. The influence of dephasing
is negligible because the dephasing times are considerably
longer than the time ranges of the quantum beats. The FWM
signal is rewritten as follows:

I (τ,θ ) ∝ |μgX|8 cos2 θ

∣∣∣∣2
(

cos2 θ + AXY

|μgY |2
|μgX|2 sin2 θ

)

−CBei�Bτ

(
cos2 θ + μ2

Yg

μ2
Xg

sin2 θ

)∣∣∣∣
2

+ |μgY |8 sin2 θ

∣∣∣∣2
(

AXY

|μgX|2
|μgY |2 cos2 θ + sin2 θ

)

−CBei�Bτ

(
μ2

Xg

μ2
Yg

cos2 θ + sin2 θ

)∣∣∣∣
2

, (C7)

where the beat amplitude CB corresponds to ABC2. This
equation is used for analyzing the anisotropic FWM intensity
at a delay time of 0.5 ps.

For a long delay time (1 � σXY τ,σBτ ), the fine-structure
beat and the exciton-biexciton beat disappear. The FWM
intensity is rewritten as follows:

I (τ,θ ) ∝ |μgX|8 cos6 θe−(4/T2X)τ + |μgY |8 sin6 θe−(4/T2Y )τ .

(C8)

We measured the angular dependence at a delay time of 150
ps, and the dependence shows four minima at θ = 30◦, 150◦,
210◦, and 330◦ because the signals from the X and Y excitons
show the angular dependence of cos6 θ and that of sin6 θ ,
respectively. If the amplitude of the signal from the X exciton
coincides with that of the signal from the Y exciton, the minima
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are observed at θ = 45◦, 135◦, 225◦, and 315◦. However, the
observed QDs show anisotropic intensities for the X and Y

excitons, which causes a shift of the minima.

APPENDIX D: RELATION BETWEEN STRAIN
PARAMETERS

The relation between the strains H and I is determined
by the exciton-biexciton beats observed with cocircularly and
collinearly polarized excitations. The right-circularly polar-
ized pulse and linearly polarized pulse with θ = 45◦, which
are denoted as R- and D-polarized pulses, are expressed as

ER =

⎛
⎜⎝

−1/
√

2

−i/
√

2

0

⎞
⎟⎠, ED =

⎛
⎜⎝

1/
√

2

1/
√

2

0

⎞
⎟⎠, (D1)

respectively. For j -polarized excitation (j = R,D), the exci-
tation probability of biexciton is expressed as |(μBX · Ej )(μXg ·
Ej ) + (μBY · Ej )(μYg · Ej )|2. In our experiment, the FWM

signals exhibit the equally strong exciton-biexciton beats for
both R- and D-polarized excitations as shown in Figs. 7(a)
and 7(b). This result shows that the biexciton excitation
does not change for these polarized excitations. Using the
expression of R- and D-polarized excitations in Eq. (D1), this
result is expressed as follows:∣∣μ2

Xg − μ2
Yg

∣∣2 = ∣∣μ2
Xg + μ2

Yg

∣∣2
, (D2)

where we use Eq. (B7) for the dipole moments of the
biexciton. The left- and right-hand sides correspond to the
excitation probabilities of biexcitons for R- and D-polarized
excitations, respectively. By substituting Eqs. (B5) and (B6)
into this equation, the relation between the strain parameters is
obtained as{
I ′2 − |H ′|2 − 1

3

(√
1 + S2 − 1

)2
}2

− 4I ′2|H ′|2 = 0, (D3)

where S2 = |H ′|2 + I ′2. The strain parameters |H ′| and I ′
are determined with satisfying this equation.
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