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Optical recombination of biexcitons in semiconductors
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We calculate the photoluminescence spectrum and lifetime of a biexciton in a semiconductor using Fermi’s
golden rule. Our biexciton wave function is obtained using a quantum Monte Carlo calculation. For a
recombination process where one of the excitons within the biexciton annihilates, we find that the surviving
exciton is most likely to populate the ground state. We also investigate how the confinement of excitons in a
quantum dot would modify the lifetime in the limit of a large quantum dot where confinement principally affects
the center of mass wave function. The lifetimes we obtain are in reasonable agreement with experimental values.
Our calculation can be used as a benchmark for comparison with approximate methods.
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I. INTRODUCTION

Information about many-body systems of electrons and
holes is primarily obtained through their luminescence. While
good calculations on the ground states of these systems have
been performed for a variety of electron and hole densities,
good estimates of luminescence require the inclusion of
final excited states, for which calculations are difficult. Thus
it is important to quantify how excited final states affect
luminescence. In this paper, we solve essentially exactly the
problem of decay of the simplest correlated system, namely,
the biexciton.

Luminescence of these biexcitons, which are bound states
of excitons (electron-hole pairs), is potentially relevant for
studying luminescence from semiconductor lasers. While
semiconductor lasers correspond to the dense limit of the
electron-hole phase diagram, where the electrons and holes
ionize into a plasma,1 it is well known that the inclusion
of correlation effects with the surrounding electrons and
holes is necessary for a good estimate of semiconductor
luminescence.2–4 Moreover, a variational Monte Carlo study
of the electron-hole phase diagram has revealed a surprisingly
large excitonic insulator phase, which extends well into these
high densities.5 Thus luminescence from excitonic states also
contributes to light emission in the plasma. However, it is
not a priori obvious whether emission from an independent
exciton can adequately describe emission from a plasmonic
state where interaction effects are crucial. This question of
interaction can be addressed by considering the biexciton
as the most complicated correlated state that can still be
treated exactly. Since the detailed form of the bound-state
wave function can significantly affect the overlap with final
states, it is important to go beyond the use of simple analytical
variational wave functions for the biexciton. Instead, we use
a biexcitonic wave function obtained from a quantum Monte
Carlo calculation. Thus our results can be used as a benchmark
for larger and more complicated systems that currently still
require approximate methods.

The concrete aim of this work is twofold: we primarily
want to calculate the emission spectrum of the biexciton, using
an essentially numerically exact biexciton wave function. We

then want to find out how well the lifetime we calculate from
this spectrum compares to experimental and other theoretical
lifetimes.

For the calculation of the lifetime, we focus on radiative
recombination involving the emission of a photon. This
process could potentially excite the surviving exciton into an
excited state. In order to obtain both the emission spectrum
and the lifetime, we follow the procedure by Elliott6 and
use Fermi’s golden rule, which requires the calculation of
matrix elements between these exciton excited state and the
full biexciton wave function. The wave functions and matrix
elements are clearly different for different mass ratios. Hence
we consider different mass ratios where the hole mass mh

is equal to or much greater than the electron mass me for the
spectra and several intermediate mass ratios for the calculation
of the lifetime.

It has been shown in previous calculations7 that the
inclusion of the accurate semiconductor eigenstates, i.e.,
polariton states, is important for an accurate estimate of the
biexciton lifetime. The importance of polariton effects for the
biexciton decay comes from the fact that since most binding
energies of excitonic molecules εm are much smaller than the
polariton splitting parameter �c, the dispersion of the final
states after the decay process is strongly modified compared
to the dispersion of the free exciton and photon states. Hence
we estimate lifetime including polariton effects; in doing
this, we use insights from our calculation in the absence of
polariton effects in order to simplify the calculation in presence
of polaritons. We present a general formula of the typical
nonradiative biexciton lifetime in the semiconductor, which
should, in principle, work for materials where the polariton
effect is weak.

To the extent that our Monte Carlo biexciton wave function
is a good wave function, the remainder of our calculation
is essentially exact for system where the polariton effect is
negligible. We expect that shape of our emission spectra,
calculated without polariton effects, will not be affected dras-
tically even for materials where the effect is important. Thus
our calculation can be used as a comparator for approximate
methods, which could, however, reach nonzero densities.
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While our spectra are for 3D bulk only, we extend
our lifetime calculation to a 3D quantum dot, since more
experimental data is available there. We compare our lifetime
estimates for a range of materials to experimental and other
theoretical estimates. A similar procedure for the calculation
of lifetimes as presented in this paper may also be applied to
quantum well systems.

In this paper, we calculate the simplest optical recombina-
tion process. The question of whether this is in fact responsible
for the exciton lifetime is however more complicated as many
other mechanisms can play a role. In semiconductor bulk sys-
tems, these mechanisms, for example, include recombination
involving impurities, or traps,8 or Auger recombination.9–15

We discuss some of these later; however, as our lifetimes
compare reasonably with experimental values it seems that
radiative recombination is the main channel for biexciton
annihilation.

The paper is organized as follows: Sec. II discusses photo-
luminescence from biexcitons in a semiconductor, and Sec. III
discusses their lifetime. In Sec. II A we introduce the approach
used to determine the biexciton wave functions and how to
calculate photoluminescence spectrum, which we present and
discuss in Sec. II B. Section III A presents the calculation of
the biexcitonic lifetime with polariton effects and optionally,
confinement and Sec. III B compares biexciton lifetimes for
five semiconducting systems to experimental and some other
theoretical values, and discusses their trends with electron/hole
mass ratio and confinement. We conclude in Sec. IV.

II. PHOTOLUMINESCENCE

A. Methods

In this section, we present the calculation of luminescence
from the biexciton. We first discuss the methodology of
this calculation, starting from the light-matter interaction
Hamiltonian, and the form of the biexcitonic wave function,
before quoting the general formulas for the relative transition
rates into different excited excitonic states. We then present
the results and discuss our obtained emission spectra.

The light-matter interaction in second quantization is given
by

H ′ = γ

∫
dr

∑
σ ′=±

∑
ke,kh∈BZ

e

m0
A0

× a
†
ke+kh,σ ′c

†
−kh,σ

cke,−(σ−σ ′)pcv, (1)

where pcv is the momentum matrix element for a transition of
an electron with charge e and mass m0 between the valence and
the conduction band and A0 = √

h̄/(2εωkV ) is the standard
vector potential field strength. This expression contains ωk as
the frequency of the emitted photon, the dielectric constant
of the material ε, and a unit of box quantisation volume V ,
which cancels in the latter part of the calculation. The operators
c
†
kh/e,σ

create holes and electrons with momentum kh and ke

and with spin quantum number σ = ± 3
2 , 1

2 , respectively. a
†
k,σ

creates a photon with polarization σ ′ = ±1. pcv is the optical
or momentum matrix element between valence and conduction
band. The factor γ in equation (1) accounts for the overlap
of electron and hole spin states;16 if spin-orbit coupling is

neglected, then this becomes simply a factor of two.17 We use
the values from Ref. 18.

The luminescence is determined by decay from all possible
bound states in the semiconductors into other bound states
through the emission of a photon. The rate of generating a
photon per unit photon energy corresponds to the expectation
value of the number of photons after a time t :

W (h̄ω) =
∑
k,σ

〈a†
k,σ (t)ak,σ (t)〉

t
δ[h̄ω − E(h̄ω,σ )], (2)

where ω is the frequency corresponding the the emitted
photon with wave vector k, and E(h̄ω,σ ) is the dispersion
of the photon in the medium. In this article, we consider
luminescence from a biexciton in its ground state as a first
approximation to understand luminescence from bound states
in semiconductors; the result will hopefully allow us to
estimate to what extent bound states will need to be considered,
or whether the consideration of individual excitons suffices.

In order to obtain a more explicit equation for the lumi-
nescence than Eq. (2), we, first of all, need to discuss the
wave function of our biexcitonic ground state with respect
to which the expectation value of Eq. (2) is calculated.
Previous calculations of luminescence from biexcitons have
used estimates or simplified versions for the biexciton wave
function;7 in contrast, the biexciton wave function 	BE we use
is of the form

	BE(R) = exp[J (R)]	S(R), (3)

where J (R) is a Jastrow factor of the Drummond-Towler-
Needs form19 containing only two-particle correlations, and

	S(R) = φ1(r13)φ1(r24)φ2(r14)φ2(r23)

+φ2(r13)φ2(r24)φ1(r14)φ1(r23),

where rij is the distance between particles i and j , with
electrons being particles 1 and 2, and holes being particles
3 and 4. The pairing orbitals φn(r) are of the form

φn(r) = exp

[ −r2

p1,n(p2,n + r)
+ �p2,nr

p2,n + r

]
, (4)

where p1,n and p2,n are optimizable parameters and � is a
constant such that the Kato cusp conditions20 at electron-hole
coalescence points is reproduced by 	S ; electron-electron and
hole-hole cusps are introduced via the Jastrow factor.

Given a trial wave function 	, assumed to be real for
simplicity, the variational Monte Carlo (VMC) method is
capable of evaluating the variational estimate E	 of the
ground-state energy E0,

E	 =
∫

	(R)Ĥ (R)	(R)dR∫ |	(R)|2dR
� E0, (5)

by evaluating the local energy,

EL(R) = Ĥ (R)	(R)

	(R)
, (6)

at a set of M configurations {Ri} distributed according to the
square of the trial wave function |	(R)|2, and evaluating the
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TABLE I. VMC energies and variances of the local energy for
different hole-to-electron mass ratios.

mh/me EV σ 2
V

1837.36222 −1.1502(4) 0.131(1)
183.73622 −1.1335(2) 0.01831(5)
18.37362 −1.0338(1) 0.01587(5)
1.83736 −0.66725(8) 0.00511(2)

average

E	 ≈ EV = 1

M

M∑
i=1

EL(Ri) , (7)

where the “approximately equal” sign refers to the statistical
error due to the finite size of the sample. In addition, the VMC
method optimizes the parameters in the trial wave function by
means of minimizing EV with respect to the parameters, using
techniques such as the modified linear least-squares method
developed by Umrigar.21

The above trial wave function is then optimized within
VMC for different mass ratios using the CASINO code.22 The
VMC energies are presented in Table I, where we also report
the variance of the local energies σ 2

V, which is an additional
measure of the quality of a wave function. The variational
energies obtained at all mass ratios contain a large fraction of
the exact binding energy, indicating an accurate description
of these systems. A comparison of VMC wave functions with
both experimental and theoretical values was performed in
Ref. 23 for quantum well structures.

Using the biexcitonic wave function calculation with VMC
as our ground state, we can now transform Eq. (2) into Fermi’s
golden rule for the transition rate W (h̄ω) per energy range
of a particular photon.24 Fermi’s golden rule corresponds to
a perturbative treatment of the interaction25 and has already
been used by Elliot6 for a calculation of exciton luminescence.
The transition rate per energy range requires a sum over all
final states of both exciton and photon,

W (h̄ω) = 2π

h̄

∑
k,K,{ni }

|〈	E,{ni},K|H ′|	BE〉|2

× δ(εi − εf (k,{ni}) − h̄ω)δ(h̄ω − h̄c|k|). (8)

As final exciton momenta K are constrained by momentum
conservation, the corresponding sum disappears, and the
momentum of the surviving exciton is −k. The final excitonic
state with wave function 	E,{ni},K is labeled by the center of
mass K and the various eigenstates of the exciton {ni}, which
are standard hydrogenic solutions. The quantum numbers {ni}
correspond to n, l, and m for the bound and k, l, and m

for the continuum states. As the biexciton is in its ground
state, we obtain from angular momentum conservation that
l = m = 0 for the surviving exciton. εi is the ground-state
biexciton energy, and εf (k,n) the energy of the final state.

We now insert H ′ from Eq. (1) into Eq. (8) and notice
that it is necessary to perform several real space integrals in
order to simplify the matrix element. After a separation of
center of mass and relative coordinates, the relative exciton
wave function φE,n can be expressed in terms of a single

coordinate r1 = re1 − rh1, where re1 and rh1 refer to the
coordinates of electron and hole of the surviving exciton.
The relative biexciton wave function φBE depends on this
coordinate r1, and the coordinates of the second electron
and hole, re2 and rh2. In our relative coordinate system,
these are represented by a vector to their center of mass,
r2 = [re1 + rh1 − (re2 + rh2)]/2, and a relative coordinate
r3 = re2 − rh2. The application of the dipole approximation,
pop ≈ 0 requires the annihilating electron and hole to be at the
same point in space. Thus this relative coordinate is zero, and
so φBE has the functional dependence φBE(r1,r2,0). For the
bulk system, the center of mass coordinates can be integrated
over analytically. We then obtain a formula for the transition
rates R into the bound states n,

Rn = p2
cve

2

m2
0

√
ε

2ε0π

ωn

h̄c3

× 2

[ ∫
dr1dr2φE,n(r1)∗φBE(r1,r2,0)f (r1,r2)

]2

, (9)

where we have introduced the function f (r1,r2) to model
confinement in a quantum dot. We will discuss this function in
Sec. III; for bulk, f (r1,r2) = 1. The additional factor of 2 in
Eq. (9) comes from the fact that both excitons in the biexciton
can recombine.

The frequency ωn in Eq. (9) is the frequency associated with
a specific transition. We neglect its momentum dependence:
the frequencies that contribute most to the emission spectrum
will be close to the gap energy Eg and hence we approximate
ωn → Eg/h̄ from here onwards. Our results confirm later that
this treatment is indeed adequate. Thus the rate Rn(n) in Eq. (9)
is a function of quantum number n only.

Since Rn is the transition rate into a particular bound state,
Rn and W (h̄ω) are related by

W (h̄ω) =
∑

n

Rnδ(h̄ω − h̄ωn) + Wcontinuum(h̄ω), (10)

where Wcontinuum(h̄ω) describes emission into continuum
states. Wcontinuum(h̄ω) can be obtained analagously to Eq. (9),
with the only difference that the sum over discrete quantum
numbers n in Eq. (8) becomes an integral over the continuum
states and the continuum exciton eigenfunctions are confluent
hypergeometric functions.

B. Results

The emission spectra from bulk for the two limiting
mass ratios, mh = 1837me (corresponding to hydrogen), and
me = mh are shown in Fig. 1. As we have not included
broadening, the δ-function peaks for transitions into the
bound states are indicated by arrows, and labeled with the
corresponding δ-function coefficient. Figure 1 shows clearly
that the transition into the ground state dominates. The spectra
for the intermediate mass ratios show a similar behaviour.

Individual overlap integrals for all different mass ratios are
shown in Table II, which also contains the results obtained
from Eq. (12). The discrepancy between the results from
the individual overlaps (“total”) and from Eq. (12) is a
rough estimate of the numerical errors of the calculation. The
agreement of these values shows that the results for the ground
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FIG. 1. Bulk emission spectra (overlap element as shown in
Table II vs the energy difference of the surviving exciton with respect
to its ground state, εf ) for the two limiting mass ratios. The emitted
photon energy corresponds to h̄ω = Eg − B2X − 1 Ry + ε for
mh 
 me and h̄ω = Eg − B2X − 0.5 Ry + ε for mh = me, where
B2X is the biexciton binding and a single exciton has energy
Eg − 1 Ry and Eg − 0.5 Ry for these two mass ratios, respectively.
Note that the peaks from the discrete bound states are δ functions
and hence represented by arrows, labeled by their intensity. While it
is clear that the continuous part of the spectrum decays to zero for
large energies E, there is a possibility for a small but finite overlap for
intermediate E. The number labeling the continuum is its integrated
weight.

state are numerically stable. Further errors associated with the
results are due to the approximate shape and the parameters
involved in the wave function. A different variational form
for hydrogen gave bound state transition rates within 10%
and continuum transition rates within about 30% of those
in Table II. While one can tell that the overlaps with the
higher excited states decrease with n, the actual individual
numbers depend very sensitively on detailed properties of the
numerically determined wave function and hence should not
be interpreted too closely.

The general shape of the continuous part of our emission
spectrum should nevertheless be correct. The shape is notably
different to the shape of the single exciton absorption spectrum
calculated by Elliott.6 This single-exciton absorption spectrum
should correspond to a single exciton emission spectrum,
provided the single exciton emission is possible: a single
exciton in free space cannot recombine due to momentum con-
servation, but recombination is possible when impurities are
present and momentum conservation is relaxed. Nevertheless,
the continuum part of the single exciton and biexciton emission
spectra are different. Similar to single exciton absorption, the
biexciton continuum has a finite onset, but falls off rapidly
with E, while the exciton absorption continuum line increases
square-root-like for large energies. We expect the general trend
of our spectrum to be correct, although we note that our

TABLE II. Dimensionless overlap elements, 2
∫

dr1dr2

φE,n(r1)∗φBE(r1,r2,0), of excitonic bound (quantum number n) and
continuum states with the biexciton wave function for various mass
ratios. The mass ratios (mh:me) correspond to decreasing the mh

from 1837me (in hydrogen) by factors of 10. Individual elements
are converged to approximately 0.5% accuracy. An estimate of the
absolute accuracy including the uncertainty of the wave function
cannot be given, but we tentatively estimate 10% accuracy from
comparisons with a different variational form. “Total” indicates
the sum over the calculated bound and continuum states, and the
result from Eq. (12) is shown in the last row. We note that for n � 2
the values drastically decrease compared to n = 1 (base change as
shown in the first column); however, these higher n matrix elements
depend very sensitively on the form of the wave function.

mh 1837 183.7 18.3 1.8 1.0

n = 1 9.1 20.4 79.6 427.0 441.1
n = 2 (10−3) 6.6 8.0 0.1 305.2 161.5
n = 3 (10−3) 1.0 1.0 0.4 18.3 34.8
n = 4 (10−3) 0.3 0.3 0.2 4.8 13.9
n = 5 (10−3) 0.2 0.1 0.1 4.1 6.8
bound total 9.1 20.4 79.6 427.3 441.3
continuum (10−2) 0.3 0.4 1.0 5.4 7.3
total 9.1 20.4 79.6 427.3 441.4
Equation (12) 9.1 20.4 79.6 427.4 441.5

continuum curve at energies of order E ≈ 1 Ry is numerically
sensitive to details of the Monte Carlo wave function. In this
energy range, we sometimes obtain a small but finite overlap,
which is due to the numerical integration being very sensitive
to the variational form of the wave function in this energy
range.

The continuum emission decreases with E due to the
decreasing wave function overlap of the initial state with
the higher energy exciton state after photon emission. The
fast decrease of the continuum emission in Fig. 1 is espe-
cially notable for equal masses. Such a biexciton involving
particles with equal masses is more loosely bound than
one with a heavier hole. Loosely bound excitons have a
smaller binding energy and thus less energy is available
from the recombination. As the binding energy decreases,
the recoil momentum of the surviving exciton, K = −pop,
decreases towards zero, where recombination is prohibited by
momentum conservation. The weaker falloff of the continuum
curve for the tighter bound biexciton suggests that nonradiative
processes, where the surviving exciton absorbs all the energy
available from the annihilation, are more likely for heavier
holes. When nonradiative decay is the main recombination
mechanism, exciton lifetimes are dependent on charge carrier
density or temperature.9,11

The most notable feature of our calculation is the pre-
dominance of the 1s peak. This predominance implies that
the surviving exciton is not affected by the recombination
of the other-electron hole pair, even though we initially
assume a strongly interacting bound state. Our model thus
justifies treating excitons as noninteracting for the purpose of
optical recombination. However, we speculate that interactions
become more important if higher excited initial states are
present.
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The line shapes in emission spectra from biexcitons are
often broadened due to scattering with phonons.26,27 This
broadening smears out the different peaks from a variety of
possible final states, and hence no direct comparison with our
spectra is possible. Similar problems prevent measurements of
lifetimes in bulk.28 In addition, higher excited initial biexciton
states may be present. However, our tentative spectra for bulk
can be used as a reference point for other systems.

III. LIFETIMES

We now turn to the calculation of the biexcitonic lifetimes.
We first discuss how to include polariton effects and present a
general formula for the biexcitonic lifetime before turning to
a brief discussion of lifetimes for a confined quantum dot. The
results are also divided into a section on bulk and quantum dot
systems. We compare to experimental and theoretical values
in each of these sections.

A. Methods

The overall rate for biexciton decay, which corresponds to
the inverse biexcitonic lifetime, is made up from the individual
transition rates in Eq. (10),

1

T
=

∫
d(h̄ω)W (h̄ω)

=
∑

n

Rn +
∫

d(h̄ω)Wcontinuum(h̄ω). (11)

We note that the sum over excitonic states in Eq. (11)
is complete and hence can be understood as a resolution
of identity, and thus total biexciton decay rate can also be
expressed in terms of the biexciton wave function only,

1

T
= p2

cve
2

m2
0

√
ε

2ε0π

Eg

h̄2c3

× 2
∫

dr′
2dr1dr2φBE(r1,r2,0)φBE(r1,r′

2,0). (12)

This expression should provide a check for the numerical errors
associated with the integral.

The photon generation rate in Eq. (2) does not yet include
the polaritonic eigenstates. We mention earlier that these are
important for nearly all semiconductors, since the biexciton
binding energy εm � �c (the polariton splitting parameter) in
almost all materials. The exact calculation of lifetime from
a semiconductor would thus require the rate of polariton
generation per unit energy:

W (h̄ω) = 1

2

∑
k,s,σ

〈ξ †
k,s,σ (t)ξk,s,σ (t)〉

t

× δ(h̄ω − Epolariton(k,s,σ )), (13)

where ξ
†
k,s,σ (t) creates a polariton with momentum k and spin

σ in state s and Epolariton is the corresponding dispersion.
The factor of one-half avoids double counting, since in the
biexciton decay two polaritons are generated.29 In general,
the photon can be reabsorbed to form another biexciton and
reemitted in many cycles. This would require a self-consistent
treatment such as performed in Ref. 7, which we expect to

be important for materials with large �c/εm. As we saw
previously that the decay rate is dominated by the decay rate
into the 1s exciton, we assume that the created polariton is a
superposition of a 1s exciton and a photon and do not consider
excited exciton states. We also use the resonant approximation
for the polaritonic eigenstates, which we expect to cause an
error of no more than 15%. With these approximations, our
expression for the inverse lifetime becomes

1

T
= γ

2
× |〈	E,{ni},K|	BE〉|2

{
2(E0 − 2Eg)2

+
[
E0(−E0 + 2Eg) + �2

c

]2
�2

c

2(E0 − 2Eg)2
[
(E0 − 2Eg)2 + �2

c

]
}

× p2
cve

2

m2
0

√
ε3

πεε0Eg/h̄

1

(h̄c)3
. (14)

Because lifetimes are longer and hence more extensively
studied for confined systems, we wish to study the effect of
confinement on the recombinative lifetime, and we consider a
3D quantum dot system. We assume a spherical quantum dot
of radius d, where the photon wavelength λ 
 d 
 aE,aB ,
where aE and aB are relevant exciton and biexciton length
scales. The exciton length scale aE is the distance between the
electron and hole in the surviving exciton, and the biexciton
length scale aB is the distance between the centres of mass of
the two excitons in the biexciton. Such a dot is large enough
to only affect the centre of mass, but not the relative wave
function. The center of mass wave functions can then be
expressed in terms of spherical Bessel functions, and we obtain
the constraint that the center of mass wave function of the
surviving exciton must also be in the ground state. Again, we
use the 1s exciton-polariton wave function; the corresponding
lifetime is R(n = 1) in Eq. (9). The effect of confinement is
reflected in the function f (r1,r2) in Eq. (9), where

f (r1,r2) = 4d

π

sin
(

π
d

|r2|
2

)
|r2| .

B. Results

We have calculated lifetime estimates for a number of
materials, and compare these to experimental and other
theoretical lifetime estimates in this section. The parameters
required for the calculations of these lifetimes for CuCl, GaAs,
ZnSe, and InGaAs are given in Table III, and Table IV contains
quantum dot values for those parameters that differ between
bulk and quantum dot systems. Since the calculated lifetimes
depend quite sensitively on the correct parameter and there is
some variation of parameters in the literature, this comparison
is quite difficult. One example is, e.g., the InGaAs mass
ratio, where different groups use bulk or quantum well or
interpolated quantum well mass ratios, or the experimental
GaAs lifetime. Here, we quote an experimental value for GaAs
bulk lifetime of 1.8 ns in Table V merely for completeness,
since we expect the real lifetime to be around 10–100 ps.30 This
estimate is based on the fact that the bulk biexciton lifetime
should be smaller than the lifetime in confined system like
quantum dots or quantum wells, where the biexciton binding
energy is higher.31 For quantum wells, the biexcitonic lifetime
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TABLE III. Semiconductor parameters with references. εm is the biexciton binding energy.

Constant GaAs ZnSe CuCl In0.6Ga0.4 As

εm (meV) 0.13a, 0.45b, 0.7± 0.2c 3.5d 32e, 34f, 42g, 42h 2i

Eg 1.5j 2.8k 3.2f 0.7k

ε 13.1j 8.1k 5.6f, 5.0l 14.3m, 14.03n

mh/m0 0.5j 1.7k 1.8e, 2.0l 0.46o

me/m0 0.067j 0.017k 0.5e,l 0.04n, 0.05p, 0.067q,r

�c (meV) 15.6f 100k 191f 7
Ep

s 25.7j 29.56t 2.3 21.7n

aReference 44.
bReference 45.
cReference 36.
dReference 46.
eReference 47.
fReference 7.
gReference 48.
hReference 49.
iReference 42.
jReference 24.
kReference 50.
lReference 51.
mReference 52.
nReference 53.
oReference 54.
pReference 55.
qReference 43.
rFrom bulk values, but inclusion of strain effects in Hamiltonian.
sEp and �c are related via the formula �c = 2

√
γ
√

2πpcvh̄/(m0
√

4πεω0h̄
√

πa3
E) and thus one can be derived from the other. The value of

Ep in InGaAs was generated by this formula; note that the �c of 100 μeV measured by Ref. 56 is for a quantum dot in a nanocavity and thus
not immediately applicable. For all other materials, Ep is taken from the quoted source.
tReference 57.

is expected to be around half the excitonic lifetime,32,33 which
in Ref. 33 is quoted to be of order 200 ps, while Ref. 34 contains
an estimate of 10 ps for the excitonic lifetime and Ivanov et al.7

quote lifetimes of order of magnitude 1–10 ps. There exists
nevertheless a higher lifetime estimate of 1 ns35 for quantum
dots; however, Ref. 34 cites potential impurities as a reason
for lifetimes of this order of magnitude in quantum wells.

TABLE IV. Quantum parameters with references. εm is the
biexciton binding energy.

Constant CuCl In0.6Ga0.4 As

εm (meV) 50a (3 nm), 51b, 60c (3 nm) 2d

mh/m0 1.8a,e 0.125f,g, 0.2h, 0.46a, 0.5i,j

aReference 58.
bReference 49.
cReference 59.
dReference 42.
eFrom bulk.
fReference 60.
gFrom interpolation between InAs and GaAs masses, using quantum
well masses from Refs. 61 and 62.
hReference 55.
iReference 43.
jFrom bulk values, but inclusion of strain effects in Hamiltonian.

Thus the variety in experimental values makes the comparison
sometimes somewhat difficult.

1. Bulk

We now discuss polariton lifetimes for bulk materials
and the variation of the lifetime with mass ratio. Without
including polariton effects, the lifetime for CuCl according

TABLE V. Lifetime estimates for several semiconducting mate-
rials and experimental values for comparison. τtheor corresponds to
other theoretical calculations of biexciton lifetimes that are discussed
in the text. We expect the correct lifetime for GaAs to be of order
10–100 ps (see main text for discussion).

Bulk Quantum dot

GaAs ZnSe CuCl CuCl In0.6Ga0.4 As

τ (ps) 0.5–2.7 0.4–2.0 8.8–47.3 47.4–66.9 5.5–12.8
τexp (ps) 1800a 40b 18–27c 65d 500e

τtheor (ps) . . . . . . 24f . . . 500g

aReference 36.
bReference 37.
cReferences 38 and 39.
dReference 40.
eReference 41.
fReference 7.
gReferences 42 and 43.
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FIG. 2. (a) Biexciton lifetimes (in nanoseconds) in 3D bulk,
calculated with approximate values for a CuCl semiconductor, for
different mass ratios as shown in Table II. (b) Biexciton lifetime for
hole masses mh = 1837me and mh = me for different CuCl quantum
dot radii.

to Eq. (14) would be 20 and 100 ps for mass ratios 1.8 and
18, respectively. The experimental lifetimes are between 18
and 24 ps38,39 for a mass ratio mh/me ≈ 5, which shows that
the inclusion of polaritonic states (giving instead lifetimes 9
and 47 ps for the same mass ratios) is indeed crucial. For the
three semiconductors GaAs, ZnSe, and CuCl experimental and
our calculated lifetimes are shown in Table V. We expect our
method to work well for small ratios �c/εm, while for large
�c/εm, a full bipolariton wave function and thus the inclusion
of recursive exciton creation and annihilation processes is
necessary. Additional errors in our estimate are associated
with intrinsic errors of the wave function, the numerical
integration, the uncertainty of the material parameters, the
different geometry of the quantum dot and the fact that
experimentally, the exciton might leak out.

Indeed, our lifetime estimates for CuCl between 9 and
47 ps for mass ratios 1.8 and 18, respectively, agree reasonably
with the experimental value for the intermediate mass ratio of
mh/me ≈ 5. Ivanov et al.7 also obtain excellent agreement
when using the bipolariton wave function, but quote a poor
lifetime estimate when using the giant oscillator model63

(4 ps). The improved wave function and a different weight
in front of the process responsible for creating two lower-state
polaritons in Eq. (14) account for this difference.

For ZnSe and GaAs, the increased ratio �c/εm indicates
that polariton effects should matter more. Indeed, our lifetime
estimates are lower than the experimental values by about
factor of 10.

Figure 2 shows plots of the dependence of the lifetime on
mass ratio, with parameters for CuCl. The decrease of lifetimes
on approaching the equal mass ratio limit in Fig. 2(a) is initially
counterintuitive as electron and hole are much more likely to
be at the same place for annihilation in the more tightly bound
hydrogenic exciton. We find, however, that the probability for
recombination is highest when the two excitons within the
biexciton are far apart. This dependence on the mass ratio can
be explained by the relative importance of the biexciton length
scale aB (the distance between the center of masses of the two
excitons) and the exciton length scale aE (the distance between

electron and hole within an exciton) in the overlap integral in
Eq. (9).64 The reason for the influence of the distance aB on the
recombination rate comes from the overlap integral in Eq. (9):
the single exciton final state is delocalized. The overlap with
the biexciton wave function is thus higher for a biexciton wave
function in which the centres of mass of the excitons are more
delocalized, i.e., where aB is large. The length scale ratio
aB/aE is inversely proportional to the ratio of biexcitonic to
excitonic binding energies, and the latter decreases towards
the equal mass ratio limit for both two- and three-dimensional
systems;65,66 thus, in the equal mass biexciton, the excitons are
loosely bound and are further apart.

2. Quantum dot

We now turn to lifetimes of confined systems, and discuss
both the impact of confinement on the lifetime as well
as some calculated lifetimes for two materials. Figure 2(b)
shows the effect of confinement in a spherical quantum dot
where confinement principally affects the center of mass
wave function. Stronger confinement increases the exciton
localisation and thus the increase of lifetime with confinement
shown in Fig. 2(b) is consistent with the previous argument of
increased annihilation probability for biexcitons made up of a
loosely bound exciton pair.

Unfortunately, experiments are not typically in the regime
where confinement principally affects the center of mass
wave function, and so accurate numerical predictions of the
biexciton lifetimes in these cases require specific calculations
for the particular structures. Such specific calculations have
for example been performed for In0.6Ga0.4As quantum dots.
Using a configuration interaction method, Narvaez et al.42

obtain the exact experimental value of 0.5 ns for a 252 ×
252 × 75 Å In0.6Ga0.4As quantum dot, which agrees well with
the experimental lifetime of 0.5 ns of a dot with height 20 Å
and a square base with length 150–200 Å.41 Wimmer et al.43

perform a Monte Carlo optimization of wave functions in
anisotropic quantum dots for three materials, among them
In0.6Ga0.4As, and obtain excellent lifetime estimates for all
three materials. Since the exciton Bohr radius for this system
is about 200 Å and the wave function is thus strongly affected
by confinement effects, our wave function is a inaccurate
estimate for this system. Additionally, our calculation does
not take into account strain effects and anisotropy of the
hole masses, which are non-negligible effects for InGaAs.
For example, it is well known that these effects have a
large impact on gyromagnetic ratio,67 where realistic k·p
simulations specific to the material provide estimates adequate
to the experimental data.68 Neglecting these effects and
approximating this quantum dot by a spherical quantum dot of
radius 100 Å, we obtain a lifetime estimate of 6–13 ps, which
is clearly inaccurate.

For 3-nm CuCl quantum dots, the quantum dot radius is
larger than the excitonic Bohr radius of 6.8 Å and thus our wave
function should still be viable. Here, we obtain a biexciton
lifetime estimate of 47–67 ps for our two limiting mass ratios,
which is comparable to the experimental value of 65 ps. This
shows that our method is indeed reasonable for the systems
with small polariton effects, and can provide good estimates
of the lifetime.
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IV. CONCLUSIONS

In this paper, we have investigated the lifetime and emission
spectrum of a biexcitonic system in different mass limits.
We employ the approach by Elliott in order to find the
transition rates into excitonic states using Fermi’s golden
rule. We find that in our model, which assumes an initial
biexciton in the ground state, the annihilation of one electron
and hole is most likely to result in an exciton in its ground
state. The predominance of this transition means that the two
excitons that form the excitonic molecule can be treated as
noninteracting for the purpose of optical recombination. Our
estimates of lifetimes for different mass ratios are comparable
to experimental values.

In this calculation, we have assumed a biexciton that was
initially in its ground state. The presence of higher excited
states could lead to a stronger overlap with higher excited final
states, and thus to shorter lifetimes. We have also neglected
the possibility of collision with other particles which could
also lead to shorter lifetimes. We find that the biexciton
lifetime slightly increases in confined quantum dots. Using
an appropriately generated wave function, our method is also
applicable for smaller quantum dots or quantum wells.

Interesting extensions to fully model quantum dots could
include strain effects and for example the impact of the wetting
layer, for which experimental data are also available.69 It would
also be interesting to calculate lifetimes for pumped systems,
where the time scale of the biexciton lifetimes is important
for an accurate estimation of the efficiency of multiexciton
generation.70,71

Our approach can be used as a benchmark for comparing
approximative methods for systems at finites densities. We
also hope that the relative simplicity of the biexciton emission
spectrum as found here may imply that the development of
further experimental and theoretical understanding of emission
from the dense electron-hole plasma is within reach.
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