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Spin-liquid versus spiral-order phases in the anisotropic triangular lattice
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We study the competition between magnetic and spin-liquid phases in the Hubbard model on the anisotropic
triangular lattice, which is described by two hopping parameters t and t ′ in different spatial directions and is
relevant for layered organic charge-transfer salts. By using a variational approach that includes spiral magnetic
order, we provide solid evidence that a spin-liquid phase is stabilized in the strongly correlated regime and close to
the isotropic limit t ′/t = 1. Otherwise, a magnetically ordered spiral state is found, connecting the (collinear) Néel
and the (coplanar) 120◦ phases. The pitch vector of the spiral phase obtained from the unrestricted Hartree-Fock
approximation is substantially renormalized in the presence of electronic correlations, and the Néel phase is
stabilized in a wide regime of the phase diagram, i.e., for t ′/t < 0.75. We discuss these results in the context of
organic charge-transfer salts.
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I. INTRODUCTION

The combined presence of strong electron interaction and
geometrical frustration leads to a plethora of interesting
phenomena, like superconductivity, metal-insulator (Mott)
transition, or purely quantum paramagnets, the so-called
spin liquids. In this context, the organic charge-transfer salts
κ-(ET)2X1 play an important role.2–4 A large variety of phases
have been found when changing temperature, pressure, or
the nature of the anion X, ranging from correlated metals
with superconductivity at low temperatures to insulators with
magnetic order.5–8 Even more interestingly, a metal-insulator
transition to a pure nonmagnetic Mott insulating state has
been detected for the compound with X = Cu2(CN)3.9,10

Recently, another family of organic materials, denoted by
EtnMe4−nPn[Pd(dmit)2]2,11 has been shown to display dif-
ferent quantum phases, including valence-bond solid and
spin-liquid states.12,13 From a quantum chemical perspective,
the simplest possible effective Hamiltonian for the organic
charge-transfer salts is the Hubbard model (after an appropriate
particle-hole transformation) on the anisotropic triangular
lattice at half filling. Indeed, in these materials, strongly
dimerized organic molecules are arranged in stacked two-
dimensional triangular lattices; each dimer has (on the average)
a charge state with one hole, implying a half-filled conducting
band. In addition, a sizable effective Coulomb repulsion is
felt by two holes on the same dimer, while longer range
correlations are much smaller.14,15

The Hubbard model is defined by

H = −
∑

i,j,σ

tij c
†
i,σ cj,σ + h.c. + U

∑

i

ni,↑ni,↓, (1)

where c
†
i,σ (ci,σ ) creates (destroys) an electron with spin σ on

site i, ni,σ = c
†
i,σ ci,σ is the electronic density, tij is the hopping

amplitude, and U is the onsite Coulomb repulsion. In this work,
we focus our attention on the half-filled case, where the number
of electrons Ne equals the number of sites L, and consider
a square lattice with a nearest-neighbor hopping t , along
(1,0) and (0,1) directions, and a further next-nearest-neighbor

hopping t ′ along (1,1); this choice of the hopping amplitudes
is topologically equivalent to the anisotropic triangular lattice;
see Fig. 1. According to recent density functional theory
calculations,14–17 the ratio t ′/t appropriate for organic salts
lies in the range [0.3,1.3], with the spin-liquid compound
κ-(ET)2Cu2(CN)3 located at t ′/t � 0.83.

A major issue in the Hubbard model on the anisotropic
triangular lattice is the possibility of stabilizing a spin-
liquid phase, compatible with the experimental data. From
one side, several approaches have proposed the existence
of a spin-liquid region for t ′/t < 1, based on path-integral
renormalization group (PIRG),18 dynamical mean-field theory
(DMFT),19 exact diagonalization,20 and variational Monte
Carlo (VMC).21 In addition, several studies suggested a
possible spin-liquid phase even for the isotropic case t ′/t = 1,
close to the metal-insulator transition.22–25 From the other
side, for generic values of the ratio t ′/t , magnetic states
with incommensurate order may be expected and indeed have
been proposed by different mean-field approaches, like, for
instance, within the Hartree-Fock (HF) approximation26–28

or the renormalized mean-field method.29 However, due to
the difficulty of constructing correlated magnetic states with
generic ordering vectors, none of the previous studies was
able to perform a fair comparison between spin-liquid and
spiral states. In this respect, some progress to deal with
incommensurate magnetism in the Heisenberg model has been
done by means of analytic approximations30–32 or density-
matrix renormalization group (DMRG) calculations,33 even
if here the long-range nature of the magnetic correlations
is not addressed. Instead, incommensurate correlations in
the Hubbard model have been only marginally addressed by
Cluster-DMFT.34

In order to go beyond the previous studies, we approach
this problem by implementing correlated variational wave
functions, which describe magnetic states with generic incom-
mensurate order. This can be achieved by starting from the
spiral states obtained at the HF level and including, in a second
step, many body correlations. In this way, we are able to treat
incommensurate spiral order and nonmagnetic states on the
same level and determine which state is stabilized for a given
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FIG. 1. (Color online) Illustration of the anisotropic triangular
lattice in the square topology (left), used in this work, and in the
equivalent triangular topology (right). Solid and dashed lines denote
hopping amplitudes t and t ′, respectively.

value of frustration t ′/t and Coulomb repulsion U . Variational
approaches may contain, as a matter of principle, a bias toward
ordered states. However, we showed previously21,35 that very
accurate results are obtained in a wide regime of the parameters
when using, as in the present work, generalized Gutzwiller
wave functions with long-range Jastrow correlations and
backflow corrections.

Here, we confirm that a spin-liquid phase is favored for
t ′/t � 0.85, while magnetic spiral order becomes competitive
close to the isotropic point, i.e., for t ′/t � 0.95, and for
t ′/t � 0.75–0.8. In addition, we explicitly study the effect of
correlations on a mean-field state showing how the energy and
the pitch vector of the spiral state are modified when electronic
correlations are taken into account by the VMC method.

II. UNRESTRICTED HARTREE-FOCK

The unrestricted HF state is obtained by performing a mean-
field decoupling of Eq. (1):

HHF = −
∑

i,j,σ

tij c
†
i,σ cj,σ + h.c.

+U
∑

i

[〈ni,↓〉ni,↑ + 〈ni,↑〉ni,↓]

−U
∑

i

[〈c†i,↑ci,↓〉c†i,↓ci,↑ + 〈c†i,↓ci,↑〉c†i,↑ci,↓]

−U
∑

i

[〈ni,↑〉〈ni,↓〉 − 〈c†i,↑ci,↓〉〈c†i,↓ci,↑〉], (2)

which contains 4L independent mean-field parameters to
be computed self-consistently: 〈ni,↑〉, 〈ni,↓〉, 〈c†i,↑ci,↓〉, and

〈c†i,↓ci,↑〉 for each site. Here, we slightly restrict the variational
freedom and impose the spin order to be coplanar in the x-y
plane, namely, we look for solutions with 〈ni,↑〉 = 〈ni,↓〉, thus
reducing the number of independent parameters to 3L. The
mean-field Hamiltonian Eq. (2) can be diagonalized and the
ground state |SP〉 can be computed by filling the lowest-energy
single-particle orbitals.

Here, we are interested in describing the nature of the
insulating state, which is stabilized for sufficiently large
onsite interactions. In this regime, the optimal HF solutions
display a spiral magnetic order, which, for t ′/t � 1, may be
parametrized through a single pitch angle θ ∈ [2π/3,π ]. In-
deed, nearest-neighbor spins, along (1,0) and (0,1) directions,
form an angle θ , while next-nearest-neighbor spins, along the
(1,1) direction, form an angle 2θ ; a pitch angle of θ = π

corresponds to Néel order, suitable for t ′ = 0, and θ = 2π/3

to the 120◦ order, suitable for t ′ = t . On finite-size clusters with
periodic-boundary conditions, only the set of commensurate
pitch angles is accessible; for L = l × l, the allowed values
are θ = 2πn/l, with n being an integer.

III. VARIATIONAL MONTE CARLO

Within the VMC approach, we construct magnetic states
with spiral order by applying correlation terms on top of spiral
states. Since the optimal pitch angle in the presence of electron
correlations may differ from the one obtained at the HF level,
several different values of θ are considered in the VMC
calculations. We employ a spin-spin Jastrow factor to correctly
describe fluctuations orthogonal to the plane where the mag-
netic order lies, i.e., Js = exp[1/2

∑
i,j ui,j S

z
i S

z
j ].36 A further

density-density Jastrow factor Jc = exp[1/2
∑

i,j vi,j ninj ]
(that includes the on-site Gutzwiller term vi,i) is considered
to adjust electron correlations. All the ui,j ’s and the vi,j ’s
are optimized for every independent distance |i − j |. The
correlated state is then given by |�SP〉 = JsJc|SP〉.

In order to describe a nonmagnetic insulator, we con-
struct, in a first step, an uncorrelated wave function given
by the ground state |BCS〉 of a superconducting BCS
Hamiltonian:37–40

HBCS =
∑

k,σ

ξkc
†
k,σ ck,σ +

∑

k

�kc
†
k,↑c

†
−k,↓ + h.c., (3)

where both the free-band dispersion ξk and the pairing ampli-
tudes �k are variational functions. We use the parametrization

ξk = −2t̃(cos kx + cos ky) − 2t̃ ′ cos(kx + ky) − μ, (4)

�k = 2�BCS(cos kx − cos ky), (5)

where the effective hopping amplitude t̃ ′, the effective chem-
ical potential μ, and the pairing field �BCS are variational
parameters to be optimized. The d-wave symmetry of the
pairing function introduced in Eq. (5) is found to be the best
variational state in all the range t ′/t � 1. The correlated state
|�BCS〉 = Jc|BCS〉 allows us then to describe a nonmagnetic
Mott insulator for a sufficiently singular Jastrow factor vq ∼
1/q2 (vq being the Fourier transform of vi,j ).41

A size-consistent and efficient way to further improve
the correlated states |�BCS〉 and |�SP〉 is based on backflow
correlations. In this approach, each orbital that defines the
unprojected states |BCS〉 and |SP〉 is taken to depend upon
the many-body configuration, in order to incorporate virtual
hopping processes.35 All results presented here are obtained
by fully incorporating the backflow corrections and optimizing
individually every variational parameter in ξk and �k , in
the Jastrow factors Jc and Js , as well as in the backflow
corrections.

Finally, we want to mention that the d-wave symmetry of
the pairing function, introduced in Eq. (5), is in agreement with
previous VMC studies42,43 carried out using variational wave
functions not containing long-range Jastrow and backflow
correlations.
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FIG. 2. (Color online) HF (left) and VMC (right) energies of the
spiral state, for U/t = 16, as a function of the pitch angle θ (in unit
of π ), for t ′/t = 0.85 (top), 0.9 (middle), and 0.95 (bottom). Cluster
of sizes l × l have been used, with l = 12, 14, 16, 18, 20.

IV. EVOLUTION OF THE PITCH ANGLE

In Fig. 2, the energy per site of the spiral state is presented
as a function of the pitch angle θ , for different values of the
frustrating hoppings t ′/t and U/t = 16, both for the HF and
the VMC calculations. We mention that the pitch angle is
only weakly dependent on U/t in the insulating region. For
finite lattices the set of allowed pitch angles is determined by
commensurability; we therefore include in Fig. 2 results for
several cluster sizes. The overall behavior of the energy per
site versus θ is smooth, indicating that size effects are under
control. In the region of 0.8 � t ′/t � 0.9, a very shallow
energy landscape is observed in VMC, while, for larger
values of the frustrating hopping, the minimum is much more
pronounced.

We find that Jastrow and backflow terms influence the
periodicity of the spiral order and that the inclusion of the
correlation factors induce a sizable gain in the energy per site,
strongly improving the quality of the variational state. In Fig. 3,
we present the evolution of the energy and of the pitch angle θ

of the optimal spiral state as a function of t ′/t , for U/t = 16.
In the intermediate range of frustration, 0.75 � t ′/t � 0.9,
the explicit treatment of electronic correlations (within the
VMC level) renormalizes the angle of the HF optimal spiral
state and values much closer to π are stabilized. As a result,
correlation effects stabilize the Néel phase (i.e., θ = π ) in
a wider regime, e.g., for t ′/t < 0.75. Close to the isotropic
point, i.e., for t ′/t � 1.0, the optimal pitch angle shifts rapidly
toward 2π/3.

V. SPIRAL VERSUS SPIN-LIQUID STATE

Let us now move to the main result of the present work
and compare the optimal spiral and spin-liquid states. We
find that for t ′/t = 0.85 and U/t = 16, which are suitable
parameters for κ-(ET)2Cu2(CN)3, the lowest variational en-
ergy is achieved by a magnetically disordered state; see
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FIG. 3. (Color online) Upper panel: HF (red circles) and VMC
(blue squares) energies of the optimal spiral state as a function of t ′/t

for U/t = 16. Lower panel: the pitch angle θ (in unit of π ) of the
optimal spiral state as a function of t ′/t for U/t = 16. The dotted
horizontal line corresponds to θ = 2π/3, suitable for the isotropic
point t ′/t = 1. The error bars in the VMC calculations are due to the
finite-size limitations in the accessible pitch angles.

Fig. 4. The results are only weakly dependent on the cluster
size. On the other hand, for a larger value of the frustrating
hopping, i.e., t ′/t = 0.95, a spiral state with angle θ/π � 0.7
is favored over the spin liquid. In this case, although slightly
larger size effects are present for the spiral state, the trend is
clear.

In Fig. 5, we present the VMC energies (in unit of
J = 4t2/U ) for the optimal spiral and spin-liquid states as
a function of U/t and different values of t ′/t . We find that
there is a critical U/t above which the spin-liquid state is
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FIG. 4. (Color online) Upper panel: VMC energy of the optimal
spiral (blue squares) and spin-liquid (black diamonds) states as a
function of the inverse system size 1/L, with L ranging from 10 × 10
to 20 × 20. Data refer to the case t ′/t = 0.85 and U/t = 16. Lower
panel: the same as in the upper panel but for t ′/t = 0.95.
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function of t/U for the HF approximation (red circles), the optimal
spiral state in VMC (blue squares), and the spin-liquid state (black
diamonds) for t ′/t = 0.8 (top), 0.9 (middle), and 0.95 (bottom).

energetically favored, while for smaller values of U/t the
magnetically ordered state is stabilized. The simple HF energy
of the spiral state is also reported for comparison; however,
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FIG. 6. (Color online) Schematic phase diagram of the Hubbard
model on the anisotropic triangular lattice, as obtained by VMC: metal
(blue), insulator with magnetic Néel order (red), insulator with spiral
magnetic order (gradient red-yellow-green), and spin liquid (cyan).
The 120◦ ordered state with θ = 2π/3 (vertical green line) is stable
only for t ′/t = 1. The spiral state illustrated with the red-yellow
gradient has a pitch angle θ ranging from π to 0.9π . The border
between the spin-liquid and the magnetic state for t ′/t < 0.8 (dashed
cyan-white line) is only inferred, since pitch angles too close to π

could not be resolved.

the accuracy of the HF state is not sufficient to study the
competition with the spin-liquid state.

VI. PHASE DIAGRAM

In Fig. 6, we present the final phase diagram. We identify
a metallic phase, which is likely not superconductive,21,44

and three insulating phases: a phase with commensurate Néel
order (i.e., θ = π ), a spiral-order phase with 2π/3 < θ < π ,
and a spin-liquid region. Note that the 120◦ order with
θ = 2π/3 is stable only at the isotropic point t ′/t = 1. Within
the region 0.7 � t ′/t � 0.8, the pitch angle is close to π ,
and our numerical calculations applied to finite-size clusters
cannot resolve the actual value of the optimal θ . Our results
indicate that the spin-liquid state is not stable asymptotically
close to the isotropic point, for t ′ → t , at least not for any
finite U/t . We also point out that the spin liquid described
by our variational wave function is gapless at the nodal
points k = (±π/2, ± π/2); see Eq. (5). Finally, we would
like to mention the fact that, within our present approach,
the transition from a spiral state to the spin liquid is always
first order. However, we cannot exclude the existence of a
continuous transition in the exact ground state. In this regard,
it would be possible to determine the nature of the transition by
considering BCS-spiral uncorrelated states |BCS,SP〉, which
are, however, technically extremely demanding and beyond
the scope of the present study.

VII. CONCLUSIONS

By using a state-of-the-art variational approach, we stud-
ied the insulating phase of the half-filled Hubbard model
on anisotropic triangular lattices with t ′/t � 1. Through a
combined HF and VMC approach, we showed that spiral
states, with nontrivial pitch angles, are stable in the strongly
frustrated region. For larger values of interaction, a spin-liquid
phase emerges. These results open two intriguing possibilities.
On one side, the spin-liquid and the spiral phases may be
considered two competing phases. In this case, the transition
would be expected to be of first order. On the other side, the
possibility of a new route toward a nonmagnetic correlated
state emerges, namely the spin liquid may be considered as an
instability emerging from a strongly correlated spiral phase.
In this case, a second-order transition would be expected. To
resolve this question, one would need to consider strongly
correlated combined BCS-spiral states, which are, however,
technically very demanding and left for future studies. Finally,
in the parameter region of relevance for the reported spin-
liquid behavior in organic charge-transfer salts, we also
find the spin-liquid phase to be the most stable. Regarding
spiral order, to our knowledge no experimental evidence
for this phase has been reported for organic charge-transfer
salts. It would be desirable to search for such a state,
especially in the context of new orderings observed in these
materials.45
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