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In this study, we investigate the electronic structure and electron self-energy of palladium single crystals using
polarization-dependent high-resolution angle-resolved photoemission spectroscopy. The observed Fermi surfaces
and energy-band dispersions agree with those given by the band-structure calculation. A detailed comparison
between the observed and theoretical band dispersions of the �1 band forming the electronlike Fermi surface
indicates an electron-electron coupling parameter of λee ∼ 0.02. Near the Fermi level, a kink structure in the
energy-band dispersion exists at ∼−20 meV, in agreement with the Debye energy. The electron-phonon coupling
parameter is estimated to be λep = 0.39 ± 0.05 at 8 K for the �1 band, which is consistent with the theoretical
values of λep = 0.35–0.41. Furthermore, analyses of the self-energy indicate a possible contribution from the
electron-paramagnon interaction in the energy range of −50 ∼ −150 meV. The evaluated electron-paramagnon
coupling parameter is λem ∼ 0.06 for the �1 band. We found that the magnitudes of λep and λem depend on the
Fermi surface points. The total effective mass enhancement factor is estimated to be 1 + λep + λee + λem ∼ 1.5
for the �1 band, which is close to the values m∗/mb ∼ 1.5–1.7 given by the de Haas–van Alphen and electron
specific-heat measurements.

DOI: 10.1103/PhysRevB.87.035140 PACS number(s): 71.18.+y, 71.20.−b, 71.10.Ay, 71.38.Cn

I. INTRODUCTION

Palladium (Pd) has attracted interest because it is widely
used as a catalyst (Ref. 1) and it can store high-density
hydrogen (Ref. 2). Palladium is located below nickel (Ni),
which is ferromagnetic, in the periodic table. Although Pd is
a paramagnetic metal, it tends to be magnetic based on the
Stoner condition because the density of states (DOS) at the
Fermi level (EF ) is high.3 A recent neutron scattering study
reported a clear observation of paramagnons in Pd.4

To understand the physical properties of Pd, it is important
to clarify the electronic states. The occupied electronic states
of Pd have been examined by angle-resolved photoemission
(ARPES) spectroscopy (Refs. 5–9) and unoccupied electronic
states by angle-resolved inverse photoemission spectroscopy
(Ref. 10) and two-photon photoemission spectroscopy
(Ref. 11). The results from ARPES experiments on Pd(111)
and Pd(110) showed good agreement with the calculated band
dispersions, which indicates that electron correlation is not
significant in Pd 4d bands.5,8,9,12 In contrast, the ARPES results
for Ni showed a significant narrowing of the 3d bands com-
pared with the calculated ones due to electron correlation.13

At photon energies near the Pd 4p-4d photoabsorption,
however, one should consider multielectron excitations to
account for the energy distribution curves (EDCs) and the
constant-initial-energy curve.6 Hora and Scheffler performed
elaborate one-step calculations for Pd(111) and showed that
a direct transition model was effective if one took into
account the damping effect in the final states using the
phenomenological optical potential.7

Yagi et al. have reported surface-derived states at −0.3 eV
that deviated from the calculated bulk-derived bands.8 Kang

et al. indicated that there is a non-negligible discrepancy
between the theoretical DOS and the angle-integrated photoe-
mission spectra of polycrystalline Pd film, while experimental
band dispersions of Pd(111) agreed well with the calculated
ones.9 The slab calculation indicated that the DOS near the
surface is narrower than that in the bulk.9 The discrepancy
between the theoretical and experimental DOS should be
attributed primarily to the electronic states derived near the
surface.9

The experimental electronic specific heat (Refs. 14 and 15)
is enhanced compared with the value given by the band-
structure calculation (Ref. 16), which is mainly derived from
the many-body interaction. The electron-phonon coupling
parameter was calculated as λep = 0.35 (Ref. 17), 0.377
(Ref. 18), 0.40 (Ref. 19), and 0.41 (Refs. 20 and 21).
Furthermore, combining the de Haas–van Alphen measure-
ments and the theoretical electron-phonon coupling parame-
ter, the electron-electron coupling parameter was estimated
to be λee = 0.07–0.15.22 However, the contributions from
the electron-electron (including electron-paramagnon) and
electron-phonon interactions to the effective mass enhance-
ment have not been experimentally evaluated so far.

The recent development of high-resolution ARPES enables
us to examine quasiparticle properties near EF in detail.13,23,24

We have reported a high-resolution ARPES study of Pd(110)
with a photon energy of hν = 29 eV at a temperature
of 10 K, which revealed a kink structure in the energy-
band dispersion.24 However, we measured ARPES only at
hν = 29 eV away from the high-symmetry point and did
not fully analyze the obtained real and imaginary parts of
the self-energy. In this study, we have performed extensive
polarization-dependent high-resolution ARPES experiments
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on Pd(110) and Pd(001). We have quantitatively analyzed the
ARPES spectral line shapes and evaluated the electron self-
energy. We discuss the magnitudes of the electron-phonon,
electron-electron, electron-paramagnon, and electron-defect
interactions on the quasiparticles.

II. EXPERIMENT

Single crystals of Pd(110) and Pd(001) (99.999%) were
cleaned in situ by repeated cycles of Ar+ sputtering (800 V)
and subsequent annealing at 950 K. The amount of impurities,
such as C, O, and S, on the surface was less than the
detection limit of Auger electron spectroscopy. Clear and sharp
1 × 1 LEED spots confirmed that the atoms were well ordered
and that no contaminants existed on the sample surface. We
also verified the absence of contamination by angle-integrated
photoemission spectra over a wide binding-energy range taken
at hν = 350 eV.

All of the experiments were performed on the linear-
undulator beamline (BL-1) of a compact electron-storage
ring (HiSOR) at Hiroshima University,25 using an ARPES
system that can be rotated around linearly polarized undulator
radiation.26,27 The vector potential (A) of the excitation
light was switched between parallel (p polarization) and
perpendicular (s polarization) to the plane spanned by the
surface normal and photoelectron propagation vectors, as
shown in Fig. 1(a). The high-resolution ARPES measurements
were performed using the angular mode of the hemispherical
electron-energy analyzer (R4000, VG-Scienta, Sweden). For
the high-resolution ARPES measurements near EF , the total
energy resolution was set to �E = 10 meV, and a momentum
resolution of �k = 0.007 Å−1 was set for an incident photon
energy of hν = 21, 23, 25, or 29 eV. For the measurements
on the Fermi surface and band dispersions over a wide energy

hν =

kz:[001] ky:[010]

kx:[100]Γ

K
X

W

X φ

(b)
(001) plane

160 eV
θ

(c)

Γ

Γ

KX

X

kz:[110]

ky:[001]

kx:[110]

29 eV
25 eV
23 eV
21 eV

Σ 1

(110) plane

hν =

θ

(a)

e-

y

50°θ

θ

φ x

Electron 
detection 
plane

s-, p-                
polarized SR

z : surface
     normal

FIG. 1. (Color online) (a) A schematic view of the experimental
geometry. The incident plane of the synchrotron radiation lies on
the photoelectron detection plane. The electric field vector is on the
detection plane in the p-polarization geometry, and it is perpendicular
to the detection plane in the s-polarization geometry. (b) and (c) show
the cross sections of the calculated Fermi surfaces and Brillouin zones
of Pd(001) and Pd(110), respectively. The �1 band is on the �KX

line. We measured the energy-band dispersions along the arcs shown
in (b) and (c), which is dependent on the incident photon energy hν.

range, we set �E = 100 meV and �k = 0.068 Å−1 for the
photon energy of hν = 160 eV.

The ARPES measurements were performed by tuning the
incident photon energy and by rotating the polar axis of
the sample parallel to the [100] and [110] directions for
the (001) and (110) surfaces, respectively (Fig. 1). The light
incidence angle was 50◦ relative to the lens axis of the electron
analyzer. Fermi-surface mapping was conducted by rotating
the azimuthal angle.

To analyze the spectral shapes quantitatively and evaluate
coupling parameters of many-body interactions, we should
survey the measurement condition for the narrowest linewidth
by changing geometry and incident photon energy.36 We found
that the �1 band taken at a photon energy of hν = 21 eV
and at a polar angle of 45.5◦ with respect to the sample
normal has the narrowest linewidth and is most suitable for the
line-shape analyses. Here, we assumed an inner potential of
V0 = 12.38 eV (Ref. 9).

The sample was mounted on a liquid-He-flow-type five-axis
goniometer (i-GONIO LT, R-dec Co., Japan)28 and was cooled
to T = 8 K (hν = 21 eV) and 80 K (hν = 160 eV) during the
ARPES measurements. The base pressure of the measurement
chamber was less than 7 × 10−9 Pa.

III. BAND-STRUCTURE CALCULATION

We have performed the band-structure calculation within
the local density approximation in the fully relativistic
scheme (scalar relativity plus spin-orbit coupling) using
the full-potential linearized augmented-plane-wave method
implemented with the HiLAPW program package. Figures 1(b)
and 1(c) show the calculated Fermi surface contours in
the high-symmetry plane. Figure 2(a) shows the calculated
Fermi surfaces near the Fermi-surface point for the �1 band.
Figures 2(b) and 2(c) respectively show the energy-band
dispersions along the k points of the arc for hν = 21 eV in
Fig. 2(a) and along the thick dashed line in Fig. 2(a) with
kx at the Fermi wave number. The dispersion relation in
Figs. 2(b) and 2(c) is used for the evaluation of the real part
of the self-energy and the quantitative analyses of the ARPES
linewidth.
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FIG. 2. (Color online) (a) Calculated Fermi surfaces and the
Fermi-surface point for the �1 band. (b) The calculated energy bands
along the arc for hν = 21 eV in (a). (c) The calculated energy bands
along the kz direction (thick dashed line in (a) with kx at the Fermi
wave number).
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IV. DIPOLE SELECTION RULE

The photoemission intensity (I ) is proportional to the
square of the dipole-transition matrix element I ∝ |〈φk

f |A ·
p|φk

i 〉|2, where φk
i (φk

f ) is the initial-state (final-state) electron
wave function, and p = −ih̄∇ is a momentum operator.29,30

Here, we employed the E1 approximation, and A is a constant
vector parallel to the electric field vector E, namely, A =
(Ax,Ay,Az) ‖ E. In this study, the photoelectron detection
plane coincides with the mirror plane of the crystal; specif-
ically, it lies in the xz plane [Fig. 1(a)]. We assumed that
the final-state wave function φk

f should be free-electron-like
and that φk

f should not change its sign under the symmetry
operation y → −y, even function with respect to the mirror
plane.

In the p-polarization geometry, A is on the mirror plane,
and the operator part A · p = −ih̄(Ax∂x + Az∂z) is even under
the symmetry operation y → −y. If the initial state is an
odd function with y, namely, φk

i (x, − y,z) = −φk
i (x,y,z),

then the matrix element should be exactly zero because∫ ∞
−∞(φk

f )∗[−ih̄(Ax∂x + Az∂z)]φk
i dy = 0. Therefore, the de-

tectable initial states should be even with respect to the mirror
plane. This selection rule is rigorous for the dipole transition
in the bulk with a negligible spin-orbit interaction.30

For the s-polarization geometry, A is perpendicular to the
mirror plane, giving A · p = −ih̄Ay∂y an odd operator with
respect to a symmetry operation of y → −y. The detectable
initial state, therefore, should be odd with respect to the
mirror plane. Thus, we can selectively observe even or odd
initial states with respect to the mirror plane by changing the
polarization geometry.29,30

V. EMISSION-ANGLE DEPENDENCE
OF THE LINEWIDTH BROADENING

The observed photoemission linewidth or the EDC width
�(ω) can be described by the convolutions of the width in
the initial state �i(ω) and in the final state �f (ω), � =
�i

⊗
�f .31–33 The uncertainty in the wave vector (δk) of

a Bloch function caused by interactions gives linewidths
of �i = | ∂εi

∂k
· δk| and �f = | ∂εf

∂k
· δk|, where 1

h̄

∂εi

∂k
= vi and

1
h̄

∂εf

∂k
= vf describe the group velocities of the initial and final

states, respectively. The linewidth is expressed as

�(θ ) =
�i

|vi⊥| + �f

|vf ⊥|∣∣ 1
vi⊥

· (
1 − mvi‖

h̄k‖
sin2θ

) − 1
vf ⊥

· (
1 − mvf ‖

h̄k‖
sin2θ

)∣∣ ,
(1)

where θ is the emission angle measured from the sample
surface normal, vi⊥ (vf ⊥) is the group velocity component
perpendicular to the sample surface of the initial (final) state,
and vi‖ (vf ‖) is the group velocity component parallel to the
surface of the initial (final) state.31–33

In the present analyses, we examine the spectral features
near EF and approximate the band dispersions in the initial and
final states by linear functions. The initial-state band dispersion
along the k‖ (wave-number component parallel to the surface)
direction may be written as ω = −h̄vi‖(k‖ − kF ), where kF is
the Fermi wave number. Based on the energy conservation law,

one may have h̄2k2

2m
= Emax

K + ω, where Emax
K is the maximum

kinetic energy. At a surface, the equation 1
k

= sinθ
k‖

should also
hold. Using these equations, the spectral width can be rewritten
as a function of ω as

�(ω) = �0(ω)∣∣1 − ζ + ( − 1 + ζ
vf ‖
vi‖

) h̄vi‖kF −ω

2(Emax
K +ω)

∣∣ , (2)

where �0(ω) = �i(ω) + |ζ |�f (ω) and ζ = vi⊥
vf ⊥

. We employ
this equation to analyze the ARPES linewidth of Pd.

VI. RESULTS AND DISCUSSION

A. Fermi surfaces and band dispersions

Figures 3(a) and 3(b) show image plots of the observed
Fermi surfaces in the �XWK plane taken at hν = 160 eV
with the p-polarization geometry and s-polarization geometry,
respectively. These images were obtained by integrating the
spectral intensity near EF . The calculated bulk-derived Fermi
surfaces in the �XWK plane on the left side of Figs. 3(a) and
3(b) agree with the observed ones. Based on the calculation,
an electronlike Fermi surface exists around the � point, and
two holelike Fermi surfaces exist around the X point and along
the X-W direction.34

These image plots show a significant polarization depen-
dence of the photoemission intensity. In Fig. 3(a), the spectral
intensity with the p-polarization geometry vanished at the �2

band point. By contrast, the spectral intensity is strong with
the s-polarization geometry [Fig. 3(b)]. These observations are
consistent with the fact that the �2 band crossing EF along the
� line is odd with respect to the mirror plane (x = y plane).

Table I lists the basis functions along the � line and the
symmetry under the reflection operation with respect to the
x = y mirror plane. The initial states with even and odd
symmetry can be observed with the p- and s-polarization
geometries, respectively.
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FIG. 3. (Color online) The observed Fermi surfaces of Pd(001)
taken at hν = 160 eV with the p-polarization geometry (a) and the
s-polarization geometry (b). The left-hand side of the image plots
shows the calculated Fermi surfaces (solid lines) and the Brillouin
zone boundary of the �KWX plane and the high-symmetry lines
(broken lines). The ARPES image plots of Pd(001) are shown along
the �KX direction with the p-polarization geometry (c) and the
s-polarization geometry (d). The dashed curves in (c) and (d) show
the calculated band dispersions.
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TABLE I. The basis functions along the � line and their
symmetries with respect to the mirror plane (x = y plane).

Band �1 �2 �3 �4

Basis function 1 z(x − y) z x − y

Symmetry Even Odd Even Odd

Figures 3(c) and 3(d) show image plots of the observed
band dispersions along the � line. In the image plot with
the p-polarization geometry [Fig. 3(c)], the energy band at
−1.2 eV at k‖ = 0 Å−1 (�12) disperses upward with decreasing
k‖ and crosses EF at kF = −0.8 Å−1. The degenerated energy
bands at −3 eV at k‖ = 0 Å−1 (�′

25) are split into the �1 and �3

bands. The observed �3 band clearly disperses upward with
decreasing k‖ and is located in close proximity to EF at the
X point. However, in the image plot with the s-polarization
geometry [Fig. 3(d)], the �2 band located at −2.7 eV at k‖ = 0
Å−1 (�′

25) shows upward dispersion with decreasing k‖ and
crosses EF at kF = −1.70 Å−1.

These observations agree with the calculated band disper-
sions and their symmetry properties and are consistent with
previous ARPES studies5–9 for Pd(111) and Pd(110) in that
the observed band points agreed well with the theoretical ones.

B. �1-band dispersion near EF

Figures 4(a) and 4(c) show the ARPES intensity plot of the
�1 band taken at hν = 21 eV with the p-polarization geometry
over a wide energy range and near EF , respectively. The
observed energy-band dispersion agrees with the calculated
band dispersion along the arc in the k space, as shown in
Fig. 1(c) for hν = 21 eV.

To analyze the spectral shape, we used a Voigt function
on a linear background to fit the momentum distribution
curves (MDCs) [Fig. 4(e)]. The Gaussian width was fixed to
represent the momentum resolution of �k = 0.007 Å−1. We
obtained the peak position [dots in Figs. 4(b) and 4(d)] and the
Lorentzian width (δk) as functions of the energy (ω).

As shown in Figs. 4(b) and 4(d), the observed band
dispersion in the wide energy range agrees with the theoretical
dispersion. However, near EF [Fig. 4(e)], a kink structure
is recognizable in the band dispersion at ω ∼ −20 meV.
Note that the bulk Debye energy kB�D = 23.6 meV (Debye
temperature: �D = 274 K) (Refs. 16 and 35) coincides with
the energy scale of the kink. The kink at ∼−20 meV can be
reasonably assumed to be derived from the electron-phonon
interaction. Figure 4(f) shows EDCs (1,2,3) obtained from
cuts along the white broken lines in Fig. 4(c). The EDC width
becomes narrower as the peak approaches EF .

C. Self-energy analyses

To evaluate the magnitudes of many-body interactions on
the quasiparticles, we quantitatively analyze the ARPES line
shapes in this section. The ARPES spectral features are given
by the single-particle spectral function A(k,ω). In this study of
a Pd metal, we have assumed that the many-body interactions
are short ranged. Hence, the k dependence of the self-energy
may be neglected, so �(k,ω) ∼ �(ω). In this case, the spectral

Intensity (arb. units)

-0.2

-0.1

0

E
ne

rg
y 

(e
V

)

1.551.501.45

k// (A
-1

)

1.551.501.45

k// (A
-1

)

-0.2

-0.1

0

E
ne

rg
y 

(e
V

)

1.551.50

k// (A
-1

)

1.71.61.51.4

k// (A
-1

)

-1.0

-0.5

0

E
ne

rg
y 

(e
V

)

-0.04

-0.02

0

High

Low

1.71.61.51.4

k// (A
-1

)

 Exp.
 Theory
 Theory  0.98

 Exp.
 Fit

 Exp.
 Theory

(a) (b)

(d)

(c)

(f)

(e)

M
D

C
 a

t E
F

2 3

1 2 3

1

FIG. 4. (Color online) (a) ARPES image plot of Pd(110) taken at
hν = 21 eV and at 8 K in the wide k and ω ranges. The solid line
shows the calculated band dispersion. (b) The dots show the band
positions determined by the MDC analyses. The solid line shows
the calculated band dispersion. The dashed line is the calculated
band dispersion multiplied by a factor of 1/(1 + λee) = 0.98. (c) A
magnified ARPES image plot near EF , which corresponds to the
k and ω ranges indicated by the dashed area in (a). (d) The dots
represent the band positions determined by the MDC analyses. A
kink structure exists at ∼−20 meV. The inset shows magnified band
dispersion near EF . (e) The MDC at EF fitted by a Voigt function on
a linear background. (f) The EDCs along the dashed white lines 1, 2,
and 3 in (c).

function is given by

A(k,ω) = − 1

π

Im�(ω)[
ω − ω0

k − Re�(ω)
]2 + [Im�(ω)]2

, (3)

where ω0
k represents the energy of the noninteracting

band.13,30,36,37

In this study, we have assumed that the electron-scattering
processes are independent and that the self-energy can
be expressed as the sum of the self-energies derived
from the electron-phonon interaction (�ep), electron-electron
interaction (�ee), electron-paramagnon interaction (�em), and
electron-defect interaction (�ed ): � = �ep + �ee + �em +
�ed .

The lifetime broadening of a quasiparticle is given by the
imaginary part of the self-energy as �i = 2|Im�| = �ep +
�ee + �em + �ed , where �ep, �ee, �em, and �ed denote lifetime
broadening due to the electron-phonon, electron-electron,
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electron-paramagnon, and electron-defect interactions, re-
spectively. The �ep + �ee + �em term is energy dependent,
whereas the �ed term is energy independent.

The real part of the self-energy is obtained by the energy
shift from the noninteracting band: Re�(ω) = ω − ω0

k . Here
we assume ω0

k is the band energy given by the band-structure
calculation [Fig. 2(b)]. The dimensionless coupling parameter
is evaluated by

λ = −∂ Re�(ω)

∂ω

∣∣∣∣
ω=0

. (4)

The real part of the self-energy can be written as
Re� = Re�ep + Re�ee + Re�em, and the coupling param-
eter is given by λ = λep + λee + λem. We should note that
Re�ed (ω) = 0 because the electron-defect scattering is as-
sumed to be elastic [�ed (ω) = const].38

Because the self-energy is a causal function, Re� and Im�

should be mutually related via the Kramers-Kronig transform

Re�(ω) = 1

π
P

∫ +∞

−∞

Im�(ω′)
ω′ − ω

dω′,
(5)

Im�(ω) = − 1

π
P

∫ +∞

−∞

Re�(ω′)
ω′ − ω

dω′.

Based on Eqs. (1) and (2), the observed linewidth is not
identical to �i . Therefore, we calculated the initial-state
lifetime broadening to be consistent with the observed Re�
using the Kramers-Kronig transform [Eq. (5)].

1. Experimental real and imaginary parts of the self-energy

Figures 5(a) and 5(b) show the experimentally evaluated
Re�exp(ω) and Im�exp(ω) at 8 K, respectively. The imaginary
part of the self-energy Im�exp(ω) was evaluated by the
expression �(ω) = 2|Im�exp(ω)| = (∂εk/∂k) · δk. The real
part of the self-energy Re�exp(ω) was evaluated by the
energy shift from the band energy given by the band-structure
calculation.

2. Electron-phonon interaction

In Fig. 5(a), Re�exp has a peak at ∼−20 meV, which gives
a maximum energy shift of ∼8 meV. In Fig. 5(b), on the other
hand, the observed 2|Im�exp| is reduced by ∼20 meV above
ω ∼ −30 meV.

To confirm that these features are derived from the electron-
phonon interaction, we simulated 2|Im�ep| and Re�ep. The
lifetime broadening due to the electron-phonon interaction is
given by

�ep(ω,T ) = 2|Im�ep(ω,T )|
= 2π

∫ ∞

0
α2F (ν)[2n(ν,T ) + f (ν + ω,T )

+ f (ν − ω,T )]dν,

where n(ν,T ) and f (ν,T ) are the Bose-Einstein and Fermi-
Dirac distribution functions, respectively.13,37 We used the
theoretical phonon DOS (Ref. 18) for F (ω) and assumed
α is an energy-independent adjustable parameter.13,36 Using
the Kramers-Kronig transform [Eq. (5)], we calculated Re�ep

using theoretical Im�ep.
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FIG. 5. (Color online) The evaluated self-energy for the �1 band
based on the ARPES results taken at hν = 21 eV at a temperature of
8 K. (a) The dots represent Re�exp. The thin solid curves show the
respective contributions from the electron-phonon (Re�ep), electron-
paramagnon (Re�em), and electron-electron (Re�ee) interactions.
The broken lines indicate the gradient at EF of theoretical Re�ep

and Re�em. The thick solid line indicates Re�ee + Re�ep + Re�em.
(b) The dots and thick line represent 2|Im�exp| and �(ω), respectively.
The dashed line indicates a contribution from c + aω to �0(ω). The
thin curves at the bottom show the linewidths due to the electron-
phonon (�ep), electron-paramagnon (�em), and electron-electron
(�ee) interactions.

As evident in Figs. 5(a) and 5(b), the energy dependen-
cies of Re�exp and 2|Im�exp| are explained well by the
theoretical Re�ep and 2|Im�ep| in the energy range of ω =
0 ∼ −30 meV. This result confirms that the energy dependence
of the observed self-energy near EF is mainly derived from
the electron-phonon interaction.

We evaluated the coupling parameter λep based on the
gradient of the calculated Re�ep [dashed line in Fig. 5(a)]
and obtained λep = 0.39 ± 0.05. This value agrees with the
theoretical coupling parameters λth

ep = 0.35 (Ref. 17), 0.377
(Ref. 18), 0.40 (Ref. 19), and 0.41 (Refs. 20 and 21).
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3. Electron-electron interaction

To simulate the self-energy due to the electron-electron
interaction, we adopted a phenomenological model26,36,39

Im�ee = −βξ 4ω2

(ω2 + ξ 2)2
, Re�ee = −βξ 3ω(ω2 − ξ 2)

2(ω2 + ξ 2)2
,

where β and ξ are adjustable parameters. Note that these
functions satisfy the general properties of Fermi-liquid theory
near EF , and Re�ee and Im�ee are exactly related via the
Kramers-Kronig transform. In this analysis, we assumed
ξ ∼ −3.7 eV to be the onsite Coulomb interaction,26,40 and
β = 0.013 eV−1 was obtained through the fitting of Re�exp.

Based on the fitting using this analytical function, the
electron-electron coupling parameter was evaluated to be
λee = −βξ/2 = 0.024. The calculated band dispersion multi-
plied by a factor of 1/(1 + λee) ∼ 0.98 was consistent with the
observed band dispersion [Fig. 4(b)]. These analyses indicated
that the magnitude of the electron-electron interaction is much
smaller than that of the electron-phonon interaction.

4. Electron-paramagnon interaction

In Fig. 5(a), clear differences between Re�exp and Re�ep +
Re�ee are shown, particularly around the energy range ω =
−50 ∼ −150 meV. We should note that this situation is similar
for Re� evaluated for hν = 23, 25, and 29 eV (Fig. 6).

Considering that the energy scale 50 ∼ 150 meV is compa-
rable with the paramagnons observed in the inelastic neutron
scattering measurements (Ref. 4) and that it is larger than the
Debye energy ∼24 meV, we assumed that a contribution from
the electron-paramagnon interaction should exist.

To simulate the self-energy due to the electron-paramagnon
interaction �em, we calculated the linewidth under the assump-
tion that α2F (ν) → α2ρm(ν) = Cω1/2 (0 < ν < ωc), where
ρm(ν) is the paramagnon DOS, C is an adjustable constant,
and ωc is the cutoff energy of the paramagnon DOS.35,41,42

The thick solid line in Fig. 5(a) represents the sum of
Re�ep + Re�ee + Re�em that reproduces Re�exp for the
entire energy range. The coupling parameter due to the
electron-paramagnon interaction was evaluated to be λem =
0.06 ± 0.03 [dashed line in Fig. 5(a)]. The observed gradient
of Re�exp at EF was best reproduced by the sum of λep +
λee + λep ∼ 0.47.

By changing the incident photon energy hν, we evaluated
Re�exp − Re�ee at different Fermi surface points (Fig. 6).
One can see the hump structure corresponding to the cutoff
energy (ωc) of the paramagnon DOS and the magnitudes of
Re�em depend on the Fermi surface points. We decomposed
Re�exp − Re�ee into contributions from Re�ep and Re�em

and evaluated the coupling parameters λep and λem (see dashed
lines in Fig. 6). Figure 7 exhibits the hν dependence of these
coupling parameters. Although we need to examine more
points up to the � point, we can see that the electron-phonon
and electron-paramagnon coupling parameters depend on the
Fermi-surface points. For further analyses, we need detailed
theoretical consideration of the electron self-energy derived
from the electron-paramagnon interaction.
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FIG. 6. (Color online) Incident photon energy dependence
of Re�exp − Re�ee. The thin curves indicate the contributions from
Re�ep and Re�em. The dashed lines indicate a gradient at EF of
theoretical Re�ep and Re�em. ωc indicates the cutoff energy of the
paramagnon DOS. The figure on the right shows the Fermi-surface
points measured at hν = 21, 23, 25, and 29 eV.

5. Final-state broadening and electron-defect interaction

The energy dependence of the initial-state linewidth
broadening can be derived from �i(ω) = �ep(ω) + �ee(ω) +
�em(ω) + �ed , where �ed is energy independent. The energy
dependence of �i(ω) can not explain the observed linewidth
below ω ∼ −50 meV [Fig. 5(b)]. Therefore, we should
consider the contribution from the final-state broadening (�f )
based on Eq. (2).

In the present analyses, we referred to the results from
the band-structure calculation [Figs. 2(b) and 2(c)] and fixed

ratios of the group velocities as h̄vf ‖
h̄vi‖

= 8.25 eVÅ

4.86 eVÅ
= 1.7 and

ζ = vi⊥
vf ⊥

∝ mf

mi
= 0.017, where mi (mf ) is the band mass for

the initial (final) state. As the band dispersions along the kz

direction in Fig. 2(c) take the maximum near the Fermi wave
number, we used the band mass for the evaluation of the ζ

value. From the experimental data, we used Emax
K = 16.2 eV,
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FIG. 7. (Color online) The incident photon energy dependence of
λep , λem, and λep + λem. The Fermi-surface points are shown on the
� and � lines at hν = 21 and 37.5 eV, respectively.

kF = 1.486 Å−1. Referring to the observed 2|Im�exp(ω)|
and the calculated final-state energy-band dispersions in
Figs. 2(b) and 2(c), we assumed that �f (ω) is a regular
function for the energy range we examined. Then, we
employed the Taylor expansion of the final-state broadening
expressed as |ζ |�f (ω) ∼ �0

f + aω (ω < 0), where �0
f and

a are constants. The numerator of Eq. (2) can be written
as �0(ω) = �i(ω) + |ζ |�f (ω) ∼ �ep(ω) + �em(ω) + c + aω,
where c ≡ �ed + �0

f is a constant.
The functional forms of �ep(ω) and �em(ω) were cal-

culated from the Kramers-Kronig transform of Re�ep(ω)
and Re�em(ω), respectively. We neglected the contribution
from �ee(ω) because it is substantially smaller than �ep(ω) +
�em(ω). We optimized c and a to give the best fit to the
experimental linewidth broadening. In Fig. 5(b), the calculated
�(ω) successfully reproduced the observed energy dependence
of experimental 2|Im�exp| below −50 meV. From the fit, we
obtained c = 0.033 eV and a = −0.16 eV−1. The upper limit
of �ed may therefore be evaluated by �ed < c = �ed + �0

f =
33 meV.

We should note that the term aω in the final-state broad-
ening is indispensable to fit the observed energy dependence
of the lifetime broadening. Similar analyses (not shown here)
of the ARPES results taken at different photon energies also
indicated that we should account for this type of final-state
broadening.

6. Effective mass enhancement factor

We have clarified the respective contributions of the
many-body interactions to the effective mass enhancement
in this study. The sum of the coupling parameters due
to electron-electron and electron-paramagnon interactions is
λee + λem ∼ 0.08, which is ∼21% of the coupling parameter
due to the electron-phonon interaction λep ∼ 0.39. Therefore,
in the case of Pd, the electronic specific heat or effective
mass enhancement is mainly derived from the electron-phonon
interaction.

Here, we compare our results with those from de Haas–van
Alphen measurements and specific-heat measurements. Joss

and Crabtree estimated many-body enhancements on the Fermi
surface of Pd using the cyclotron effective masses using the
Korringa-Kohn-Rostoker (KKR) band-structure calculation
and theoretical electron-phonon coupling parameter.22 For the
electronlike Fermi surface, the total coupling parameter was
evaluated to be λtot = 0.49, and by subtracting λep = 0.41
(Ref. 21), they estimated the electron-electron contribution
as λ = λtot − λep = 0.08.22 This evaluation is fully consistent
with our results λee + λem ∼ 0.08 even though our evaluation
was performed on the specific point of the electronlike
Fermi surface. In this study, we revealed that the electron-
electron contribution was mainly derived from the electron-
paramagnon interaction.

On the other hand, the ratio between the experimental elec-
tronic specific heat γ exp (Refs. 14 and 15) and the theoretical
value γ th given by the band-structure calculation (Ref. 16) is
γ exp/γ th = m∗/mb = 1 + λtot ∼ 1.66, where λtot is the total
coupling parameter averaged over the Fermi surfaces. The
electron effective mass enhancement factor evaluated in this
study for the �1 band, 1 + λep + λee + λem ∼ 1.5, was slightly
smaller than the value given from the electronic specific-heat
measurements. The deviation is most likely derived from the
stronger-coupling parameters of the holelike Fermi surfaces
as suggested by the de Haas–van Alphen measurements.22

Detailed evaluations of the coupling parameters for the
holelike Fermi surfaces are desirable in the future.

VII. CONCLUSION

We have performed polarization-dependent high-resolution
ARPES on Pd to elucidate the electronic structures and
the electron self-energy. The observed Fermi surfaces and
energy-band dispersions were reproduced reasonably well by
the band-structure calculation. Based on a detailed comparison
between the observed and theoretical dispersions, the electron-
electron coupling parameter was evaluated to be λee ∼ 0.02,
for the �1 band forming the electronlike Fermi surface. A
kink structure due to the electron-phonon interaction existed
at ∼−20 meV, in agreement with the Debye energy. The
electron-phonon coupling parameter was evaluated to be
λep = 0.39 ± 0.05 at 8 K for the �1 band, which is consistent
with the theoretical electron-phonon coupling parameters
λep = 0.35–0.41. More detailed analyses of the real part
of self-energy suggested a possible contribution from the
electron-paramagnon interaction in the energy range −50 ∼
−100 meV. The electron-paramagnon coupling parameter was
evaluated to be λem ∼ 0.06 for the �1 band. The magnitudes
of λep and λem depend on the Fermi-surface points. The
effective mass enhancement factor was mainly derived from
the electron-phonon interaction, and it was evaluated to be
1 + λep + λee + λem ∼ 1.5, which was close to the values
m∗/mb ∼ 1.5–1.7 estimated from the de Haas–van Alphen
and electronic specific-heat measurements.
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