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Relaxation dynamics in laser-excited metals under nonequilibrium conditions
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When an ultrashort laser pulse irradiates a metal, energy is absorbed by the electron system which is driven out
of thermal equilibrium on a femtosecond time scale. Due to electron-electron collisions, a new thermodynamical
equilibrium state within the electron system is established in a characteristic time, the so-called thermalization
time. The absorbed energy of the electrons will be further transferred to the phononic system. The thermalization
time as well as the electron-phonon coupling strength both strongly depend on the material properties and the
excitation type. Furthermore, a nonthermalized electron gas couples differently to the phononic system as a
thermalized one. In order to follow the relevant microscopic dynamics without the need to assume thermalized
electrons, we apply complete Boltzmann collision integrals to describe the transient electron distribution due to
excitation, thermalization, and relaxation. We implement the density of states of real materials in our approach.
As a result of our simulations, we extract the electron thermalization time and the electron-phonon coupling
under nonequilibrium conditions. Examples are given for aluminum, gold, and nickel.
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I. INTRODUCTION

Ultrashort laser pulses of moderate intensities are widely
applied in basic research as well as in medical and indus-
trial applications.1–3 Ultrafast excitations of solids open up
opportunities to study microscopic processes on femtosecond
time scales as electron-electron interaction or electron-phonon
coupling. Such processes and their interplay have been
the object of intense research for more than two decades
both experimentally and theoretically.4–21 Several theoretical
approaches investigating the response of solids on ultrashort
laser excitation are currently applied on a wide range of
time scales. They reach from temperature-dependent density
functional theory (DFT) methods yielding changes of the
band structure upon excitation,22–24 statistical approaches
tracing a large amount of excited electrons,15–19 over two-
temperature descriptions and continuum approaches of heat
conduction12,25,26 to hydrodynamic and molecular dynamic
descriptions7,27–31 of the subsequent phase transitions and
material removal. In this work, we focus on the subpicosecond
time scale, where energy relaxation processes of the electronic
system are most relevant. The governing collision processes
occur on femtosecond time scale, thus appropriate descriptions
have to be chosen carefully. Typically, the absorption of
the laser by the electron system and the energy transfer
to the initially cold lattice is described by the well-known
two-temperature model (TTM) for the electron temperature Te

and the phonon temperature Tp (Ref. 32):

Ce(Te)
∂Te

∂t
= −α(Te − Tp) + ∇(κe∇Te) + S(t),

(1)

Cp(Tp)
∂Tp

∂t
= +α(Te − Tp),

where Ce,Cp are the heat capacities of the electrons and
phonons, S(t) the excitation term, α the electron-phonon
coupling factor, and κe the heat conductivity. The TTM is
suitable to describe laser-excited metals on time scales of a
few hundreds of femtoseconds to tens of picoseconds.9–11,33,34

It is widely applied in the description of material processing

as, for instance, hole drilling35 or ripple formation.21,36 Several
extensions have been proposed to account also for ballistic
transport,10 field emission,37 nonthermal electrons,12,38 as well
as changes in the density of the solid.25 The necessary material
parameters for a large variety of metals have been determined
on the basis of the respective densities of states calculated with
DFT methods.39 The TTM was applied as well to describe
ultrafast magnetization dynamics40,41 or energy dissipation
after excitation with a swift heavy ion.42,43

However, on time scales below a few hundreds of fem-
toseconds, the nonequilibrium of the electrons may come into
play. The electrons, driven out of thermodynamic equilibrium
by ultrafast excitation mechanisms, thermalize on these time
scales, establishing a new equilibrium state by electron-
electron collisions. Before completion of this process, the
concept of temperature, strictly spoken, fails, and therefore the
application of the TTM is questionable in the first hundreds of
femtoseconds after excitation.

The Boltzmann equation13–17 or Monte Carlo methods18,19

are suitable models to trace the nonequilibrium electrons and to
study thermalization dynamics and electron-phonon coupling
in detail. Consequently, an interesting question arises: Under
which conditions do the assumptions of the TTM hold and in
which cases are more accurate models required? To answer this
question, we apply the framework of the Boltzmann equation
to describe metals under nonequilibrium conditions. We derive
complete Boltzmann collision integrals including arbitrary
densities of states within an effective one-band model. We
are first interested in the thermalization time of the electron
system. This characteristic time determines when the concept
of a temperature can be applied and depends on the material
as well as on the excitation. In addition, we extract the
electron-phonon coupling parameter α which is used within
the TTM (1). We compare the equilibrium coupling, where
Te and Tp are well defined, with the nonequilibrium energy
exchange when electrons are out of thermal equilibrium. The
calculations presented in this work are performed for three
different materials: aluminum, gold, and nickel. However, in
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principle, all metals can be implemented in the presented
framework if some fundamental material parameters as well
as the density of states are known.

II. BOLTZMANN EQUATION FOR METALS

We apply the Boltzmann equation for the description of
nonequilibrium effects. This approach is suitable to model
collisions of particles such as electrons and phonons and was
originally derived for plasma physics but also successfully
applied for solids.13–17,44–49 We restrict ourselves to thin
films which are excited homogeneously by a laser pulse
(the effective penetration depth of the laser is assumed to
be much larger than the thickness of the film), so no heat
transfer is considered. For example, for gold films the effective
penetration depth of homogeneous heating is about 100 nm.50

Therefore, the Boltzmann equation without a spatial depen-
dence is applied, which reads as

df (�k,t)

dt
= �el-el + �el-ph + �absorp, (2a)

dg(�q,t)

dt
= �ph-el, (2b)

where f (�k,t) is the distribution of the electrons with mo-
mentum �k and g(�q,t) the distribution of the phonons with
momentum �q. The complete Boltzmann collision integrals
�x−y describe collisions of particles x with particles y and
�absorp denotes the collision integral due to the excitation of
the electrons by inverse bremsstrahlung.17 Typically, the set
of equations (2) is simplified by applying a free-electron-gas
approach13,16,17,45 and by the assumption of isotropy, i.e.,
the distribution functions f (�k,t), g(�q,t) only depend on the
absolute value of the momentum and, thus, are rewritten to an
dependence on energy f (E,t) and g(Eq,t).

In the following, we still keep the isotropy of the system
but show the extension for more realistic cases, including a
realistic density of states (DOS) in the frame of an effective
one-band model. A similar approach has also been proposed in
Ref. 15 implementing the DOS into the Boltzmann equation,
however, considering a constant matrix element. Here, we treat
the matrix element explicitly by a screened Coulomb potential
and, moreover, include transient changes of the screening
parameter under nonequilibrium conditions.

Instead of the complete band structure of the material, we
introduce an effective one-band model, where an averaged
isotropic dispersion relation is derived out of the density of
states. Specific band-structure effects are thus only treated
by the averaged band and by the density of states. This
simplification is justified for electron-electron as well as
electron-phonon collisions since both electrons and phonons
provide sufficient momentum to conserve the energy and
momentum during a scattering process in the framework of
the isotropic approximation. The irradiation process has to be
modeled more carefully since photons provide a relative small
momentum. We therefore implement an absorption term of
inverse bremsstrahlung, which accounts for the potential of
the lattice ions providing momentum changes to the quasifree
electrons.17

Let us first consider an arbitrary isotropic extensive observ-
able B(E) of the electron or phonon system which is examined
by introducing the density of states D(E):

〈B〉 = σ

(2π )3

∫
d�r

∫
d�k h(E) · B(E) (3a)

≡ �

∫
dE D(E) · h(E) · B(E), (3b)

where � ≡ ∫
d�r represents the volume of the unit cell and

h(E) the isotropic distribution function of the considered
particles, i.e., f (E) or g(E). In our notation, σ determines
the spin factor which is two for the electron system and one
for the phonons. From Eq. (3), we extract the definition of the
density of states

D(E) = σ

2π2
k2(E)

dk

dE
, (4)

which only depends on the dispersion relation k(E). In the
effective one-band model, we solve the differential equation
(4) analytically for the momentum

k(E) = 3

√
3 · 2π2

σ

∫ E

0
dε D(ε), (5)

which results in an averaged isotropic dispersion relation to
determine the momentum k corresponding to the energy E.
To give an example, by inserting a free-electron-gas density
of states, we obtain the dispersion relation of free electrons
k =

√
2mE/h̄2 with the effective electron mass m. In Fig. 1,

the density of states of nickel39 and the corresponding one-
band dispersion relation is depicted. Despite the roughness
of the DOS, the integral in Eq. (5) smooths the behavior of
k(E). Furthermore, the flatness of the d bands is reflected in
the averaged dispersion relation. Basically, we assume one
band with an energy-dependent effective mass, derived by
the density of states. Since we treat the material as isotropic,
the dispersion and the observables are isotropic as well. Our
approach allows us to account for specific effects caused
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FIG. 1. (Color online) The density of states of nickel (left axis)
and the corresponding averaged dispersion relation (right axis) in the
framework of the effective one-band model.

035139-2



RELAXATION DYNAMICS IN LASER-EXCITED METALS . . . PHYSICAL REVIEW B 87, 035139 (2013)

by distinct peaks or gaps in the density of states, while
effects connected with the particular band structure, e.g. state
blocking,51 are neglected. In agreement with temperature-
dependent DFT calculations,22–24,52 we assume that the DOS
after the laser irradiation is qualitatively unaffected for our
considered excitation strength.

A. Electron-electron collisions

To derive the electron-electron collision integral, we con-
sider two electrons with the total initial energy Ei = E + E2

and the final energy Ef = E1 + E3 after the collision. During
the scattering process, the energy and the momentum is
conserved, thus, Ef = Ei and

�k2 = �k1 + �k3 − �k. (6)

The electron-electron scattering processes are described
by17,45,53

�el-el = 2π

h̄

∑
�k1

∑
�k3

FM2
ee(	k,κ)δ(Ei − Ef ), (7)

where

F = f1f3(1 − f )(1 − f2) − ff2(1 − f1)(1 − f3)

determines with fi ≡ f (Ei,t) the collision functional ensuring
the Pauli principle,

|Mee(	k,κ)|2 =
(

e2

ε0�

1

	k2 + κ2

)2

(8)

the matrix element, κ the screening parameter, and 	�k =
�k − �k3 the exchanged momentum. All of these properties are
described in detail in Ref. 17. Assuming continuous energy
eigenstates of the electron system, the collision integral can be
rewritten to

�el-el ≈ �2

(2π )5h̄

∫
d�k1

∫
d�k3 FM2

ee δ(Ei − Ef ), (9)

which results in a six-dimensional integral. By assuming an
isotropic system and spherical coordinates, two integrals over
the azimuth angles vanish. Furthermore, the δ function cancels
one integral and one integral is expressed analytically as
I ≡ ∫

d	kM2
ee(	k,κ). By substituting the momentum to an

energy using (4), we find

�el-el = �2π3

8h̄k

∫
dE1

∫
dE3

D(E1)

k1

D(E2)

k2

D(E3)

k3
I F �ee,

(10)

where �ee is a step function, which enters due to the
assumption of isotropy: it checks explicitly if the momentum
is conserved during a collision process. To derive this function
�ee, we square Eq. (6) resulting in

μ = k2 + k2
2 − k2

1 − k2
3 + 2kk2p

2k1k3
(11)

with μ = cos(∠(�k1,�k3)) ∈ [−1,1] and p = cos(∠(�k,�k2)) ∈
[−1,1]. This criterion is simplified to

|a| � 1 + b (12)

with a = (k2 + k2
2 − k2

1 − k2
3)/(2k1k3) and b = kk2/(k1k3).

Hence, �ee is unity when the criterion (12) holds and vanishes
otherwise. In the case of a free-electron gas, �ee is always
one because for E(�k) ∝ k2 the numerator of a vanishes, thus
Eq. (12) is always fulfilled. However, for realistic materials,
it is essential to determine �ee explicitly. With the aforemen-
tioned simplifications, we reduced the six-dimensional integral
(9) to a two-dimensional integral (10), which minimizes the
computational effort tremendously.

B. Electron-phonon-photon collisions

To describe the electron-phonon scattering processes we
consider an electron with the energy E ending up within
the energy state E1. Meanwhile, a phonon within the Debye
model with its energy Eq = h̄csq is emitted or absorbed.
Here, cs denotes the speed of sound of the longitudinal
mode since only this mode contributes significantly to the
electron-phonon coupling.54 We simultaneously consider the
absorption and emission of || photons with energy h̄ω in
this scattering process, where a positive  means emission
and  < 0 means absorption. This leads to the energy balance
E1 = E ± Eq − h̄ω and the momentum conservation

�k1 = �k + �q (13)

with the assumption that the momentum of the photons is
negligible compared to the phonon momentum. The scattering
processes can be expressed as a three-dimensional collision
integral55

�el-ph = 2π

h̄

∑
�q,,±

M2
ep(q,κ)J 2

 ( �γ �q)F±δ(E1− E ∓ Eq +h̄ω)

(14)

describing the change of the electron distribution function
due to electron-phonon-photon collisions. Here, the collision
functional has the form

F± = f1(1 − f )
(
g + 1

2 ± 1
2

) − f (1 − f1)
(
g + 1

2 ∓ 1
2

)
,

and the matrix element reads as56

M2
ep(q,κ) = e2

2ε0�

Eq

q2 + κ2
.

Transforming the sum of �q in Eq. (14) into a spherical
three-dimensional integral, the integral over the azimuth angle
cancels because of the isotropy of the system. The Bessel
function J( �γ �q) ≡ J(e �EL �q/mω2) (Ref. 55) is replaced by an
averaged Bessel function J̄ 2

 (γ q) ≡ 1
2

∫ 1
−1 J(γ qη)2 dη with

η = cos[∠( �EL,�q)] covering all angles between the laser field
�EL and the exchanged momentum �q.

Substituting the integral of the polar angle into an electron
momentum k1 by exploiting the momentum conservation (13)
and transforming the integral of q to an energy integral using
(4) and introducing the Debye density of states of the phonon
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system Dph(E) = 9E2/[(kBTD)3�], we find

�el-ph = �π3

h̄k

∫ ED

0
dEq

∑
,±

D(E1)

k1

Dph(Eq)

q
F±M2

epJ̄
2
 �ep .

(15)

The upper limit for the integration is the Debye energy ED ,
which is the maximum energy of a phonon in the Debye
model. Due to the restriction of the momentum conservation,
the function �ep equals unity when

cos[∠(�k,�q)] = q2 + k2 − k2
1

2kq
∈ [−1,1] (16)

is fulfilled, otherwise �ep vanishes. With (15), we derived
the complete collision integral for the electron-phonon-photon
collision changing the electron distribution f (E,t).

C. Phonon-electron-photon collision

Here, we consider the same collision as in the previous
section but concentrate on the influence on the phononic
distribution. As in Ref. 17, we write

�ph-el = 2
1

3

2π

h̄
M2

ep

∑
�k

∑


J 2
 (�q)Fδ(Ei − Ef ),

considering that both spin types couple to the longitudinal
phonon mode. With similar simplifications as made in the
evaluation of the electron-phonon collision term (15), we end
up with

�ph-el = �π3

3h̄q
M2

ep

∫
dE

∑


J̄ 2


D(E)

k

D(E1)

k1
F �ep. (17)

Equation (17) is the counterpart of the integral for electron-
phonon-photon collisions (15) determining the change of the
phonon distribution function g(Eq,t). With these both terms,
our model describes the energy transfer from the electron into
the phonon system.

D. Electron-ion-photon collision

In this work, we disregard the complete band structure
resulting from a periodic potential but consider an effec-
tive one-band model of quasifree electrons. To account for
the potential of the lattice ions we consider an additional
collision term determining the absorption of photons by
inverse bremsstrahlung.17,53 An ion is considered to have an
infinite mass compared to the electron mass, thus an arbitrary
momentum 	�k but no energy can be transferred to a colliding
free electron. This scattering process is written as

�absorb = 2π

h̄

∑
	�k

∑


M2
eeJ

2
 ( �γ	�k)Fδ(Ei − Ef ) (18)

with F = f1(1 − f ) − f (1 − f1). Similar to the simplifi-
cations performed before, we transfer (18) into spherical
coordinates and find

�absorb = �π

2h̄k

∫
d	k

∑


D(E1)

k1
	k M2

eeJ̄
2
 (γ	k)F �ei.

(19)
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FIG. 2. (Color online) Quasilogarithmic transient distribution
function φ(E) [Eq. (21)] of aluminum after a laser irradiation of
0.12 mJ/cm2. The transient distributions are shown for 17 and 40 fs.
Background: The density of states in arbitrary units.

The step function �ei, ensuring momentum conservation,
equals �ep in Eq. (16) when replacing q with the exchanged
momentum 	k.

III. RESULTS

We solve the Boltzmann equation (2) for three different
materials: aluminum, gold, and nickel. We chose aluminum
since the density of states is similar to that of a free-electron
gas39 (see background of Fig. 2) and therefore allows a
comparison to the results of Ref. 17. In striking contrast, gold
and nickel have strong peaks in the DOS,39 which can be seen
in the background of Figs. 3 and 4, respectively. For nickel,
the peaks are directly located at, and for gold they are 2 eV
below, the Fermi energy.
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FIG. 3. (Color online) Quasilogarithmic transient distribution
function (21) of gold after a laser irradiation of 0.12 mJ/cm2. The
transient distributions are shown for 40 and 100 fs. Background: The
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035139-4



RELAXATION DYNAMICS IN LASER-EXCITED METALS . . . PHYSICAL REVIEW B 87, 035139 (2013)

-10

-5

0

5

10

6 7 8 9 10 11

II

I

III

energy [eV]

initial distribution
excited distribution
transient distribution
final distribution

qu
as

il
og

ar
it

hm
ic

 e
le

ct
ro

n 
di

st
ri

bu
ti

on
φ (

E
)

FIG. 4. (Color online) Quasilogarithmic transient distribution
function (21) of nickel after a laser irradiation of 0.12 mJ/cm2. The
transient distributions are shown for 80 and 160 fs. Background: The
density of states in arbitrary units.

As input parameters, three values are required and are
summarized in Table I: the speed of sound cs , the volume
of the unit cell �, and the Fermi energy EF . The Fermi energy
is used to determine the initial chemical potential at a given
finite temperature Te by solving the implicit integral equation
ne(Te) = ne(Te = 0). The density ne(Te) is given by Eq. (3b)
by setting B(E) to unity. As a fourth input parameter, the
DOS D(E) is needed, which is taken from Ref. 39. The Debye
energy ED in Table I has been derived from the volume of
the unit cell �.17 The screening κ , which strongly influences
the collision rates of the electrons and the electron-phonon
coupling, is approximated isotropically:14

κ2(t) = e2

ε0

∫
dE D(E)

df (E,t)

dE
. (20)

The values of the screening in Table I are calculated with
a Fermi distribution depending on electron temperature Te. In
the nonequilibrium case, when f (E,t) is the distribution of the
excited electrons, the screening κ(t) is calculated dynamically
at each time step. Equation (20) is a generalization of the
screening for a free-electron gas given in Ref. 58 and applied
in Ref. 17. This more general form strongly depends on the
density of states near the chemical potential since the derivative

TABLE I. Material parameters of aluminum, gold, and nickel.
The quantities indicated by asterisks are calculated: ED follows from
� and the screening κ is determined by Eq. (20). The screening κ at
300 K is used as initial condition for our simulations and the value
for 10 000 K is given to illustrate the dependence on the temperature.

Ref. Al Au Ni

cs (m/s) (57) 6420 3240 6040
� (10−29 m3) (57) 1.661 1.695 1.094
EF (eV) (39) 11.18 9.2 8.63
ED (meV) (*) 64.4 32.3 69.6
κ(Te = 300 K) (1010 1/m) (*) 2.69 2.50 11.90
κ(Te = 10 000 K) (1010 1/m) (*) 2.95 3.05 5.78

of the distribution function at this point is very high for
temperatures below Fermi temperature. As Table I illustrates,
the screening for gold and aluminum is almost constant for
different temperatures. However, in the case of nickel, it devi-
ates by a factor of 2 for our maximum considered excitation
strengths (	Te ∼ 104 K) since the chemical potential depends
significantly on the electron temperature.

The laser was chosen to be rectangular in time (τL = 10 fs)
at a wavelength of 800 nm, thus, h̄ω = 1.55 eV. The pulse
duration is very short to reduce both changes in optical
parameters59 and thermalization of the electron system during
the irradiation. For a clear illustration of our findings, we
neglect any bandwidth of the photon energy. The (absorbed)
excitation strength was varied from 0.013–0.65 mJ/cm2 which
corresponds to electric fields of 1–7×108 V/m. In this work,
we assumed  � 2 (one- and two-photon absorption) for all
materials since the difference to the absorbed energy with
 = 3 was less than 1%. Initially, electrons and phonons are
kept at room temperature T0 = 300 K.

A. Excitation of the electron system

In the following, we investigate the influence of the
excitation process on the electron distribution. We suppress
the interaction with the phonons to store the absorbed energy
of the laser field in the electron system and to concentrate on
the dynamics of the electrons. To analyze the transient electron
distribution f (E,t) in detail, we chose a quasilogarithmic
representation17

φ[f (E,t)] = − ln[1/f (E,t) − 1]. (21)

The main benefit is that in thermal equilibrium, when f (E,t)
equals a Fermi distribution, φ(E) is linear in E with its root at
the chemical potential and its slope is antiproportional to the
electron temperature (see Fig. 2, initial and final distribution).
A deviation from the linear behavior is an indication of a
nonequilibrium state (Fig. 2, excited distribution). In contrast
to a pure logarithmic representation, we also have insight
into the dynamics below the chemical potential, i.e., holes.
In Figs. 2–4, the initial distribution at 300 K, the distribution
directly after the laser irradiation at t = τL, the thermalized
distribution function after t = 2 ps, and two selected transient
distributions are depicted for the three materials under study.

In Fig. 2, the dynamics of the electron gas in laser-
irradiated aluminum is shown. The initial electron distribution
is disturbed by the laser excitation and steps with exactly
the width of the photon energy h̄ω are created: Due to
the Pauli blocking, only the electrons in the energy interval
[μ − h̄ω,μ] may overcome the Fermi edge and establish the
first two centered steps, the holes directly below and the
excited electrons directly above μ. The excited electrons may
again absorb photons creating the second step and so forth
(see Ref. 17 for details). This steplike behavior has also been
observed experimentally in gold.4 In Fig. 2, a peak above the
Fermi edge is observed in the excited electron distribution (I).
It is a direct result from the density of states since one-photon
energy below this peak a strong maximum in the density
of states (II) is observed. In contrast, another peak (III) in
the density of states at E − μ = 1.67 eV > h̄ω is not clearly
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FIG. 5. (Color online) Quasilogarithmic electron distribution
(21) of nickel for different excitation strengths directly after the
laser irradiation t = 10 fs. The excited (solid line) as well as the
thermalized (dashed line) distributions are depicted.

mirrored in the excited distribution function due to the Pauli
blocking.

Similar effects are observed in gold (Fig. 3). The transient
distribution functions have some hillocks (I) below the Fermi
edge resulting from the large amount of d electrons (II) located
≈2 eV below the Fermi energy. These d electrons are excited
by the laser to higher energies. Due to Pauli’s principle, the
resulting hillock is less pronounced as the density of states
would suggest.

The DOS in nickel has the largest impact on the transient
electron distribution (Fig. 4) since a vast amount of d electrons
are located directly at the Fermi energy (I). Due to a lot of free
places around μ, the scattering probability is increased and a
large amount of holes is left at E = μ − h̄ω (II). Moreover,
the large amount of electrons at the Fermi energy absorbs the
photons and creates a hillock (III) above the chemical potential.

In Fig. 5, we study the influence of different excitation
strengths on the electron distribution in nickel. The figure
depicts the nonequilibrium distribution directly after the laser
excitation as well as the equilibrium distribution function for
different absorbed fluences. The nonequilibrium distribution
shows a peak at one photon energy above the Fermi edge (I),
which for the highest applied fluence even becomes positive.
This strong excitation has a large influence on the electron-
phonon coupling as will be shown in Sec. III C.

In Fig. 6(a), the absorbed energy of the electron system
after the laser pulse δue = ue(t = τL) − ue(t = 0) with

ue(t) =
∫

D(E)f (E,t)E dE (22)

is plotted as a function of the laser fluence for aluminum,
gold, and nickel. The corresponding temperature after the
thermalization process depends not only on the absorbed
energy, but also on the particular DOS and is shown in Fig. 6(b).
The dependence of the absorbed energy on the laser fluence
is almost linear, as the dominating term in the Taylor series
of the averaged Bessel function J̄1 in Eqs. (15) and (19) is
quadratic in the laser field, i.e., for the given laser pulse shape
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FIG. 6. (Color online) The internal energy gained by the electron
system directly after the laser irradiation depending on the fluence (a).
After the thermalization process (without the cooling of the phonons),
a final electron temperature is reached which is plotted in (b).

linear in fluence. Additionally, the multiphoton absorption is
often negligible in metals since J̄2 � J̄1. However, for gold,
the linear dependence between fluence and absorbed energy
slightly deviates, as multiphoton absorption comes into play.
The strong peak in the DOS of gold [Fig. 3 (II)], which is 1.3 h̄ω

below the Fermi energy, facilitates a higher-order absorption
process.

This large amount of d electrons in gold also has a large
influence on the absorption properties for different photon
energies. In Fig. 7, the gained electron energy in dependence
of the photon energy or laser wavelength, respectively, is
depicted. For aluminum and nickel, the energy decreases with
increasing photon energy since ω enters in the denominator of
the argument of the averaged Bessel function and therefore
a higher photon energy h̄ω leads to a reduced absorption
probability. For gold, a conspicuous deviation from this
behavior is observed when the photon energy exceeds 2 eV.
This is exactly the characteristic absorption edge of the d

electrons which for higher photon energies may be excited in
a one-photon process directly across the Fermi level.

B. Thermalization of the electron system

The two-temperature model assumes implicitly that the
electrons are in thermal equilibrium and a well-defined tem-
perature characterizes the whole electron system. However, we
showed in the last section that shortly after an ultrashort laser
excitation this assumption is not valid. In the further course, a
process called thermalization drives the electron system back
into a new equilibrium state with a distinct temperature and
chemical potential. The latter has to be considered carefully
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FIG. 7. (Color online) The absorbed energy in the electron system
after the laser irradiation at different wavelengths and a constant
fluence.

as well since it influences the electron screening and the
electron-phonon coupling as will be shown below, and plays
an important role, for instance, in ultrafast magnetization
dynamics.48 To estimate whether and when the assumptions
of the TTM hold, we analyze the thermalization process. It
can be characterized by a certain thermalization time τ , which
depends on excitation type, excitation strength, and material
properties.4 As in Sec. III A, we suppress the interaction with
the phonons, thus the energy density in the electron system
(22) is constant during the thermalization process.

Figures 2–4 illustrate the evolution of the excited electron
distribution towards a thermalized one. The final quasilog-
arithmic distribution φ(E) [c.f. Eq. (21)] at 2 ps after laser
excitation is depicted in the respective green dashed-dotted
curves. For all three materials, it is again linear as the initial
one, indicating that the system is thermalized. However,
compared to the initial distribution, it has lower slope,
signifying a higher temperature than in the initial state.

We exploit the second law of thermodynamics stating that
the entropy of an isolated system increases or, in the case
of thermal equilibrium, remains constant. Thus, we trace the
transient entropy of the electron system60

S =−
∫

dE D(E) [f ln(f ) + (1 − f ) ln(1 − f )] (23)

to extract the characteristic time τ of thermalization. The
second term (1 − f ) accounts for the holes and is essential
to compute the complete electron entropy.

Figure 8 depicts the normalized transient entropies of
the three metals after irradiation with a laser described
above (800 nm, 10 fs duration) and an absorbed fluence of
0.12 mJ/cm2. The curves fit well to an exponential function
and the characteristic time is identified with the thermalization
time τ . For aluminum, gold, and nickel, we find for the same
laser fluence τ = 11 fs, τ = 47 fs, and τ = 86 fs, respectively.
As already claimed, the thermalization strongly depends on
the distinct material. Aluminum thermalizes fast, while nickel
and gold are much slower. Primarily, this is due to both
the screening parameter κ and the density of states. First,
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FIG. 8. (Color online) Transient entropy for the three considered
materials aluminum, gold, and nickel. The absorbed fluence is
0.12 mJ/cm2 Inset: The dependence of the thermalization time τ

on the screening for the example of nickel. We changed the screening
by a prefactor β: κ ′(t) = β × κ(t).

we analyze the influence of the screening parameter on the
thermalization process. For that we assume different artificial
screening parameters in nickel, keeping all other features of the
respective simulation as before. The resulting thermalization
time is shown in the inset of Fig. 8 in dependence on the
assumed screening parameter κ ′(t) = β × κ(t), which was
obtained by multiplying the screening according to Eq. (20)
with factors β between 0.5 and 3.0.

An empirical relation τ ∝ βn has been fitted to our results.
We expect a result around n = 4 since the electron-electron
collision integral in Eq. (7) with (8) depends on (	k2 + κ2)−2,
which can be estimated to κ−4 since the transferred momentum
	k is commonly smaller than the screening κ . Indeed, our
fit delivers n = 3.6, thus, a thermalization time τ ∝ κ3.6,
showing that the screening has a significant influence on the
thermalization process.

Figure 9 depicts the transient screening according to
Eq. (20) of all three materials for a fluence of 0.65 mJ/cm2

under nonequilibrium and equilibrium conditions. In the
nonequilibrium case, we directly applied Eq. (20) with the tran-
sient nonequilibrium distribution function f (E,t). To compare
with equilibrium conditions, we calculate κ through Eq. (20)
choosing at each moment the corresponding thermalized Fermi
distribution providing the same internal energy and density
as the nonequilibrium distribution. For gold and aluminum,
the screening is almost constant and nonequilibrium effects
play a minor role. For nickel, the temperature dependence
as well as the nonequilibrium effects of the screening are
tremendous. In this context, we simulate nickel by applying a
screening under equilibrium conditions and compared it with
the nonequilibrium case (Fig. 8). Both results deviate strongly,
hence, it is essential to apply Eq. (20) dynamically rather than
using equilibrium approximations such as Thomas Fermi or
Debye screening without any information about the electron
distribution.

Figure 9 and Table I show also that aluminum and gold
feature a similar screening. Therefore, we expect a similar
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FIG. 9. (Color online) The transient screening under nonequi-
librium and equilibrium conditions for aluminum, gold, and nickel.
The laser fluence was chosen to 0.65 mJ/cm2. Here, electron-phonon
collisions are considered.

thermalization time. However, the characteristic time for the
entropy increase in Fig. 8 pronounces differences. The reason
is that the density of states of both materials differ. As
Eq. (10) and Ref. 15 suggest, the density of states influences
the thermalization primarily around the Fermi level or, more
precisely, the chemical potential

1/τ ∝ D(E ≈ μ)3.

Most of the collisions occur in this region as the collision
functional F in Eq. (10) has its maximum around μ.

However, the thermalization time depends not only on the
material properties but on the excitation strength as well.
Figure 10 depicts the thermalization time, which is extracted
from the entropy evolution in dependence on the absorbed
fluence. The thermalization time decreases strongly with the
fluence, ranging from picoseconds to less than 10 fs with
increasing intensity. This indicates that for a higher energy
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FIG. 10. (Color online) The thermalization time τ after excitation
with a 10-fs laser pulse of 800 nm. The thermalization time was
extracted from the evolution of the entropy [see Eq. (23)].

deposited in the electron system, the equilibrium state is
reached faster due to the increased phase space of the electrons.
From Fermi-liquid theory, an expression has been found to
determine an energy-dependent collision rate of an excited
electron with energy E within a thermalized electron bath at
temperature Te (Refs. 61–63):

1

τee(E,Te)
= π2

√
3

128

ωp

E2
F

(πkBTe)2 + (E − EF )2

e−(E−EF )/kBTe + 1
, (24)

where ωp =
√

nee2

mε0
determines the plasma frequency. We

should clearly distinguish between the collision time of one
excited electron in a thermalized electron bath [see Eq. (24)]
and the time scale in which the whole laser-excited system
is equilibrated [here determined by the transient entropy of
Eq. (23)]. The collision time of one excited “hot” electron
is strongly energy dependent, whereby the above-discussed
thermalization time τ of the complete excited electron system
is an averaged quantity. It is instructive to compare the thermal-
ization time, obtained through the transient entropy according
to Eq. (23), with the electron collision rate of Eq. (24) since
this assumption is often applied in the literature.6,64,65 To that
end, we approximate Eq. (24) for electrons with energies
(E − EF ) � kBT since the integrand of Eq. (23) has its
maximum at the Fermi edge. A simple dependence of the
collision time on the electron temperature is found:

1

τee(Te)
= π4k2

B

√
3

256

ωp

E2
F

T 2
e (25)

≡ AT 2
e . (26)

To estimate the validity of this approximation with the help of
our kinetic approach, we extract the final electron temperature,
which will be reached after the excitation and thermalization
process (t � 2 ps) from the distribution function f (E,t). Here,
this temperature is constant since no energy transfer to the
phonons is taken into account. We follow the thermalization
process to this temperature through the analysis of the transient
entropy according to Eq. (23).

In Fig. 11, we compare Eq. (26) to our extracted ther-
malization times of the transient entropy by using a double-
logarithmic representation. Thus, we expect a linear behavior
with a negative slope of two which is in good agreement for
aluminum, however, for gold and nickel this estimation is
less appropriate. This is due to the strong simplifications which
are made in Eqs. (24) and (25): The density of states was
assumed to be free-electron like, the screening has not been
taken explicitly into account, and only electrons at the Fermi
edge are considered. Figure 11 indicates a smaller exponent in
Eq. (26) for nickel, which was also proposed in Ref. 20.

The thermalization prefactors A found in literature diverge
strongly (see Table II), and in general this parameter is
barely investigated. We compare them with those obtained
from Eq. (25), and there are remarkable differences as well,
again indicating that Eq. (25) is only a rough approxi-
mation. Nevertheless, Eq. (26) gives an adequate estimate
for the temperature dependence of the thermalization time
in the considered range of excitations and is often applied
in the context of electrical or heat conduction.6,27,33,66,68,69

Therefore, we fitted the thermalization factor A to all our
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FIG. 11. (Color online) The thermalization times, extracted from
the transient entropy [see Eq. (23)], are plotted against the final
electron temperatures after the thermalization process. In the double-
logarithmic representation, the lines are linear fits of Eq. (26) to our
data points. The extracted parameters A are listed in Table II.

simulation results, and summarize the extracted A in Table
II.72

C. Electron-phonon coupling

In the previous section, we have shown that the electron
system thermalizes within a characteristic thermalization time
τ in the range of some femtoseconds to picoseconds depending
on the irradiation strength. Applying the two-temperature
model for times shorter than τ is thus questionable. Nev-
ertheless, in many applications, the TTM was successfully
applied after an ultrashort laser excitation .9–11,33 In particular,
for high fluences, when thermalization is rather fast (see
Fig. 10), this can be justified. However, it has been shown
that the heat transfer from nonequilibrium electrons to the
lattice is delayed in comparison to the thermalized electron
gas.17 This can be to some extent interpreted as a reduced
electron-phonon coupling parameter α in Eq. (1). In general,
a constant electron-phonon coupling as often applied in the
literature is a strong simplification, in particular, when the
effect of the strong deviation from a free-electron-gas like DOS
comes into play.39 It was shown in Ref. 70 that the application
of a temperature-dependent coupling strength leads to a better
agreement between experimental observation and theoretical
simulation. Moreover, the temperature dependence of the

TABLE II. The prefactor A in (106 K−2 s−1) for different materi-
als. The last row lists the values from the literature.

Al Au Ni

Simulation (Fig. 11) 2.39 1.14 1.45
Fermi liquid [Eq. (25)] 0.94 2.62 3.55
Literature 0.91 (66) 12.0 (27) 1.4 (27)

0.6 (expt) (65) 45.7 (66) 5.9 (67)
14.2 (theor) (65) 11.8 (33)
3.76 (68) 3.67 (9)
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FIG. 12. (Color online) Electron-phonon coupling of aluminum
for different excitation strengths corresponding to electron temper-
atures according to Fig. 6. The coupling factors for nonthermalized
electrons, thermalized electrons, and the comparison to Lin et al. are
depicted.

coupling parameter may directly influence the finally observed
material modification.21

In this work, we analyze the strength of the electron-phonon
coupling after ultrafast laser excitation for the three materials
aluminum, gold, and nickel. To that end, we consider now the
influence of the phonon system by including the collision rates
Eqs. (15) and (17) in our calculation. In the case that Te and
Tp are defined, the coupling factor α can be extracted from the
definition of the TTM (1) after irradiation [i.e., when S(t)=0]
and neglecting heat conduction:

α = due/dt

Tp − Te

∣∣∣∣
t=τL

. (27)

The internal energy ue is given in Eq. (22). We evaluate
the electron-phonon coupling directly at the end of irradiation.
Generally, and as shown in the last section, the system is
in nonequilibrium by that time. For the calculation of the
electron-phonon coupling through Eq. (27) under nonequilib-
rium conditions, we therefore determine Te as the temperature
the electron system would reach after thermalization in the
case of no heat exchange (Fig. 6). The temperature Tp of
the phonon system can be determined in a similar manner.73

We compare this nonequilibrium case with the equilibrium
one, which is given by an equilibrium electron system and
a phonon system at the same respective internal energies.
The electron-phonon coupling parameters α resulting from
our simulations for the equilibrium and the nonequilibrium
condition are depicted in Figs. 12–14. Additionally, the results
from Lin et al.39 calculated under equilibrium conditions are
presented.

First, we analyze the electron-phonon coupling in the
equilibrium case, i.e., the blue solid lines in the respective
figures. For aluminum and gold (Figs. 12 and 13), the electron-
phonon coupling increases with increasing laser intensity,
i.e., electron temperature. This can be explained directly:
The phonon energies Eq � ED are typically in the order of
several meV. Hence, due to Pauli’s principle, only electrons in
narrow energy interval (≈kBTe) around the chemical potential
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FIG. 13. (Color online) Electron-phonon coupling of gold for
different excitation strengths corresponding to electron temperatures
according to Fig. 6. The coupling factors for nonthermalized
electrons, thermalized electrons, and the comparison to Lin et al.
are depicted.

contribute to the electron-phonon collisions. With increasing
electron temperature, more and more electrons couple to
the phonons because the interaction interval kBTe increases.
Therefore, the coupling parameter α is expected to increase
with the electron temperature.

In striking contrast, for nickel the behavior of the electron-
phonon coupling in the equilibrium case is vice versa; the blue
solid line in Fig. 14 decreases with increasing temperature.
This behavior is even more unexpected since, as Table I
shows, the screening decreases with increasing temperature
and should thus lead to an increased coupling. However, the
large amount of d electrons located exactly at the Fermi
edge (see background in Fig. 5) complicates the physics:
The chemical potential μ(Te) depends significantly on the
temperature (see roots of the initial and final distribution
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FIG. 14. (Color online) Electron-phonon coupling of nickel for
different excitation strengths corresponding to electron temperatures
according to Fig. 6. The coupling factors for nonthermalized
electrons, thermalized electrons, and the comparison to Lin et al.
are depicted.

in Fig. 5). On that account, by increasing the electron
temperature, and therefore the chemical potential as well,
a dramatic decrease in the electron occupation probability
f (E,t) × D(E) around the chemical potential leads to the
observed counterintuitive behavior.

We compare our results to those presented in Lin et al.39 for
thermalized electron gases and notably we find a quite good
agreement for aluminum and gold, though, the authors utilize
the moment of the spectral function λ〈ω2〉 from experimental
data. In contrast, our approach relies only on a few material
parameters (see Table I) and the density of states, without
any experimental input. In the case of nickel, our approach
and that of Lin et al. leads to the same qualitative behavior,
however, shifted to a higher absolute coupling in our case. We
suppose that some assumptions in Ref. 39 do not correspond
to our model: The authors of Ref. 39 introduced the Eliashberg
function and further assumed a constant matrix element Mep to
simplify the complicated integrals we solved numerically. In
addition, they assume a constant screening, implicitly included
in the experimentally obtained moment of the spectral function
λ〈ω2〉. In this work, we found that the screening parameter has
a large influence on the results and calculated it in dependence
on temperature. On the other hand, our model, considering only
the density of states instead of the complete band structure,
could have neglected some mechanisms such as possibly
important interband transitions which are, of course, covered
by the experiment and implied in λ〈ω2〉. To investigate this
issue, ab initio calculations with the detailed electron band
structure become necessary.

Let us now analyze the electron-phonon coupling under
nonequilibrium conditions, i.e., in this case after 10 fs of
laser irradiation at 800 nm. The coupling parameters α shown
as red dashed lines in Figs. 12–14, respectively, strongly
differ from the equilibrium case. For aluminum (Fig. 12), the
electron-phonon coupling is suppressed for low temperatures
and conforms for higher temperatures. This is the same effect
as explained in Ref. 17 [Figs. 5(b) and 6(b) therein] for
the case of a free-electron gas since the weakly excited
distribution function behaves in the region ±ED like an
unexcited distribution around the chemical potential. The
electron-phonon collisions mainly take place in this region and
therefore the coupling is reduced as compared to the thermal-
ized case. For higher excitations, the thermalization is faster
(see previous section), thus, the coupling in nonequilibrium
resembles the equilibrium case. As experimentally confirmed,9

the electron-phonon coupling in gold under nonequilbrium
conditions (Fig. 13) is suppressed for the same reasons in the
case of very low excitation when s electrons close around
the chemical potential determine the relaxation behavior.
However, for higher intensities, the nonequilibrium coupling
factor even exceeds the equilibrium case as has also been
observed experimentally.71 This is due to the d electrons
which are excited with an increasing probability for increasing
intensity (i.e., increasing irradiation strength in our case).
These electrons then also contribute to the electron-phonon
coupling and therefore speed up the coupling. Strikingly,
in nickel the nonequilibrium coupling under nonequilibrium
conditions behaves vice versa than in the equilibrium case
(see Fig. 14). For low excitations, the coupling is suppressed
and the same explanation as for aluminum holds. Moreover,

035139-10



RELAXATION DYNAMICS IN LASER-EXCITED METALS . . . PHYSICAL REVIEW B 87, 035139 (2013)

the shift of the chemical potential determining the behavior
under equilibrium conditions is not completed directly after
excitation. For higher fluences, the particular DOS of nickel
leads to an excitation of a large number of d electrons above
the chemical potential. This is reflected in a large occupation
probability in the interval [μ,μ + h̄ω] in Fig. 5. Within this
energy interval, the Pauli principle is powerless and the
electrons scatter in a large phase space which increases the
electron-phonon coupling even above the equilibrium condi-
tion. Also, the screening deviates dramatically in both cases
(compare Fig. 9 which was calculated for the largest excitation
strength shown in Fig. 5). However, the larger screening under
nonequilibrium conditions has a minor influence here. In
contrast to noble metals, experimental studies on transition
metals are rare.20 The increase of electron-phonon coupling
with excitation strength under nonequilibrium conditions as
reported here for nickel has, to our knowledge, not yet been
observed experimentally. However, large deviations resulting
from different measurements were reported,20 which may be
due to different nonequilibrium states upon ultrafast excitation.
We hope that our study stimulates further experimental efforts
on this topic.

IV. SUMMARY

In this work, we analyzed the excitation and thermalization
of electrons during and after an ultrashort laser irradiation
and, additionally, the influence of a nonequilibrium electron
distribution on electron-phonon coupling. We derived appro-
priate Boltzmann collision integrals including the density of
states explicitly within an effective one-band model. For three
materials, aluminum, gold, and nickel, we first analyzed the
excitation by an ultrashort laser pulse and found that the
properties of the density of states play a significant role. For
aluminum, the behavior resembles that of a free-electron gas as
has been studied in Ref. 17. In gold, electrons are excited from
the d bands above the chemical potential changing the excited
electron distribution drastically. In nickel, the particular large
density of states directly at the Fermi edge leads to a very high
occupation probability above the Fermi edge upon excitation,

which influences both thermalization and electron-phonon
coupling.

We extracted thermalization times for certain laser pa-
rameters and have studied the influence of screening on the
thermalization. We showed that a nonequilibrium electron
distribution may strongly change the screening and thus
thermalization dynamics. Furthermore, we analyzed the ap-
proximation that the inverse thermalization time depends on
the square of the electron temperature which will be reached
after the thermalization process. We found that this assumption
provides only a rough estimation since the screening and
density of states are not considered explicitly.

We have studied the electron-phonon coupling for different
excitation strengths. For a thermalized electron gas, the
electron-phonon coupling was found to increase with increas-
ing electron temperature for aluminum and gold. However,
for nickel the coupling decreases due to the large amount of
d electrons at the Fermi edge. For the nonequilibrium case,
the coupling is expected to be lower due to the reduced phase
space the electrons can scatter in. We showed that this is indeed
the case for low excitations for all three studied materials. For
higher irradiation strengths, the coupling in aluminum behaves
similar to equilibrium due to the fast thermalization. In gold
and in nickel, the electron-phonon coupling is strengthened
due to the excited d electrons.

We conclude that for low excitations the two-temperature
model does not hold directly after the laser irradiation due
to the slow thermalization. However, it could be applied for
high irradiation intensities for free-electron-like metals. For
more complicated metals, as for instance for gold or nickel,
the corresponding parameters should be examined carefully
for the particular irradiation conditions and more advanced
models become necessary.
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