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We study a model for low-doped cuprates where holes aggregate into oriented stripe segments which have
a magnetic vortex and antivortex at the extremes. We argue that due to the interaction between segments
a ferronematic state with macroscopic polarization is stabilized. This state can be characterized as a charge
nematic which, due to the net polarization, breaks inversion symmetry and also exhibits an incommensurate spin
modulation. Our calculation can reproduce the doping-dependent spin structure factor of lanthanum cuprates in
excellent agreement with experiment and allows to rationalize experiments in which the incommensurability has
an order-parameter-like temperature dependence.
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I. INTRODUCTION

The question of whether there is a broken-symmetry hidden
order in the pseudogap phase of cuprate high-temperature
superconductors is still a matter of debate. Proposals for a
broken-symmetry state include orbital currents which break
time-reversal symmetry,1 spirals,2 d-density wave,3,4 and d-
wave Pomeranchuk Fermi surface instability.5 In this regard, a
popular proposal is the formation of stripes which corresponds
to unidirectional charge6,7 or spin and charge order8,9 even-
tually supplemented with a modulation of superconducting
order.10

Bulk evidence for charge stripe order in the high-
temperature superconductors has so far only been found
in La1.875Ba0.125CuO4

11 and La1.8−xEu0.2SrxCuO4
12 by res-

onant soft x-ray scattering experiments. Similarly to the
compound La1.48Nd0.4Sr0.12CuO4, where the phenomenon of
stripe formation has been initially seen via the coupling of
the charge order to the lattice,13 these materials undergo
a low-temperature tetragonal lattice (LTT) distortion which
pins charge order along the copper-oxygen bond direction.
The coupling of charge with the longitudinal spin component
then induces a concomitant modulation in the spin channel
which within neutron scattering can be detected as an elastic
or low-energy incommensurate response. Recently the direct
occurrence of charge density waves has been observed by
resonant x-ray scattering14,15 also in YBCO materials around
1/8 doping. Low-energy incommensurate spin scattering is
also found in non-codoped lanthanum cuprates, where it
undergoes a rotation toward the diagonal direction below hole
concentrations x � 0.05 where it even becomes elastic.16–18

No charge order, however, has been observed so far at low
doping. Interestingly the incommensurability δ (proportional
to the inverse of the spin modulation) evolves linearly δ ∼ x

from x = 0.02 up to the metallic (or SC below Tc) phase where
it saturates above x � 1/8.19 Below x ≈ 0.02 commensurate
antiferromagnetic order coexists with a spin-glass phase
with incommensurate spin correlations.20 It is also worth
mentioning that a recent inelastic neutron scattering study
of single-layer Bi2+xSr2−xCuO6+y (Bi2201) cuprates21 has
revealed the same incommensurability of low-energy spin
fluctuations as for LSCO.

Quasistatic incommensurate spin scattering along the Cu-O
bond direction has also been found in detwinned YBCO.22,23

This also raised the issue of the melting of this order and
of the possibility of (dynamical) precursors of such order. In
any case, the experimental evidence of rotational symmetry
breaking22–24 points towards a nematic order although it is not
yet clear whether this order arises from a melted stripe state,25

from incipient unidirectional fluctuating stripes,26 or from
an independent d-wave type nematic actor which preserves
translational symmetry.27

In this paper we show that neutron scattering experiments
in strongly underdoped cuprates can be understood in terms
of a phase which breaks rotational and inversion symmetry. It
is formed by oriented stripe segments without positional order
that leads to ferronematic order. A ferronematic state can arise
also in the Fermi liquid in the presence of long-range dipolar
forces.28 The segments are oriented because they sustain a
vortex and an antivortex of the antiferromagnetic (AF) order
in the extremes (Fig. 1). Although the phase has no order
in the charge sector, we show that it induces magnetic in-
commensurate peaks in excellent agreement with experiments
(Fig. 8). Remarkably, the order parameter is proportional to
the incommensurability as suggested by neutron scattering
measurements.22,23 We focus on nonsuperconducting under-
doped LSCO which can be grown in a structure with only two
twin domains with different population. Therefore, similarly to
the case of YBCO, the one-dimensionality of the low-energy
(diagonal) spin response can be clearly resolved.17,18

The structure of the paper is as follows: In Sec. II we
introduce the microscopic electronic model and give the
details of its solution. In Sec. III we present the variational
results showing the formation of charge segments, while in
Sec. IV we describe the effects of the long-range Coulombic
repulsion limiting the length of the segments. Section V
describes the mapping of the microscopic electronic model
to the pure spin model and the related formation of spin-phase
regions responsible for the incommensurate spin response. The
comparison with the experimental neutron scattering intensity
is also reported here. The discussion of the results and our
concluding remarks are in Sec. VI.

II. MODEL AND CALCULATION METHODS

For the (low) doping spin structure, previous varia-
tional computations29–32 in cuprates suggest the formation of
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FIG. 1. (Color online) (a) Stripe segment for Nc = 8 added holes (corresponding to 4 VA pairs) obtained by minimizing the GA energy on
a 16 × 16 lattice in the one-band Hubbard models with t ′/t = −0.2. The radius of the circles is proportional to the added hole density while
the arrows are the staggered magnetization. (b) Spin currents [Eq. (5)] defined from the conservation of the z component of the magnetization.
In the continuum limit the spin current is proportional to the gradient of the phase of the staggered magnetization.

magnetic vortex-antivortex (VA) pairs, the relevance of which
has been discussed, e.g., in the context of the destruc-
tion of long-range Néel order.33 In order to study these
textures we have performed variational calculations based
on the Gutzwiller approximation (GA) of the extended
one-band Hubbard model (see Ref. 30 for details of the
approach)

H =
∑
i,j,σ

tij c
†
i,σ cj,σ + U

∑
i

ni,↑ni,↓, (1)

where ci,σ (c†i,σ ) destroys (creates) an electron with spin

σ at the site i, and ni,σ = c
†
i,σ ci,σ is the number operator

at the site i. U is the on-site Hubbard repulsion and tij
denotes the hopping parameter between sites i and j . We
restrict our attention to hopping between nearest (∼t) and
next-nearest (∼t ′) neighbors. We base our calculations on the
Gutzwiller variational wave function |�g〉 = Pg|SD〉, where

Pg is the Gutzwiller projector and |SD〉 a Slater determinant.
For |SD〉 we use a state with arbitrary charge and spin order,
including spin canting. This limits our calculations to clusters
of 20 × 20 sites. We define the associated one-body density
as ρ

σ1,σ2
ij = 〈SD|c†jσ2

ciσ1 |SD〉. The wave-function optimization
problem leads to a generalized Gutzwiller approximation,34

which on the saddle-point level is equivalent to the Kotliar-
Ruckenstein slave-boson approach.35 The derivation of the
spin-rotational-invariant Gutzwiller energy functional can be
found in Ref. 36:

EGA =
∑
i,j

tij 〈�†
i zizj�j 〉 + U

∑
i

Di. (2)

Here we have defined the spinor operators

�
†
i = (c†i,↑,c

†
i,↓), �i =

(
ci,↑
ci,↓

)
and the z matrix

zi =
⎛
⎝zi↑ cos2 ϕi

2 + zi,↓ sin2 ϕi

2
S−

i

2Sz
i

[zi↑ − zi↓] cos ϕi

S+
i

2Sz
i

[zi↑ − zi↓] cos ϕi zi,↑ sin2 ϕi

2 + zi↓ cos2 ϕi

2

⎞
⎠ , tan2 ϕi = S+

i S−
i(

Sz
i

)2 ,

and for clarity the spin expectation values in the Slater determinant are denoted by S+
i = ρ

↑,↓
ii , S−

i = ρ
↓,↑
ii , Sz

i = (ρ↑,↑
ii − ρ

↓,↓
ii )/2,

and ρii = ρ
↑,↑
ii + ρ

↓,↓
ii . In the limit of a vanishing rotation angle ϕ the z matrix becomes diagonal and the renormalization factors

ziσ =
√

(1 − ρi + Di)
(

1
2ρi + Sz

i

cos(ϕi )
− Di

) +
√

Di

(
1
2ρi − Sz

i

cos(ϕi )
− Di

)
√(

1
2ρi + Sz

i

cos(ϕi )

)(
1 − 1

2ρi − Sz
i

cos(ϕi )

)

reduce to those of the standard GA. Variational solutions
are computed by minimizing EGA with respect to the Slater
determinant and to the local double occupancy Di .

In the following the ratio between on-site
repulsion U and nearest-neighbor hopping t is set to U/t = 8
as suggested by previous studies.37,38 The ratio between
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next-nearest-neighbor hopping t ′ and t is taken as a material
parameter.39,40

The spin textures in the present papers are conveniently
characterized by the associated spin currents (see Fig. 1)
flowing from site Ri to Rj . These are defined via the continuity
equation

∂tS
α
i +

∑
j

J α
i→j = 0, (3)

where
∑

j J α
i→j is the generalized lattice divergence of the α

component of the local spin current at site Ri .
Together with the Heisenberg equation of motion ∂tS

α
i =

i[H,Sα
i ] one thus finds∑

j

J α
i→j = −i

[
H,Sα

i

]
. (4)

Evaluating the expectation value of Eq. (4) within the GA
yields

J
GA,α
i→j = tij Im

∑
σ1...σ4

Nel∑
k=1

	∗
iσ1

(k)τα
σ1σ2

ziσ2,σ2zjσ4σ3	jσ4 (k), (5)

where 	i,σ1 (k) are the amplitudes which diagonalize the
Gutzwiller Hamiltonian and τα

σ1σ2
denote the Pauli matrices.

III. VARIATIONAL RESULTS

Within this variational framework the energetically most
stable solution for two holes is a VA pair.30 Specifically, a
single hole deforms the AF background and can be viewed as
a self-trapped spin polaron, while two holes have lower energy
as a VA pair rather than two independent spin polarons. The
VA pair has a magnetic dipole μ = kl, k being the vorticity
and l the vector connecting V and A. The theory which is
developed in the following is precisely based on the tendency
of doped holes in an AF background to form a gas of VA pairs.
These adopt the role of dipole particles in dipolar fluids.41 The
individual pairs interact via a two-dimensional dipole-dipole
interaction

Vmag = μ1μ2

R2
− 2

(μ1R)(μ2R)

R4
, (6)

where R connects the center of the two pairs (see insets of
Fig. 2).

Contrary to the 3D case, for the 2D dipole-dipole interaction
the head-to-tail alignment and the side-by-side quadrupolar
configurations in the insets of Fig. 2 are energetically de-
generate. However, our GA computations reveal the presence
of an anisotropic short-range contribution for the interaction
among pairs, which originates from the distribution of the
localized holes. This results in a head-to-tail aggregation of VA
pairs which tend to form chains with a dipolar like distortion
of the AF background (see Fig. 2). Figure 1(a) shows the
spin and charge structure for 8 holes corresponding to 4 VA
pairs. Examination of the spin current, Fig. 1(b), allows one to
visualize the VA pair nucleated at the extremes of the segment
and the fact that the texture breaks inversion symmetry. Notice
that the segments tend to form an antiphase domain wall of
the AF order although the transition from finite segments to
infinite stripes is nontrivial and will be discussed elsewhere.42
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FIG. 2. (Color online) Energy of quadrupolar (circles, black) and
head-to-tail alignment (diamonds, red) as a function of distance
computed within the GA. For comparison the solid (blue) curve
shows the dipole-dipole interaction Eq. (6) which approaches the
GA result at large distances. Parameters for the GA computation:
U/t = 8, t ′/t = −0.2.

Figure 3 shows that segments formed by Nc holes have
systematically lower energy than Nc spin polarons. Consid-
ering the segment as formed by Nc/2 VA pairs we obtain
the binding energy Ebind between the pairs from E(Nc) =
E2Nc/2 + Ebind(Nc/2 − 1), where E2 is the energy of an
isolated pair. Figure 3 reveals that the next-nearest-neighbor
hopping t ′ has a strong influence in determining the pref-
erential orientation of the segments. Diagonal segments are
more (less) stable than those oriented along the vertical or
horizontal bond direction for small (large) values of |t ′/t | [see
also inset to panel (b)]. Parameters appropriate for lanthanum
cuprates (t ′/t ∼ −0.15 . . .− 0.2)40 yield a slight preference
for diagonally oriented segments (11 direction) with respect
to the vertical or horizontal directions.

In cuprate superconductors larger values of |t ′/t | are usually
associated with the YBCO and multilayer materials. Indeed
the observation of static incommensurate spin scattering in
underdoped YBCO along the copper-oxygen bond direction is
consistent with our computed segment orientation for larger
|t ′/t |.

Inclusion of a next-next-nearest-neighbor hopping t ′′ (with
t ′′/t > 0) acts in the same direction as t ′/t < 0; i.e., it
further stabilizes horizontally (or vertically) over diagonally
aligned segments. In addition we have checked that in the
low-temperature orthorhombic (LTO) phase an anisotropy of
t ′/t along orthorhombic a and b axes favors the orientation of
the VA pairs along the a axis.

IV. EFFECT OF THE LONG-RANGE
COULOMB INTERACTION

Until now we have neglected the long-range part of the
Coulomb interaction which limits the infinite aggregation of
VA pairs. In the spirit of considering the energy of charged
clusters in a uniform compensating background,43 we may
estimate the effect of Coulomb interaction by considering
Nseg segments, each composed of Nc charges, embedded in
a homogeneously charged background. For a fixed doping
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FIG. 3. (Color online) Energy of a chain of Nc holes corresponding to Nc/2 VA pairs aligned along the vertical (open symbols, solid line)
and diagonal direction (full symbols, dashed line) as compared to the energy of Nc polarons. The slope of the lines corresponds to the binding
energy between pairs. Parameters: U/t = 8, t ′/t = −0.1 (a), t ′/t = −0.2 (b), and t ′/t = −0.3 (c) (with t = 360 meV in LSCO). The upper
right inset to panel (b) shows the binding energy as a function of t ′/t for vertical (squares) and diagonal (circles) directions. Lines are guides
to eyes. Computations were done in systems with up to 20 × 20 sites.

concentration x = NsegNc/L
2 (L2 being the number of sites)

we want to estimate the optimum size of the segments allowing
Nc and Nseg to vary. For large Nc the Coulomb energy per
charge of each single segment increases logarithmically with
the number of holes so the total energy reads

E(Nc)

L2
= x

[
νEc ln(Nc) + γ + 1

Nc

|Ebind|
]

(7)

with γ = (E2 + Ebind)/2 and Ec = e2/(ε0aortho) a charging
energy expressed in terms of the orthorhombic lattice constant
aortho and of the static dielectric constant ε0. The filling factor ν

is defined as the number of charges per site along the chain. The
last term comprises the fact that shorter segments correspond
to less total binding energy. The energy is minimized by
Nc = |Ebind|/(νEc) which leads to short segments of only few
lattice constants at infinitesimal doping. However the above
estimate is only a lower bound. Indeed Eq. (7) is valid if the
Coulomb interaction between segments is neglected. To get
a rough estimate of the intersegment Coulomb interaction in
the dilute limit (when the length of a segment is much smaller
than the segment separation) we consider in the Appendix

the intersegment Coulomb energy estimated from a Wigner
crystal of localized objects with charge eNc.44 In this case we
find that the size of the segment even tends to increase with
doping. Moreover, the log approximation of the energy of a
single segment is not reliable for short segments. Including a
suitable form of screened Coulomb interaction (see Appendix),
we obtain Nc ∼ 2–10 depending on the chosen parameters.

V. MAPPING TO A 2D SPIN MODEL

We assume that quenched disorder will yield a state in
which segments have no positional order. We have checked
numerically in an ensemble of segments42 that the combination
of long-range dipolar interaction plus short-range interaction
favors a ferronematic alignment of the dipoles. An analogous
state has been previously found for a two-component Fermi
gas by Fregoso and Fradkin.28

Information on the spin response of a large aggregate of
segments from the GA is hampered by the relatively small
size of the clusters that can be numerically solved. Since the
textures are planar and we are interested in the large-scale
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J

J’

FIG. 4. Definition of couplings used in the XY-model calculation.

behavior, we consider instead a classical AF XY model45

H =
∑
ij

Jij [Sx(ri)S
x(rj ) + Sy(ri)S

y(rj )] (8)

with antiferromagnetic Jij ≡ J interaction between nearest-
neighbor sites i,j . The charge segments are modeled as a chain
of vacancies which alternately correspond to the center of a
vortex and antivortex of vorticity ±k. In addition to the nearest-
neighbor coupling J , we introduce an antiferromagnetic
interaction J ′ across the center of the (anti)vortices (see Fig. 4).
J ′ stabilizes the antiphase boundary of the segments and avoids
the VA annihilation. The spin structure is then determined by
minimizing the classical energy.

The angular spin distortion due to Nseg vortex-antivortex
segments is given by considering the influence of a collection
of Nseg equally oriented segments on spins at point r:

Sx(r) = S0 exp(iQAF · r) cos 	(r),
(9)

Sy(r) = S0 exp(iQAF · r) sin 	(r),

where QAF = (π,π ) is the AF wave vector and the phase 	(r)
is the spin-velocity potential, whose gradient defines both the
incommensurability and the spin current. We fix the value
of J ′/J for the XY model by comparing for a segment of
two VA pairs the resulting charge and spin structure obtained
from the GA [ Fig. 5(a)] and minimization of the XY-model
energy [Fig. 5(b)]. Indeed we show in Fig. 6 that the spin
phase for a diagonal cut through the segments shown in
Fig. 5 coincides within the two approaches when J ′/J ∼ 1.
Another parameter to fix is the filling factor ν introduced
above. Whereas the site-centered VA chain shown in Fig. 1
has ν ≈ 1 there exists a similar plaquette-centered structure
with comparable (though slightly higher) energy, which has
ν ≈ 0.65. The filling factor of these structures is thus similar to
those of (infinitely extended) diagonal site- and bond-centered
stripes.46 The following calculations assume ν = 0.7. Note,
however, that experimental data imply an increase toward
larger ν close to the AF boundary.18

(a) GA (b) XY

FIG. 5. (Color online) Segment of two vortex-antivortex pairs on
a 14 × 14 lattice. (a) Gutzwiller approximation of the Hubbard model
with U/t = 8, t ′/t = −0.2. (b) XY model with J ′/J = 1. In (a) the
radius of the circles indicates the (hole) charge density and in (b)
corresponds to an empty site.

Figure 7(a) reports the spin phase distribution on a lattice of
160 × 160 sites for a particular random distribution of stripe
dipoles with segment length of 8 sites at x = 0.03, all polar-
ized along the [−1,1] direction. One observes a monotonic
increase on the phase of the staggered magnetization along
the [1,1] direction, which will lead to the incommensurate
modulation of the spin response. In Fig. 7(b), for the same
distribution of segments, the associated dipole orientation is
now completely random. Contrary to the case of Fig. 7(a),
the system now disaggregates into large areas with similar
phase. As already stated, the short-range contribution to the
dipole-dipole interaction favors the ferromagnetic alignment
[i.e., the configuration Fig. 7(a) is energetically more stable
than Fig. 7(b)].

The numerical results can be understood by considering the
long-range phase distortion produced by the segments.47 The
total phase change 	(r) of Eqs. (9) given by the angular spin
distortion due to the Nseg segments with V and A of vorticity
±k centered at zi,± (ri,±) can be expressed by mapping the
Cartesian plane into the complex plane (x,y) → z = x + iy,

	(z) = k Im
NcNseg/2∑

i=1

[ln(z − zi,−) − ln(z − zi,+)]. (10)

FIG. 6. (Color online) Spin phase for a diagonal cut through the
segments shown in Fig. 5.
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FIG. 7. (Color online) Spin phase distribution for (a) macroscop-
ically and (b) randomly polarized distribution of stripe dipoles in
a 160×160 site system. Segments have a length of 8 sites on the
diagonal (4 VA pairs) and are represented by arrows indicating the
length and polarization. With a filling factor ν = 0.7 the total number
of segment sites corresponds to a doping of x = 0.03.

For one segment with “dipole moment” μseg we obtain by
direct integration that the average spin current in the direc-
tion perpendicular to the segment is 〈∇	(r)〉seg = πμseg ×
ẑ/(Latetra)2, where we explicitly introduced the tetragonal
lattice constant atetra and with ẑ pointing out of the plane. Latetra

denotes the linear dimension of the system. The separation
of vortex and antivortex at the extremes of the (diagonal)
segment determines the length of the dipole segments, while
the vorticity k has to be replaced by an effective vorticity
keff < 1 to be determined numerically. The strength of the
dipole moment is then given by |μseg| = keffaorthoNc/ν and
the numerical calculation yields keff/ν ∼ 2. The macroscopic
spin current for Nseg equally oriented segments is thus given by
∇	(r)mac = πẑ × P where P is the macroscopic polarization
in the charge analogy P = μsegNseg/(Latetra)2. Clearly P plays
the role of the ferronematic order parameter. From Eq. (9)
one obtains that the macroscopic spin current implies an
incommensurate spin response perpendicular to the segments
with q = ∇	(r)mac. One thus finds a linear dependence of the
incommensurability on doping

q⊥ =
√

2π
keff

ν

1

atetra
x ≡ πP⊥ (11)

with aortho = √
2atetra.

Equation (11) relates the incommensurability to the fer-
ronematic order parameter and is one of our central results.
This linear relation between incommensurability and doping
is similar to the linear relation found for ordered stripe arrays
at low doping.8,50 Thus experimentally the two phases are
not easily distinguished in the magnetic channel and the
main difference will arise in the charge channel with equally
spaced stripes producing Bragg peaks in contrast to diffusive
scattering in the case of segments.

For a set of configurations of macroscopically polarized VA
segments on a lattice of 160 × 160 sites as shown in Fig. 7(a)
we now evaluate the magnetic neutron cross section

dσ

d�dE
∼

∑
αβ

(δαβ − q̂αq̂β)Sα(q)Sβ(q)

for different dopings. Our results are compared in Fig. 8
with elastic neutron scattering data from Ref. 17. The specific
scattering geometry [Fig. 2(b) of Ref. 17] which is composed

x=0.03

In
te

ns
ity

 [a
.u

.] experiment

-0.2 -0.1 0 0.1 0.2
q (r.l.u.)

x=0.05

-0.2 -0.1 0 0.1 0.2

4 pairs
3 pairs
2 pairs

x=0.04

FIG. 8. (Color online) Fits of the spin structure factor (LSCO)
at different dopings for Nc = 8 segments as explained in the text.
For x = 0.05 we also show spectra for Nc = 4,6 segments for
comparison. Computations have been done on lattices with up to
160 × 160 sites and we average over 20–30 segment configurations
where the experimental resolution (horizontal bar in the lower panel;
cf. Fig. 4 of Ref. 17) has been taken into account by convoluting with
a Gaussian. The trajectory of the momentum scan is labeled as (a) in
Fig. 4 of Ref. 17. Data by courtesy of S. Wakimoto.

of two twin domains with population 2 : 1 has been taken
into account. This gives rise to the asymmetry of the spectra
since QAF of the B twin does not coincide with QAF of the A
twin.51 The incommensurate peak position qc is independent
from the segment size as expected from Eq. (11). On the other
hand the size influences the peak width as can be seen in the
lowest panel of Fig. 8. By decreasing the dipole moment μseg

at fixed doping, the increasing number of segments decreases
the fluctuations of the dipole polarization. The strength of
the incommensurate response is then favored with respect to
the commensurate one. As can be seen from Fig. 8 one finds
excellent agreement with the experimental data for segments
with 4 VA pairs (i.e., 8 sites) whereas shorter segments
underestimate the intensity at QAF (see lower panel of Fig. 8).

VI. DISCUSSION OF THE RESULTS

The excellent agreement of the spin structure in the
ferronematic state with neutron scattering experiments could
also account for the composite spin response at x � 0.02 in
LSCO. Upon reducing doping below x = 0.02 in the Néel
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state, this system displays a coexistence of commensurate
spin order and incommensurate spin scattering, with the
spin incommensurability wave vector saturating at the value
attained at x = 0.02.20 This observation clearly points toward
a phase separation and according to our present analysis the
VA segments tend to segregate from the commensurate AF
phase with a volume fraction proportional to the doping x.

The macroscopic constant spin current can be considered as
an average spiral behavior of the spins. In this sense our theory
has some similarity with the proposal of Ref. 2. However, the
state emerging from our analysis is different in many respects.
First of all we find that in the absence of pinning potentials the
charge organizes forming rather long segments (6–10 carriers
in the x = 0.03–0.05 doping range of LSCO), which might be
the seeds for the formation of the stripes observed at higher
dopings. Of course when the pinning potential due to the
out-of-plane impurities dominates, the segments are disrupted
because its constituents are attracted around each Sr impurity.
However, the rather large dielectric constant of LSCO, the
relatively large impurity density (at distances smaller than 6–8
lattice spacings for x = 0.03), and their out-of-plane location
conspire to produce a rather smooth potential landscape on the
planes, which suggests that the aggregation tendency might
be dominant and longer segments should be considered. Of
course the smooth quenched disorder landscape still provides
a pinning source for the charge segments thereby disrupting
any segment positional order. Another difference with respect
to Ref. 2 is that in our scenario topological spin textures are
present at each extreme of the charge segments producing the
spin spiral state with the ferronematic order. Therefore in the
present case the spiral spin state is a collective effect, which is
slaved by the ferronematic order of the stripe segments.

As shown in the inset to Fig. 3 |Ebind| decreases with
increasing |t ′/t |; the reduction is, however, more pronounced
for diagonal VA pairs. This results in a crossing of the
alignments as a function of Nc for −0.3 < t ′/t < −0.2. In
addition the lattice structure can influence the orientation.
This explains the fact that a diagonal incommensurate spin
response has only been observed in nonsuperconducting
underdoped lanthanum cuprates where |t ′/t | is small40 and
which display a LTO structure in the underdoped regime. At
higher doping an increased fraction of local octahedral tilts
with LTT symmetry52 may drive a reorientation of the stripe
segments from diagonal to the copper-oxygen direction at the
insulator metal transition x ≈ 0.05. It is also worth mentioning
that the similarity of the incommensurability of low-energy
spin fluctuations observed for Bi2+xSr2−xCuO6+y (Bi2201)21

with that of LSCO includes the rotation towards the diagonal
direction for strong underdoping. For this compound the value
of t ′/t has been estimated in Ref. 53 to be similar to LSCO
(at least in the underdoped regime). Therefore the formation
of VA segments and the induced spin incommensurability is
also expected to be similar in LSCO and Bi2201 materials. In
Bi2Sr2CaCu2O8+y compounds where t ′/t is large40 we expect
alignment of the segments along the Cu-O direction resulting
in an inequivalence of hole density on the corresponding
x and y oxygen sites. It therefore would be interesting to
investigate whether this feature can account for the intra-unit-
cell nematicity observed by scanning tunneling microscopy54

in these materials.

Apart from the excellent agreement found for the spin
structure factor other facts point to the correctness of our
interpretation. As far as transport is concerned, resistivity
anisotropy has been found in strongly underdoped LSCO
and YBCO, which directly indicate the breaking of C4

rotational symmetry.55 The absence of a simultaneous breaking
of translational invariance indicates that a nematic state is
likely formed in the insulating phase of these systems. The
self-organization of charges at low temperature also entails an
activated or variable-range-hopping behavior, which should
become weaker upon increasing doping, when the segment
length and density increases together with the screening and
the eventual appearance of quasiparticles in the metallic state
at x � 0.055. The charge self-organization might also survive
in the metallic region giving rise to two-component phases56 of
coexisting quasiparticles and segments. How this state evolves
into the stripe state is an interesting question, which deserves
investigations outside the scope of the present work.

We expect that thermal fluctuations will disorder the dipole
orientation reducing the order parameter until a thermody-
namic phase transition occurs. It is not clear whether the
high-temperature state will be only nematic as in Fig. 7(b) with
a second transition at higher temperature to an isotropic state
of fully disordered dipoles or if the transition will be directly
to the isotropic state. In both cases the incommensurability
should display an order parameter behavior. In agreement
with this expectation, an order-parameter-like temperature
dependence of the incommensurability has already been
noticed in YBCO.22,23

Since the ferronematic state breaks inversion symmetry
one expects on general grounds57 that it will lead to a real
ferroelectric distortion, i.e., to become multiferroic through,
e.g., the inverse Dzyaloshinskii-Moriya mechanism.58 Indeed,
a ferroelectric state has recently been detected in strongly
underdoped lanthanum cuprates.59 Unfortunately, a small
number of free carriers will make the effect undetectable with
capacitance measurements which may explain why it has been
seen only at very low temperatures. An appealing possibility
would be to look for inversion-symmetry breaking with
second-harmonic generation (SHG) which does not require
perfect insulating behavior.60 We expect that the SHG signal
as a function of temperature tracks the incommensurability.

Concluding, we have proposed a phase for strongly un-
derdoped cuprates which breaks C4 rotational and inversion
symmetry. Our theory provides a consistent explanation
for the elastic incommensurate response seen by magnetic
neutron scattering experiments and reconciles it with the
lacking signatures of charge order. It remains to be seen
how the nematic segments act as seeds which lead to smectic
correlations (stripes) in some of the cuprate materials.
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APPENDIX: INFLUENCE OF LONG-RANGE
COULOMB INTERACTION

Suppose we have N holes and we want to find the
optimum way to accommodate them in Ns segments each
one accommodating Nc holes. Obviously N = NsNc and the
question is whether we should choose few long segments or
many short segments.

To solve this problem we use the energies obtained from
the minimization of the GA energy functional for chains with
different number of VA pairs (see Fig. 3). The energy to add
a pair is εV A = E(1V A) − EAF . If the pairs are far from each
other the energy of NV A pairs is E(NV A) = NεV A + EAF . On
the other hand, if the pairs form a chain the energy becomes

E(NV A) = NεV A + EAF + (NV A − 1)Ebind.

Since polaron states are more stable then isolated vortices it is
convenient to subtract the energy of 2NV A separated polarons
[εp = E(1p) − EAF ] which yields

E(NV A) − Epol(2NV A) = NV A(εV A − 2εp) + (NV A − 1)Ebind

and corresponds to the quantity we plot in Figs. 3. Putting
NV A = Nc/2 and γ = (εV A − 2εp + Ebind)/2, the energy of
one segment is then E(Nc) = γNc − Ebind.

1. Isolated segments

We first consider segments which are far apart and thus
include only the intra-segment long-range Coulomb energy

Vcoul = e2

2ε0aortho

∑
n�=m

1

|n − m| = e2Nc

2ε0aortho

Nc∑
n=1

1

n

≈ e2Nc

2ε0aortho
ln(Nc),

where we made an asymptotic expansion of the harmonic
series for large Nc.

If we have Ns segments which are far apart the total energy,
including the Coulomb self-energy, is then

E = Ns[NcEc ln(Nc) + Ncγ − Eb]

with Ec = e2/4πε0εraortho. Using the constraint N = NsNc

and defining x = N/L2 one obtains

E

L2
= x

[
Ec ln(Nc) + γ + 1

Nc

|Ebind|
]

. (A1)

The last term is the “surface” energy cost due to the cutting of
segments and the minimum of E/L2 is obtained for

Nc = |Ebind|
Ec

.

For aortho ≈ 5 Å and an in-plane dielectric constant of ε‖ ≈
30 one arrives at Ec ≈ 0.1 eV ≈ 0.3t which is of the same
magnitude as the binding energy evaluated in our paper. In
order to get a better estimate for short segment lengths (where
the log approximation of the harmonic series breaks down) we
use in Eq. (A1) the form of the long-range part, which was
previously used in Ref. 61,

V (r) = V0e
−|r|/λ

√
r2 + α2

, (A2)
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FIG. 9. (Color online) Energy per charge E(L) = [Vcoul(L) −
Ebind]/Nc as a function of segment length L evaluated with the
Coulomb interaction Eq. (A2). Binding energy Ebind/t = 0.2 (a) and
Ebind/t = 0.3 (b). Screening length λ = 20aortho.

and compute the energy minimum numerically. The param-
eters V0 and α are fixed by the on-site [V (0) = U/4] and
nearest-neighbor repulsion [V (a) ≡ Vnn]. Figure 9 shows the
resulting energy per charge as a function of segment length for
binding energy Ebind/t = 0.2 and Ebind/t = 0.3, respectively.
The estimate thus supports the stability of segments with length
L = 2 . . . 10aortho depending on parameters.

2. Long-range interaction between segments

The result above is valid if the segments are far apart.
However, as the segments become closer the interaction energy
between them becomes important which can be estimated in
close analogy to the evaluation of the Wigner crystal.44

In the low-density limit, the energy per segment (charge Q)
of a “Wigner solid” is given by

EW

Ns

= Q2

2aB

[
− α

rs

+ β

r
3/2
s

+ · · ·
]

, (A3)

where aB = h̄2/(mQ2) denotes the Bohr radius and rs =
r0/aB , with r0 defined from the volume per segment LD/Ns =
rD0 inD dimensions. The coefficients α, β are of order unity and
have been derived for the two- and three-dimensional Wigner
solid in Refs. 62 and 63.

Each of the segments consists of Nc charges (charge e),
i.e., Q = Nce, and the total number of charges is given by
N = NsNc. The Wigner energy becomes

EW = NsN
4
c

e2

2a0

1

rs

[
−α + β

r
1/2
s

]
(A4)

with a0 = h̄2/(me2). Furthermore one has

rDs =
(

r0N
2
c

a0

)D
= LD

Ns

(
N2

c

a0

)D
= Nc

x

(
N2

c

a0

)D
, (A5)

where we have introduced doping x = N/LD.
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Inserting Eq. (A5) into Eq. (A4) yields

EW

LD = e2

2
x1+1/DN1−1/D

c

[
−α + β

√
a0

Nc

(
x

Nc

)1/(2D)
]

. (A6)

Adding the energy Eq. (A1) for the formation of the individual
segments one finally has in the two-dimensional case

E

L2
= xEc

{
γ

Ec

+ ln(Nc) + 1

Nc

|Ebind|
Ec

− α

2

√
xNc

+O
[(

x

Nc

)3/4]}
, (A7)

which shows that an infinitesimal Wigner contribution com-
pletely changes the picture. The energy has two minima,
one at finite Nc and the other at infinite Nc as the square
root dominates the energy. Essentially, the previous solution
becomes metastable and a lower energy solution arises with
negative divergent energy. Of course, once Nc tends to diverge
it is not any longer correct to compute the energy in the

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

8

10
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14

16

18

x

N
c

FIG. 10. (Color online) Optimum Nc for the metastable solution
for |Ebind|/Ec = 6 and α = 2.

Wigner way and one needs to consider the Coulomb interaction
between large segments which will cut off the energy.

It is interesting that there is a critical value of the doping at
which the metastable short segment solution disappears (see
Fig. 10). It is worth investigating in future work whether this
indicates a transition from short segments to infinite stripes.
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