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Mott p-n junctions in layered materials
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The p-n junction has provided the basis for the semiconductor-device industry. Investigations of p-n junctions
based on Mott insulators is still in its infancy. Layered Mott insulators, such as cuprates or other transition metal
oxides, present a special challenge since strong in-plane correlations are important. Here we model the planes
carefully using plaquette cellular dynamical mean field theory with an exact diagonalization solver. The energy
associated with interplane hopping is neglected compared with the long-range Coulomb interaction that we treat
in the Hartree-Fock approximation. Within this new approach, dynamical layer theory, the charge redistribution
is obtained at the final step from minimization of a function of the layer fillings. A simple analytical description of
the solution, in the spirit of the Thomas-Fermi theory, reproduces quite accurately the numerical results. Various
interesting charge reconstructions can be obtained by varying the Fermi energy differences between both sides of
the junction. One can even obtain quasi-two-dimensional charge carriers at the interface, in the middle of a Mott
insulating layer. The density of states as a function of position does not follow the simple band bending picture
of semiconductors.
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I. INTRODUCTION

Strong electronic correlations in transition-metal oxides
manifest themselves in many spectacular ways, including
high-temperature superconductors, Mott insulators, exotic
magnetic phases, and colossal magnetoresistance materials.1

Although these phases are present in the bulk, we expect to
obtain even more complex and interesting states of matter
if we harvest the properties of correlated electron with the
help of heterostructures.2–6 A decade ago, Ohtomo et al.7

demonstrated the technical capability to create atomically
sharp interfaces between transition metal oxides, launching
a revolution in the field of oxide heterostructures.

The field is presently dominated by the well known LaAlO3/
SrTiO3 interface, which gained much popularity because it
harbors a two-dimensional electron gas.8 In the bulk, both ox-
ides are insulators and nonmagnetic materials. However, when
we consider the interface, it can become superconducting,9

ferromagnetic,10 and both phases can even coexist.11 These
effects can all be explained by charge transfer. It is thus
possible with an external applied electric field to explore the
phase diagram12–14 and create exotic interface effects.15

While this much celebrated interface is a central theme, it is
not the only interface currently under study. Charge transfer at
the interface between nonsuperconducting cuprates was also
observed, giving rise to interfacial superconductivity.16,17

Different effects caused by electron transfer at the inter-
face between a hole-doped Mott insulator and an electron-
doped Mott insulator have already been observed in cuprate
heterostructures,16,18 and the charge redistribution has been
the subject of a few models.19,20 There have been device
proposals based on charge redistribution in heterostructures
involving Mott insulators.21–23 Also, Mott insulating p-n
junctions have been suggested to potentially yield a photo-
voltaic effect with high energy efficiency.24 There is some
evidence that two overdoped cuprates, one electron-doped, one
hole-doped, arranged in a p-n junction geometry, will yield a

high-temperature superconducting effect due to the artificial
doping provided by charge redistribution.25

Inspired by the experiments on cuprates, here we focus on
the electronic charge density distribution and local density of
states at the interface between a layered hole-doped Mott insu-
lator and a layered electron-doped Mott insulator. Theoretical
understanding of such interface problems must first address the
question of bulk strongly correlated materials that can exhibit
Mott insulating behavior.26 This requires advanced methods,
such as dynamical mean field theory (DMFT).27 In low di-
mension, when the self-energy can acquire strong momentum
dependence—as happens, for example, with d-wave high-
temperature superconductors—cluster extensions of DMFT
such as cellular dynamical mean-field theory (CDMFT) or
dynamic cluster approximation (DCA) are necessary.28–33 Pot-
thoff and Nolting34 initiated research on surfaces and interfaces
with DMFT by introducing “inhomogeneous” layered DMFT
that was subsequently applied to various interfaces.35–37

The case of a Mott/conventional insulator junction was
studied in Hartree-Fock theory (HFT)38,39 and (DMFT)40,41

by Okamoto and Millis. Similarly, the charge profile of the
manganite/cuprate junction42 and the polar/nonpolar Mott
insulator junction43 was described with both HFT and DMFT.
Magnetic ordering at the interface and the corresponding rich
phase diagram can also be explored with simple HFT.38,39,42,44

While both HFT and DMFT can be used to obtain an
estimate of the charge redistribution, also known as electronic
reconstruction, HFT leads to a simple band bending picture
while the local density of states as a function of the position
obtained from DMFT is nontrivial.36,37,40,45

Here we provide theoretical tools beyond DMFT that
are appropriate for layered materials. We take into account
both the nontrivial nonlocal correlations within the individual
layers due to strong short-range repulsion using the Hubbard
model, and the charge redistribution between layers that
is dominated by long-range Coulomb repulsion. In-plane
quantum fluctuations are included but correlations between
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the planes are treated at the mean-field (Hartree-Fock) level,
neglecting the energy associated with hopping between planes.
We call this approach dynamical layer theory (DLT). We focus
here on the normal state, but it will be clear that our approach
is easily generalizable to broken-symmetry states.

The model and method can be found in Sec. II. The charge
density profiles obtained both numerically and analytically,
along with density of states profiles, can be found in Sec. III.
We focus the discussion in Sec. IV on the domain of validity of
the method and on the difference between Mott p-n junctions
and ordinary semiconductor p-n junctions, concluding with a
summary and suggestions for simple extensions of the method.

II. MODEL AND METHOD

Although we will consider more general cases, we are mo-
tivated by p-n junctions made of a thin film of Pr2−δe

Ceδe
CuO4

(PCCO) deposited over a thin film of La2−δh
Srδh

CuO4

(LSCO).25 Figure 1 presents a schematic view of this p-n
junction with the corresponding definitions of the Fermi
energies and of their difference for the bulk systems.

The Hamiltonian for this p-n junction is given by

H = H‖ + H⊥ + HC, (1)

where H⊥ stands for the hopping between planes, HC for the
Coulomb interaction between planes, and H‖ is the Hubbard
Hamiltonian of the planes

H‖ =
∑

k

Hk
‖

(2)
Hk

‖ = −
∑
ij,σ

tkij c
k†
i,σ ck

j,σ + Uk
∑

i

nk
i↑nk

i↓ − εk
0

∑
i,σ

nk
i,σ ,

FIG. 1. (Color online) (a) Schematic view of the interface. Each
plane corresponds to one of the CuO2 planes of a cuprate material.
The two colors represent two different cuprates. (b) Schematic
representation of the relevant energies for both materials. On the left
is the electron doped PCCO and on the right the hole doped LSCO.
Values are not to scale. Due to the Mott nature of these materials, there
is a gap inside each of the energy bands, but this is omitted here. It is
addressed later. Both Fermi energies ef,1 and ef,2 are negative since
we take the vacuum as the zero energy state. �ef is the difference
between the Fermi energies.

with c
k(†)
i,σ the annihilation (creation) operator at site i in plane

k for spin σ and nk
i,σ the corresponding number operator. The

in-plane hopping matrix tkij , Hubbard interaction Uk , and site
energy εk

0 can depend on the material. Here we assume that tkij
for second neighbor hopping is t ′ = −0.17t ,46 t ′′ = 0.08t for
third neighbor hopping, and U = 8t independent of k, while
the site energy εk

0 is chosen such that we obtain the required
bulk filling in plane k. Note that in reality, U is somewhat
smaller for the electron-doped cuprates when compared with
hole-doped ones,47,48 but taking the same value suffices to
illustrate the physics.

Our main approximation is to neglect H⊥ in the Hamilto-
nian Eq. (1) compared with H‖ and HC . The large anisotropy in
the hopping amplitudes t⊥ � t of the cuprates motivates this
approximation. The physics of charge redistribution will be
correctly taken into account when the inequality 〈Hk

⊥〉 � 〈Hk
C〉

is satisfied by the final solution. Note that since we work in
the grand canonical ensemble, charge redistribution can occur
even if the perpendicular hopping is neglected.

The Coulomb interaction coming from the deviation from
the bulk charge for the lth plane is given by

HC = 1

2

∑
l,m,q‖

nl(q‖)nm(−q‖)Vl,m(q‖), (3)

where nl(q‖) is the in-plane Fourier transform of the charge-
density operator for plane l and Vl,m(q‖) the Coulomb
potential. Self-interaction should not be included, and it is
understood that the uniform background must be subtracted
from the charge-density operator for the q‖ = 0 contribution
to the sum. When charge redistribution occurs on large length
scales, the Hartree-Fock approximation is justified for this
piece of the Hamiltonian. The Fock term being short range,
we assume that it is taken into account by the Hubbard in-plane
Hamiltonian. We are then left with

HC ≈ 1

2

∑
l,m,q‖

〈nl(q‖)〉nm(−q‖)Vl,m(q‖)

+ 1

2

∑
l,m,q‖

nl(q‖)〈nm(−q‖)〉Vl,m(q‖)

− 1

2

∑
l,m,q‖

〈nl(q‖)〉〈nm(−q‖)〉Vl,m(q‖), (4)

where brackets denote thermal and quantum mechanical
averages.

While we could treat cases where the charge distribution
breaks lattice translational symmetry in the planes, here we
assume uniform solutions. In other words only the q‖ = 0
contribution to 〈nl(q‖)〉 survives. Because there are no terms
left that involve quantum mechanical operators that couple
different planes, the eigenstates are direct products of single-
plane states, and the grand potential obtained from 〈H 〉, the
ground-state expectation value of H , is

〈H 〉− μN =
∑

k

[
E(nk) + ϕk(nl<k)

2
�nk − (μ − ef,k)nk

]
,

(5)
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where nk now stands for the expectation value of the q‖ = 0
number operator in plane k that we rewrite explicitly as �nk =
nk − n0,k to emphasize the deviation, mentioned above, with
respect to the nominal charge n0,k in the plane. The quantity
E(nk) is defined by 〈Hk

‖ 〉, and the chemical potential μ is a
Lagrange multiplier that guaranties charge neutrality. (Note
that if the Fermi energy ef,k [see Fig.(1)] is independent of
the plane k, then the chemical potential is equal to the Fermi
energy and all the planes have their nominal bulk filling.) The
electrostatic potential energy ϕk is given by the parallel-plate
capacitor formula

ϕk(nl<k) = −
k−1∑
m=1

m∑
l=1

(eC,m + eC,m+1)

2
�nl, (6)

where we have set the zero of potential on the left-hand
side of the junction and defined eC,k = e2dk/Akεk , with e the
fundamental charge, Ak the area of CuO2 in a unit cell, dk the
distance between CuO2 planes, and εk the dielectric constant.49

Our problem now reduces to minimizing the functional
of the classical variables representing average occupation
numbers nk . The energy E(nk) is in general a nonlinear
function of nk that can be calculated exactly, or approximately.
It contains all the information about the in-plane quantum
fluctuations. This is the approach we call dynamical layer
theory (DLT).

In two dimensions, the self-energy near half filling can
acquire nontrivial momentum dependence, even in the normal
state. This is why the approximate method that we use to obtain
E(nk) in the layers is CDMFT on a 2 × 2 plaquette. Single-site
DMFT, used in many previous studies, would be inappropriate
here. We use an exact diagonalization solver,32,33,50–52 then
we perform the minimization of the grand potential Eq. (5) to
obtain the charge redistribution using both numerical and ana-
lytical methods. From this approach, we describe an emerging
phenomenon near the interface: a Mott depletion plateau. One
can obtain many other properties, including the local density of
states profile associated with the charge redistribution and thus
the analog of “band bending” of the device interface. Many
similarities and differences with the classical semiconductor
p-n junction are highlighted in the discussion.

III. RESULTS

In the first subsection below, we show the n(ε0) relation and
corresponding density of states for a single plane. Numerical
and analytical results follow respectively in the two subsequent
subsections.

A. Single-plane results

Figure 2 presents the results for the filling n as a function of
ε0 that plays the role of the single-plane chemical potential
μ = ∂E/∂n in the case of a single plane. The results are
plotted in Fig. 2. In the lower panel, the filling n vs ε0 clearly
exhibits the incompressible Mott phase where n = 1 as long
as ε0 is in the gap. The region of zero compressibility, called
Mott plateau, is characteristic of a Mott insulator. With the
Green function obtained from the CDMFT calculation, we can
also compute the density of state (DOS) as a function of the
chemical potential. It is shown in Fig. 2(a). The DOS clearly

FIG. 2. (Color online) (a) Color coded DOS as a function of
single-plane chemical potential and energy. The Fermi level in
the DOS is at ω = 0 (dashed line). (b) Corresponding filling (n)
as a function of single-plane chemical potential (μ = ε0 here).
The results are for parameters appropriate for LSCO/PCCO, in
other words next-nearest-neighbor hopping t ′ = −0.17t (Ref. 46),
second-nearest-neighbor hopping t ′′ = 0.08t and U = 8t . Energy
units correspond to t = 1. We also take h̄ = 1.

exhibits the Mott gap present in the “band diagram” for every
possible chemical potential. We see that the compressibility
(n−2∂n/∂μ) is finite only when the Fermi level (ω = 0) crosses
a finite DOS. There is an important feature in the DOS around
half filling (n = 1). We note that unlike a traditional band
insulator, the DOS is not constant when the chemical potential
varies. For example, for electron doping some spectral weight
of the lower Hubbard band transfers to the upper Hubbard
band at the Mott insulator transition (ε0 ∼ 2.5t to 5.5t).

B. Numerical results for the p-n junction

A simple numerical minimization algorithm for this Hamil-
tonian gives the filling (nk) for every plane k in the ground state,
and thus the charge redistribution of the junction. Results for an
electron-doped system on the left side and a hole-doped one
on the right side is shown in Fig. 3. The resulting profiles
exhibit some similarities with the classical semiconductor
p-n junction. Nominal doping (δ0,i = |n0,i − 1|), charging
energy (eC), and Fermi level difference (�ef = ef,2 − ef,1)
have been chosen to reproduce profiles that highlight some
similarities and differences between this Mott p-n junction
and semiconductor junctions. The Fermi level is lower for
the hole-doped than for the electron-doped Mott insulator so
that charge is transferred from left to right. The Fermi level
difference increases in absolute value from panels (a) to (c).

As in semiconductors, there is charge exchange and some
regions can become depleted. Unlike semiconductors, where
region b and d of Fig. 3(c) would extend all the way to
the interface and thus be adjacent and form the well known
depletion layer, here there is an additional region c in the
middle. This region behaves like a two-dimensional electron
gas (2DEG) in the middle of a Mott insulating depletion
layer formed by b and d. Outside the layer formed by b, c,
and d, there is Thomas-Fermi screening in regions a and e.
Semiconductors could in principle be forced into this situation
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FIG. 3. (Color online) Examples of charge redistribution: The
charge profile �nk is plotted as a function of layer number k. The
parameters are U = 8t , eS = 0.05t , n0,1 = 1.20, n0,2 = 0.88, and
�ef = −2t , −5.5t , and −8t for (a), (b), and (c) respectively. These
parameters have been chosen to shed light on qualitatively different
features of the electronic charge redistribution. Blue is associated with
the e-doped Mott insulator and red is associated with the p-doped
Mott insulator. The dots are obtained from the numerical calculation
and the shading from the analytically calculated profile with the same
parameters within the continuum approximation. The lighter shading
indicates the position of the Mott depletion plateaux.

when there exists an appropriate Fermi energy difference, but
this does not happen in practice, as far as we know.

Let us focus on the evolution of the charge redistribution
profile caused by the Fermi level difference (�ef ) in Fig. 3.
The increase in charge transfer, caused by an increased Fermi
level difference, translates the reconstructed charge profile,
revealing more of the ‘rigid’ curves on each side without
affecting their respective shapes, an effect we will discuss
in the following subsection.

A more striking difference with semiconductors arises
when one uses the results for the DOS as a function of filling
[Fig. 2(a)], and the filling as a function of the position to
compute the local DOS as a function of position. This analog of
the semiconductor heterojunction band diagram is illustrated
in Fig. 4 for another set of parameters. For this example,
nominal doping on each side is chosen in order to obtain only
one Mott depletion plateau on the left part of the junction.
Some band bending is observed in the profile, but there is
also a band modulation around the Mott transition region (on
the edge of the Mott depletion plateau). This is caused by the
spectral weight transfer associated with the Mott transition.

Note that there is no need for a doped Mott insulator on the
right-hand side of Fig. 4 to obtain a Mott depletion plateau on
the left. The right-hand part of the structure could easily be a
semiconductor or an insulator with appropriate relative Fermi
level. As long as there is sufficient charge transfer, there will
be this plateau. In other words, the resulting charge profile on

FIG. 4. (Color online) (a) Charge redistribution as a function of
the plane number (the z axis) of the structure (U = 8t , �ef = −7t ,
eC = 0.1t). (b) Color coded DOS in arbitrary units as a function of
ω and the plane number. The Fermi level in the DOS is at ω = 0
(dashed line). We observe an insulating region several planes wide,
where n = 1.

one side is not only rigid, but also its shape is independent of
the material on the other side of the junction that attracts (or
repels) the charges.

C. Analytical results for the p-n junction

For a large number of CuO2 planes, a numerical approach
is needed to obtain the filling from the minimization of
Eq. (5). Nevertheless, the profile can be estimated analytically
by taking the continuum limit

∑b
a → 1

d

∫ b

a
dz. In this limit,

the minimization procedure consists of finding the charge
distribution n (z) for which the functional derivative of the
ground state energy Eq. (5) with respect to the charge
distribution n (z) vanishes. This leads to a Thomas-Fermi
equation

�μ(z) = (
μ − ef,z + 1

2�ϕtot
) − ϕ(z), (7)

where we defined �μ(z) ≡ δE(n(z))/δn(z) and �ϕtot as the
total electrostatic potential-energy difference between the
right-hand side and the left-hand side of the junction. This
term arises from the functional derivative of the electrostatic
potential energy

δ
(∫

dz′ϕ(z′)�n(z′)
)

δn(z)
= 2ϕ(z) − �ϕtot. (8)

In the limit where both sides of the junction are semi-infinite,
we have

�ϕtot = ef,2 − ef,1 (9)

μ = (ef,2 + ef,1)/2. (10)

The second derivative of the Thomas-Fermi equation
Eq. (7) gives us an equivalent of the Poisson equation
d2∂2�μ (z) /∂z2 = −eC�n(�μ(z)). The main source of sim-
plification comes from the fact that the relation between �n

and �μ (z), which can be obtained from Fig. 2(b), can be
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approximated by a piecewise continuous function that is either
linear or constant in the vicinity of half filling.

The differential equation can then be solved separately
in different segments with boundary conditions between the
segments given by the continuity equation for the potential
and the electric displacement. The analytical solution for the
case illustrated in Fig. 3(c), for example, appears as the shaded
area. In regions c, d, and e on the right-hand side, the charge
profile is a piecewise continuous function given by

�nc(z) = δ0,2

[
e

−(z−z2)
λT F + �z

λT F

sinh

(−(z − z2)

λT F

)]

�nd (z) = δ0,2 (11)

�ne(z) = δ0,2
[
e

−(z−z3)
λT F + g(z)

]
.

In the depletion region d, the electron density difference �nd

is equal to the nominal hole doping of the material δh. The term
g (z) = exp[(z − (2z4 − z3))/λT F ] is negligible for structures
that are thick enough (z4 → ∞). 2z4 − z3 is the mirror position
of z3 with respect to the right end of the structure. The
difference between z3 and z2, the length of the Mott depletion
plateau, is given by

�z = λT F (
√

1 + 2 |EG/δμ2| − 1), (12)

where EG is the Mott energy gap, δμi ≡ δ0,i∂μ/∂n the
chemical potential difference between the nominal filling and
half filling, while λT F = d/

√
eC∂n/∂μ is the Thomas Fermi

length-scale for the charge profile, all in the approximation
∂n/∂μ|n�=1 constant outside the Mott plateau. The result for
the size of the Mott plateau �z comes physically from the
fact that there is an electric field that changes linearly with
distance inside the plateau leading to an electrostatic potential
difference that grows quadratically with distance. When the
electrostatic potential energy difference becomes equal to the
Mott energy gap EG, the plateau ends.

The function g (z) in Eq. (11) allows the electric field to
vanish at the surface of the junction. Here, we want to stress
the idea that, except for g (z), the shape of the piecewise
continuous function describing the electronic density profile
is rigid and does not deform with charge transfer: A larger
�ef only reveals more of the curve [Eqs. (11)]. The only
remaining unknowns for the electronic density profile is the
position z2 (and hence z3 that just follows from �z) and
z1 relative to the interface. These can be found from the
continuity of the electric displacement at the interface and from
�μ(0−) − �μ(0+) = �ef = ef,2 − ef,1 that follows from the
Thomas-Fermi Eq. (7). Note that the energy scale eC is very
difficult to obtain from first principles. It will vary considerably
depending on material. Its value changes considerably the
length scale of the charge profile.

IV. DISCUSSION

The Mott depletion plateau obtained here is consistent
with the result obtained by Oka and Nagaosa53 even though
these authors used a completely different technique, namely
the one-dimensional density-matrix renormalization group.
In other words, our method, which neglects hopping energy
between planes, predicts the same incompressible state as a full

one-dimensional treatment. This plateau is also present in
some HFT42 and DMFT54 studies.

We can verify the validity of our approach (DLT) in the
vicinity of the Mott plateau by comparing the hopping energy
t⊥ with the potential energy difference between two adjacent
planes in the plateau ∼d∂�μ(z)/∂z. We can estimate the
latter from the smallest value of the derivative, namely
at the outermost edge of the Mott plateau, on either side of
the interface (i). Since the profile just before the plateau is
exponential, we find that

t⊥ � δμi(di/λT F,i) = δ0,ieC,i(λT F,i/di) (13)

must be satisfied for both sides i of the p-n junction. Since
λT F,i � di , eC,i � t and t � t⊥ in cuprates, this condition
will hold even for low dopings δ0,i . However, we see that for
nominal dopings δ0,i that are too small, this condition will
not hold. Indeed, we see from the expression for the size of
the Mott plateau, Eq. (12), that small nominal dopings δ0,i

imply a very large Mott plateau, consistent with small charge
transfer and hence small long-range Coulomb interaction.
Note that in the examples used in this work, the relative
dielectric constant is much larger than that which is usually
quoted for the cuprates (≈10 to 20). This leads to much larger
values of the Thomas-Fermi screening length than the value
λT F,i ≈ di expected in the cuprates.17

There is an important parallel that can be drawn between
this Mott p-n junction and the classical semiconductor p-n
junction. The charge profile at the interface in the middle
panel of Fig. 3 corresponds to the depletion approximation in
semiconductors. There are however three major differences.

(i) The Mott gap can be crossed at the interface and a two-
dimensional gas of charge carrier can appear in the middle of a
depletion layer like region c in Fig. 3. Using the equation for the
size of the depletion layer Eq. (12) but for semiconductors, the
doping energy δμ2 is so small compared with the gap energy
EG that the length of the depletion plateau becomes very large.

(ii) In a Mott p-n junction, the length scale for the charge
redistribution is much smaller because the charging energy eC

is generally much higher.
(iii) The most important difference is that in addition to

band bending, there is also band modulation around the Mott
depletion plateau region in contrast with rigid band bending
in semiconductors. This might lead to a broader spectrum of
light absorption and emission.

We emphasize that the whole analysis has treated eC and
�ef as free parameters. For PCCO and LSCO, the parameter
eC should be around ten times larger than what we have used.
The resulting profile would be ten times shorter that what we
showed here. We do not know precisely the value of �ef ,
but it should be of the order of the kinetic energy ∼t . We
need a �ef larger than the Mott gap EG to obtain a two-
dimensional gas of charge carrier. This might be achieved
through the application of a large potential difference. Overall,
our results are not limited to cuprates but apply to all layered
doped Mott insulators.

V. CONCLUSION

In summary, we developed a very simple and intuitive
method, dynamical layer theory, to account for Hubbard model
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correlations and calculate the charge profile, local DOS profile,
and other observables of layered correlated systems. The main
approximation is to neglect interlayer hopping compared with
the charging energy treated in the Hartree-Fock approximation.
Once the solution is found as a function of chemical potential
in the various planes, we are left with a minimization problem
to find the filling of each plane. Here we found the solution
of the Hubbard model within the planes using plaquette
CDMFT with an exact diagonalization solver. We neglected
broken symmetries and finite temperature effects, but they
can all easily be included within our approach. This opens,
for example, the possibility to treat d-wave superconductivity
accurately in such structures.

Both numerical and analytic calculations predict an in-
compressible Mott depletion layer analog to the semicon-
ductor depletion layer, and the possibility of obtaining

quasi-two-dimensional charge carriers of opposite signs on
either side of the interface. The calculated density of states
near the Mott depletion plateau deviates from expectations
from simple band bending ideas and should have interesting
consequences for the absorption and emission spectrum of this
device.
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