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Tunneling dynamics of excitons in random semiconductor alloys

Alexander Müller* and Marius Grundmann
Institute of Experimental Physics II, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
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An analytical model describing the low-temperature tunneling dynamics of excitons in disordered systems is
proposed, reproducing the time-resolved photoluminescence (TRPL) line shape and the temporal red-shift of the
TRPL maximum of localized excitons in detail. Assuming a Gaussian energy distribution of the localized states,
the observed asymmetric spectral line shape can be interpreted as the distribution of the lowest states within
a certain tunneling volume. Using (Mg,Zn)O and Cd(S,Se) as model systems, the number of reachable states
is determined from the time dependence of the photoluminescence signal and the density of localized states is
estimated. For (Mg,Zn)O, we also reveal the exciton capture at donors and its influence on the TRPL transients.
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In order to interpret the luminescence of semiconductor
alloys, the knowledge of the emission line shape and a
thorough understanding of the underlying mechanisms are of
crucial importance. Several empirical and physically moti-
vated models reproducing the photoluminescence (PL) line
shape of disordered solids can be found in literature. A
simple Gaussian line shape1 is valid if the recombination is
much faster than the relaxation into local potential minima.
At low temperatures, however, excitons preferentially occupy
low-energy states. While an occupation probability according
to a Maxwell-Boltzmann distribution with some effective
temperature T ∗ only explains a red-shift of the Gaussian,
more sophisticated models often predict asymmetric PL line
shapes.2–6 A model taking into account the relaxation into low-
energy states was proposed by Schubert and Tsang,4 however,
only applied to time-integrated PL spectra. Tunneling between
different localized states was handled quantum mechanically
by Cohen and Sturge2 to explain sidebands of the longitudinal
optical (LO) phonon emission lines. For elevated temperatures,
a thermal activation into delocalized states above the mobility
edge was suggested by Oueslati et al.3 and applied to time-
resolved spectra by Gourdon and Lavallard.7 Using a Monte
Carlo simulation, an asymmetric line shape was also found for
excitons within quantum wells.6

In this paper, we present an analytical tunneling model for
semiconductor alloys. Taking into account that the spatially
random distribution of the localized states constrains the car-
rier relaxation into lower potential minima, the asymmetric line
shape of the low-temperature time-resolved PL (TRPL) spectra
as well as the red-shift of the luminescence maximum over
time are reproduced by varying only a single time-dependent
parameter. This enables us to precisely model the time-delayed
spectra of (Mg,Zn)O thin films over three orders of magnitude
with a total dynamic range of six orders of magnitude.
In contrast to most other models, no prior assumptions on
microscopic parameters such as an energy-dependent exciton
relaxation time constant2–4 or energy-dependent transition
rates2 are necessary.

For low temperatures, most carriers relax into local poten-
tial minima within a few picoseconds.8 As the thermal energy
does not suffice to overcome the potential barriers, lower-
lying localized states are reached only by phonon-assisted
tunneling.2,7,9 Near the excitonic band gap, the energy density
of the localized states can often be approximated by a Gaussian

distribution.1 Assuming that an exciton can reach k different
localized states, it will most probably relax into the lowest
of these. The resulting distribution of the smallest out of k

Gaussian random numbers is10

pk(y) = k[1 − F (y)]k−1f (y)

= k

(
1 − erf(y/

√
2) + 1

2

)k−1
exp

( − 1
2y2

)
√

2π
, (1)

where f (y) is the normal distribution and F (y) is the
corresponding cumulative distribution.

Taking into account that the localized states are randomly
distributed within the crystal with an average density n,
the number of reachable states within a certain tunneling
volume Vt follows a Poisson distribution Nke−N/k! with
the expectation value N = nVt. To calculate the occupation
probability of the localized states, Eq. (1) is summed over all
k � 0, leading to
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As Eq. (1) vanishes for k = 0, Eq. (2) has to be normalized by
(1 − e−N )−1. The position of the maximum of Eq. (2) is given
by
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W(z) being the Lambert W function.
Alloys such as MgxZn1−xO often show a nonexponential

luminescence decay11 attributed to a broad distribution of
radiative lifetimes for different localized states.12 Assuming
that this distribution does not strongly correlate with the
transition energy, the PL line shape can be derived from
Eq. (2) by substituting y = E−E0

σ
. Here, E0 is the mean exciton

transition energy and σ is the standard deviation determining
the spectral linewidth of the distribution.

For excitons below the mobility edge, the probability of
presence decreases approximately exponentially as a function
of distance from the center of mass.13 Therefore, the wave-
function overlap and consecutively the tunneling probability
approximately decrease by a factor e when increasing the
distance between an initial state and a prospective target state
by the tunneling length rt,0. On average, the time to reach the
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more distant target state increases by the factor e, defining a
time-dependent tunneling distance

rt(t) = rt,0 ln

(
t

t0

)
. (4)

As simplification, we neglect that the extension of the wave
function depends on the localization energy as well as the
concrete potential environment around the localized state. The
strongest variations are expected for states energetically near
the mobility edge. However, as most excitons rapidly relax
into local potential minima well below the mobility edge,
only a slow variation of rt,0 is expected while the excitons
reach energetically lower states by tunneling. Therefore, we
assume that the tunneling length can be approximated by some
constant average.

Statistically, within the time t an exciton can reach all states
inside the volume Vt(t) = 4

3πr3
t (t), determining the average

number
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of reachable states and the time-dependent emission maxi-
mum. For convenience, we define c := n × 4

3πr3
t,0. As rt(t0) =

0 (by definition), the time t0 has no direct physical meaning.
Instead, it can be interpreted by means of an offset radius within
which all states can be reached during the thermalization of an
exciton.

It shall be noted that Eq. (2) is identical to the line
shape proposed by Schubert and Tsang4 for time-integrated
PL spectra. The authors assume that the exciton relaxation
depends on the total number of low-energy states and a
given capture time constant τc, not taking into account the
spatial distribution of the potential minima. A linear increase
of N ∼= t/τc was concluded from this mean-field approach,
significantly overestimating the experimentally observed red-
shift over time.

To verify our model, we apply it to the time-delayed
PL spectra of MgxZn1−xO thin films grown by pulsed laser
deposition on a-plane sapphire substrate (experimental details
given in Ref. 12). Here, the spectra were calculated from the
fitted model decay functions instead of from the transient
raw data. On the one hand, this enables us to investigate
the fast initial luminescence dynamics otherwise masked by
the instrument function of our setup. On the other hand, the
usable dynamic range is increased as the signal-dependent
background is removed.

To demonstrate the accuracy of the model decay functions,
selected transients of an Mg0.18Zn0.82O thin film are shown
in Fig. 1. The transients have been individually fitted by a
superposition of a monoexponential decay (τ = 0.75 ns) for
the fast recombination of donor-bound excitons (D0X) only
visible for the transients measured on the low-energy side of
the spectrum and a double power law describing the slow decay
of excitons localized within alloy potential fluctuations (LX).
The latter is defined by

I (t) = I0

(1 + t/t1)β1 (1 + t/t2)β2
(6)

and can be interpreted as a superposition of different decay
channels with independent distributions of lifetimes (cf.
Ref. 14). The initial process with the exponent β1 (for t1 < t2)

FIG. 1. (Color online) Fitted TRPL transients in a double-
logarithmic plot. The spectral positions have been marked in the
time-integrated PL spectrum shown in the inset.

can be explained by the tunneling dynamics as discussed
below. The second exponent is attributed to the radiative decay
of the excitons. The long decay times observed here can be
understood by confinement effects, leading to a strong decrease
of the oscillator strength of the localized states.15

The resulting time-delayed spectra for the sample are shown
in Fig. 2. For all times, the main emission peak is accompanied
by the corresponding 1-LO phonon replica. The PL maximum
is attributed to the superposition of D0X, dominating the
spectra for short times after the laser pulse, while the LX
decay determines the spectra for large times.12

Using the tunneling exciton line shape, the time-delayed
spectra of the Mg0.18Zn0.82O sample are reproduced with
great fidelity as shown in Fig. 3(b). For times larger than
3 ns, the main peak has been fitted by a single distribution
according to Eq. (2), as indicated by the green curve. For
smaller times, the D0X contribution was added. In agreement
with time-delayed PL spectra from samples with low Mg

FIG. 2. (Color online) Time-delayed spectra of an Mg0.18Zn0.82O
thin film for T = 5 K. The D0X and LX peak positions determined
from the tunneling line-shape fit have been marked. For 20 and 170
ns, the spectra generated from the raw transient data are shown for
comparison.
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FIG. 3. (Color online) Selected time-delayed spectra (T = 5 K) of three MgxZn1−xO thin films fitted by a sum of Eq. (2). For comparison,
a Gaussian distribution is shown in (b), illustrating the asymmetry of the main peak.

content (not shown here), this can empirically be fitted using
the tunneling line shape with a fixed set of parameters for all
spectra. Additionally, the 1-LO phonon replicas of the main
peak are approximated by Gaussian functions and included in
the multipeak fit. A remarkably good agreement is found for
the main emission peak, reproducing the PL line shape on the
high-energy side for up to three orders of magnitude.

The parameters used to fit the time-delayed spectra are
given in the upper part of Table I. The intensities of the
different contributions as well as the number of reachable
states NLX were treated as free parameters for the individual
curves. The main peak is therefore determined by three free
parameters for t � 3 ns and only two free parameters for t �
5 ns. ELX = (3.749 ± 0.005) eV and σLX = (28 ± 1) meV are
in good agreement with Ref. 16. Compared to ELX, the
D0X emission maximum is red-shifted by an effective donor
localization energy of (57 ± 5) meV. The value ND0X = 8
indicates only a weak asymmetry of the D0X emission band.

To prove the applicability of our model to other alloy
compositions and materials, the time-delayed spectra of two
additional MgxZn1−xO thin films [x = 0.08 and 0.34; see
Figs. 3(a) and 3(c)] as well as a CdS0.53Se0.47 sample (see
Fig. 4) were fitted using the tunneling exciton line shape.

TABLE I. Model parameters used to fit the time-delayed spectra
and the time dependence of the average number of reachable states
NLX. In the bottom part of the table, the estimated tunneling length
as well as the calculated density of localized exciton states are given.

MgxZn1−xO CdSxSe1−x

Parameter x = 0.08 x = 0.18 x = 0.34 x = 0.53

ELX (eV) 3.562 3.749 4.215 2.11
σ (meV) 18 28 51 11.5
ED0X (eV) 3.540 3.728 4.176
ND0X 11 8 8

c 1.2 × 10−3 1.0 × 10−3 1.3 × 10−3 1.2 × 10−2

t0 (ns) 2.9 × 10−13 1.1 × 10−10 1.1 × 10−9 2.6 × 10−5

rt,0 (nm) 0.55 0.45 0.35 1.0
n (cm−3) 1.6 × 1018 2.6 × 1018 7.6 × 1018 3.0 × 1018

Indeed, a very good agreement can be observed for the different
spectra. The values of NLX determined from the line-shape fits
are plotted as a function of time in Fig. 5. As expected, the
dependence can be modeled using Eq. (5) for all samples,
determining the fit parameters given in the middle part of
Table I.

The parameter c enables us to provide an estimation for
the density of localized exciton states n = 3c/(4πr3

t,0). The
tunneling length rt,0 can be approximated from the wave-
function attenuation within a potential barrier. On the one
hand, it depends on the effective exciton mass M = m∗

e + m∗
h

and, on the other hand, on the average barrier height (V0 − E)
inhibiting the transfer between the different localized states:18

rt,0 ≈ 1

2
κ−1 = h̄

2
√

2M(V0 − E)
. (7)

For MgxZn1−xO, the effective exciton mass M ≈ m0 is similar
to the electron rest mass,19 while the average barrier height
depends on the Mg content x and can be estimated from the

FIG. 4. (Color online) Fit of the time-delayed spectra (T = 2 K)
of a CdS0.53Se0.47 sample extracted from Ref. 17 (original spectra
visible in background). The deviation between measured and fitted
curves visible on the low-energy side of the spectrum is attributed to
the phonon replica.
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FIG. 5. (Color online) Number NLX of reachable localized states
determined from the line shape fits of the MgxZn1−xO thin films and
the CdS0.53Se0.47 sample as a function of time. The dependencies were
fitted by Eq. (5). Please note the logarithmic time scale.

fit of the time-delayed spectra. We use here the difference
between the mean exciton transition energy ELX and the
luminescence maximum, leading for x = 0.18 to an average
barrier height (V0 − E) = 46 meV. The resulting density of
exciton states is n = 2.6 × 1018 cm−3. For the CdS0.53Se0.47

sample, a significant larger tunneling length can be concluded
from the smaller average barrier height and the slightly smaller
exciton mass20 M ≈ 0.75m0. However, due to the significantly
higher slope of N (t), a quite similar density of states can be
calculated.

To further investigate the luminescence composition for
the Mg0.18Zn0.82O alloy, the intensities of D0X and LX are
depicted in Fig. 6 as a function of time. While the LX intensity
shows a fast initial decrease, indicating a capture process either
at donors or at nonradiative recombination centers, the D0X
intensity initially increases. Comparing the time-integrated
intensities of both components, the D0X contribute about 1

3
to the total PL intensity of the sample. However, it has to be
taken into account that the LX intensity initially decreases
by a factor of 5 within the first nanosecond after the laser
pulse. It can be concluded that at least 70% of the LX decay
nonradiatively and only about 10% get captured at donors.

The D0X time dependence can be modeled using an
exponential decay (τ = 0.77 ns) with a rise time of 50 ps,
while the initial LX intensity decrease was empirically
modeled by an exponential function with a capture time of
140 ps. The discrepancy between rise and fall times can most
likely be understood by the simple fit model which does not

FIG. 6. (Color online) Time-dependent D0X and LX intensities
on a double-logarithmic scale. The inset magnifies the initial
dynamics on a semilogarithmic scale. The solid lines are fits with a
delayed exponential for the D0X intensity and a sum of an exponential
capture process and a power-law decay for the LX intensity.

include nonexponential capture processes expected due to the
statistical distribution of the defects. While fast initial capture
processes determine the D0X rise time, the initial LX intensity
decrease is mostly dominated by slow contributions. At long
times, the LX decay follows a single power law (cf. Ref. 12),
proving that the first exponent of the double power law [Eq. (6)]
is attributed to the initial capture processes and the tunneling
into lower-lying potential minima.

To summarize, we have presented a simple analytical
model based on the random spatial arrangement of localized
exciton states in various semiconductor alloys. Our model
reproduces the asymmetric TRPL line shape as well as the
logarithmic time-dependent red-shift of the TRPL maximum
of alloy-localized excitons in various materials with great
accuracy. We were able to estimate the density of localized
exciton states in the alloys. Additionally, the TRPL spectra
of (Mg,Zn)O were analyzed, revealing the delayed exciton
capture at donors and the influence of the tunneling dynamics
on the TRPL transients.

ACKNOWLEDGMENT

This work was supported by the Deutsche Forschungs-
gemeinschaft within Leipzig School of Natural Sciences–
Building with Molecules and Nano-objects BuildMoNa (GS
185/1).

*amueller@physik.uni-leipzig.de
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