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Fractional topological superconductor with fractionalized Majorana fermions
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In this paper, we introduce a two-dimensional fractional topological superconductor (FTSC) as a strongly
correlated topological state which can be achieved by inducing superconductivity into an Abelian fractional
quantum Hall state, through the proximity effect. When the proximity coupling is weak, the FTSC has the same
topological order as its parent state and is thus Abelian. However, upon increasing the proximity coupling, the
bulk gap of such an Abelian FTSC closes and reopens, resulting in a new topological order: a non-Abelian FTSC.
Using several arguments we will conjecture that the conformal field theory (CFT) that describes the edge state
of the non-Abelian FTSC is U(1)/Z2 orbifold theory and use this to write down the ground-state wave function.
Further, we predict FTSC based on the Laughlin state at ν = 1/m filling to host fractionalized Majorana zero
modes bound to superconducting vortices. These zero modes are non-Abelian quasiparticles, which is evident in
their quantum dimension of dm = √

2m. Using the multi-quasi-particle wave function based on the edge CFT, we
derive the projective braid matrix for the zero modes. Finally, the connection between the non-Abelian FTSCs
and the Z2m rotor model with a similar topological order is illustrated.
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I. INTRODUCTION

There is growing interest in strongly correlated topo-
logical states of matter and their potential application in
topological quantum computation.1–11 Interaction can lead
to novel topological states exhibiting fractional excitations,
anyon statistics of quasiparticles, and nontrivial ground-state
degeneracy (GSD).12,13 Interestingly, these properties of the
topological states are robust and insensitive to disorder or
interaction as long as the bulk gap does not close.1 An
appealing topological state of matter is the non-Abelian phase
that supports anyon excitations with quantum dimensions
more than one that obey non-Abelian braid statistics.14–16

This exciting possibility along with the robustness of the
topological states that immunizes anyons from quantum
decoherence make non-Abelian anyons a promising candidate
for topological quantum computation.1 The first non-Abelian
topological phase was proposed by Read and Moore for
the fractional quantum Hall (FQH) state at ν = 1/2 filling
fraction. Their so-called Pfaffian wave function is a paired
state of composite fermions whose excitations obey Ising-type
non-Abelian statistics.14 It was shown later that the projective
Ising-type non-Abelian statistics can also be realized in the
p + ip superconductors in the weak pairing phase.17,18 Indeed,
the Pfaffian FQH state and a p + ip superconductor have the
same topological order, whose excitations are the celebrated
Majorana fermions with quantum dimensions equal to

√
2.

Recently, it has been shown that the p + ip superconductor
can be achieved by inducing superconductivity in the bulk of
an integer quantum anomalous Hall (QAH) state via proximity
to a superconductor.19,20 In a different study, Bombin showed
that Majorana fermions can emerge in an Abelian topological
state with topological defects.21 These two mechanisms can
be related through viewing superconducting vortices as twist
operators. These observations motivated us to investigate the
fate of an Abelian FQH state or a fractional Chern insulator
at ν = 1/m filling fraction in a similar setup. It will be shown
that the weak tunneling of Cooper pairs does not affect the

topological nature of the FQH state. We refer to the resulting
phase as the Abelian fractional topological superconductor
(FTSC). However, we discuss that the system can undergo
a topological phase transition by increasing the tunneling
strength. The new topological state will be a non-Abelian
FTSC, whose excitations are fractionalized Majorana fermion
zero modes, α0. These non-Abelian excitations are bound to
the superconducting vortices, follow α2m

0 = 1 relation, and
have quantum dimension dm = √

2m (see Fig. 1).
The paper is organized as follows. In Sec. II, we define the

notion of a FTSC and try to build a model for it. To make the
situation more comprehensible, an exactly solvable model will
be reviewed in which a topological phase transition happens
between an integer QAH and a p + ip superconductor. In
Sec. III, we identify the CFT that describes the edge theory
of the FTSCs. The correspondence between the bulk wave

FIG. 1. (Color online) A schematic phase diagram of the FTSCs.
g1 is a tuning parameter that drives the phase transition between an
FQH at ν = 1/m filling fraction and a trivial insulating state, e.g.,
a Wigner crystal. g2 denotes the tunneling amplitude between the
superconducting substrate and the FQH sample. The edge theory of
the Abelian FTSC side is described by a free boson compactified on
a circle with radius R = √

m, i.e., U(1)m CFT, while the edge state of
the quantum critical region, i.e., the non-Abelian side, is given by the
U(1)m/Z2 orbifold CFT. The trivial superconductor does not support
gapless edge states.
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function and the conformal blocks of the edge theory is
explained, and the notion of the twist field is illustrated with
an emphasis on their crucial role in the topological order. In
Sec. IV, we utilize the CFT that describes the non-Abelian
FTSCs to study its topological order. The existence of the
zero modes bound to vortices of the superconducting state
is proven. Furthermore, the quantum dimension and the
braid statistics of the zero modes are derived. Section V is
devoted to the computation of the bulk wave function of the
non-Abelian FTSCs. In Sec. VI, we study the gauge theory of
the non-Abelian FTSCs. It turns out to be a Z2m gauge theory
which allows us to make a connection between our prediction
about the quantum dimension of the fractionalized Majorana
zero modes and the results of the recently studied rotor model
with a similar gauge structure.

II. WHAT ARE FRACTIONAL TOPOLOGICAL
SUPERCONDUCTORS?

In this section, we try to present a definition of a FTSC
and what exactly we mean by this term. Roughly speaking, an
FTSC is a superconducting state of matter whose parent state
is an FQH state. Two topologically distinct classes of FTSCs
can be imagined, Abelian and non-Abelian FTSCs. Abelian
FTSCs are the counterpart of the Abelian FQH states and refer
to the case where all the excitations of the superconducting
ground state are Abelian anyons. In other words, exchanging
any of two quasiparticles can only change the phase of the
ground-state wave function, and two successive exchanges
are commuting. Accordingly, all quasiparticles have quantum
dimensions equal to one. An important signature of the
Abelian FTSCs is the uniqueness of their ground-state wave
functions in the presence of vortices. On the other hand,
non-Abelian FTSCs have non-Abelian excitations with non-
Abelian statistics. The quantum dimension of a non-Abelian
quasiparticle (non-Abelion) is necessarily more than one lead-
ing to degenerate ground states. Exchanging two non-Abelions
not only can change the phase of the ground state, it may also
act on the space of ground states by a unitary transformation.
In other words, the ground state we started with can superpose
with other degenerate ground states after exchanging two
non-Abelions.

Based on what we said in the above paragraph, an Abelian
FTSC has the same topological order as an Abelian FQH
state. In other words, if we break all the symmetries of both
phases, they are smoothly connected; i.e., one of them can
evolve to the other one adiabatically without passing any
phase transition. An FTSC has all the symmetries of its parent
FQH state, except the particle number conservation [UC(1)
symmetry]. The UC(1) symmetry can be easily broken by
inducing superconductivity in the FQH state either intrinsically
or extrinsically. In the latter scenario, the FQH system can
be put above a superconductor, so that Cooper pairs can
tunnel into the FQH state through proximity effect. If we
keep the many-body gap open in the whole procedure, the
resulting state will be an Abelian FTSC. Consequently, we
expect the same kind of chiral edge theory for the system as
that of the parent FQH, except that Abelian anyons do not
carry a definite electric charge anymore. A more interesting
situation can happen when the many-body gap closes due to

the proximity and the system undergoes a topological phase
transition accordingly. The important question that we are
going to address in this paper is the fate of the Abelian state.
In the absence of the superconductivity, the fate of an FQH is
more or less known. For instance, upon decreasing the filling
fraction, e.g., through tuning the chemical potential, we can
end up the Wigner crystal phase at small filling fractions. Now,
let us consider the quantum phase transition between the FQH
state and the trivial insulating phase which can be a Wigner
crystal, for example. A weak proximity coupling turns the two
sides of the phase transition, an Abelian FTSC and a trivial
superconductor with no edge state, respectively. However, the
strong tunneling of Cooper pairs can open a quantum critical
region between these two regions. As is shown later, we
conjecture through different arguments and analogies that the
intervening state is an FTSC with non-Abelian excitation. It is
shown that when inducing superconductivity in the Laughlin
state at ν = 1/m filling, the vortices host non-Abelian fraction-
alized Majorana zero modes with quantum dimension dm =√

2m.

A. Superconductivity proximity effect on integer
quantum Hall states

In this section, we discuss the superconductivity proximity
effect in a chiral model of the noninteracting electrons whose
phase diagram resembles the physics we are pursuing. This
simple model has been proposed by Qi et al.20 A similar model
has also been studied by Fu and Kane.19 Before writing the
Hamiltonian, we would like to point out some comments that
make the results more comprehensible. Imagine an integer
QAH system, e.g., a band structure with Chern number C = 1.
The edge theory of this system can be described by chiral
electrons (or free bosons) propagating along the edges of the
system and localized in the normal direction. By tuning the
mass term (in this model the magnetization of electrons), we
can undergo a phase transition into a trivial state with C = 0.
At the critical point, the system becomes gapless and therefore,
an electron at the upper edge, which is left mover, can hybridize
with (or tunnel into) the right-mover lower edge state. This
can happen since the bulk state is gapless at the critical point
and edge electrons can hybridize with the bulk electrons to
travel from one side to the other. This coupling between the
upper and lower edges can destabilize the edge state and gap
it out. When gap reopens by increasing chemical potential, the
system becomes a trivial phase with no gapless edge state.

Now, let us induce superconductivity in the whole system,
i.e., in the bulk as well as the edge. In the weak coupling
regime where only a few Cooper pairs can tunnel into the
system and cannot affect the band gap, the situation is clear.
It turns the QAH state into an Abelian topological supercon-
ductor whose edge state is still described by chiral complex
fermions (Bogoliubov quasiparticles). Complex fermions, e.g.,
electrons, have two degrees of freedom, the real and the
imaginary part of fermion operator. Each of these degrees
of freedom can be represented by a Majorana operator, which
is a real fermion. By computing the Chern number of the
resulting Abelian superconductor, we would obtain C = 2
referring to the fact that the edge state can be described
by two Majorana fermions or equivalently a single complex
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fermion, in this case Bogoliubov quasiparticles. Moreover,
inducing superconductivity into the trivial phase via proximity
effect simply turns it to a trivial superconductor. Now let
us discuss what happens in the strong coupling between the
superconductor and the QAH system. By strong we mean that
the induced Cooper pairs can close and reopen up the band
gap in a new fashion. The best way to think about this problem
is to consider the edge theory when the bulk gap closes. Like
before, left-mover edge electrons at the upper boundary can
tunnel into the lower edge state with right-mover electrons
through the gapless bulk and hybridization with bulk electrons
that obviously causes instability. However, note that we have a
different instability channel, the Cooper pairing, as well. The
upper left-mover edge electrons can pair with the right-mover
edge electron, since the gapless bulk is a superconducting
state and can mediate Cooper pairs. It is this Cooper pairing
channel that provides novel possibilities. Now let us look
more carefully. Approaching from the Abelian topological
superconducting region, the edge theory is described by a
single complex fermion or equivalently two real (Majorana)
fermions. Through the pairing between the upper and lower
edges, we can gap out one of the real (Majorana) fermions
and keep the other gapless. Therefore, we end up with a
topological superconductor whose edge theory is given by a
single Majorana fermion mode. Since Majorana fermions obey
non-Abelian statistics and have quantum dimension d = √

2,
the intervening state is a non-Abelian integer superconductor.
Now, let us present the model Hamiltonian which is given by
the following equation:

HQAH =
∑

p

= ψ†
phQAH (p)ψp,

(1)

hQAH (p) =
(

m (p) A(px − ipy)

A(px + ipy) −m (p)

)
,

where m (p) = m0 + Bp2 and ψp = (cp,↑,cp,↓)T. This type
of coupling between spin-up and spin-down electrons can be
achieved, for example, in the Rashba-type spin-orbit coupled
system, e.g., at the surface of the three-dimensional (3D) topo-
logical insulators. m0 represents the average magnetization of
electrons that can be realized either through the Zeeman-type
interaction with an external magnetic field or the exchange
interaction with a ferromagnet on the top. Assuming all the
negative energy states are occupied and |m0| > 0, the Hall
conductivity of the above Hamiltonian is given by σH = C e2

h
,

where C is the Chern number of the lower energy band. It can
be shown that C = +1 when m0 < 0 and vanishes for m0 > 0.
Now we turn the above QAH system to a TSC. An effective
pairing interaction between quasiparticles can be induced in
the proximity of an s-wave superconductor. The corresponding
Bogliubov-de Genn (BdG) Hamiltonian is

HBdG = 1

2

∑
p

�†
p

(
hQAH (p) − μ i�σy

−i�∗σy −h∗
QAH (−p) + μ

)
�p,

(2)

where �p = (cp,↑,cp,↓,c
†
−p,↑,c

†
−p,↓)T and the chemical po-

tential μ has been introduced so that we can dope the
unpaired QAH state. Intuitively, we expect that the ground-
state becomes a topological superconductor for |�| > |m0|

and μ = 0. The full phase diagram of the above Hamiltonian
has been derived in Ref. 20. There are several interesting facts
about them, which we mention below.

1. μ = 0 case

(A) For � = 0, there is a phase transition at m0 = 0. For
m0 < 0, the edge state hosts a chiral Luttinger liquid. This edge
state which has central charge c = 1, can be written in terms
of two chiral Majorana modes each having c = 1

2 . However,
for m0 > 0 there is no edge state. Therefore, both Majorana
edge states gap out through the transition at μ = � = 0.

(B) For nonzero values of �, when � < −m, we still have
two gapless Majorana modes at the edge. The wave function of
these Majorana modes is extended along the edge and localized
in the perpendicular direction. As � approaches −m from
below, the localization length of one Majorana mode normal to
the edge becomes larger and diverges at � = −m0. However,
the other Majorana mode is still localized normal to the edge
and extended along it. Hence, at � = −m0, only one of the
Majorana modes delocalizes and merges with the Bulk states.
When −m0 < � < m0, that Majorana mode becomes gapped
and only the other zero mode survives. As we approach � =
m0, the localization length for the remaining Majorana mode
normal to the edge increases, and finally diverges at � = m0.
For m0 > �, the only remaining Majorana modes gaps out
as well. Therefore, a topological superconductor emerges at
the critical quantum point between a QAH state and a trivial
insulator.

(C) The above transition can be described in the following
way. In the absence of pairing potential (� = 0), both Ma-
jorana modes have the same correlation length perpendicular
to the edge (we estimate the width of a Majorana mode by
this length scale), which is ξ ∝ 1

|m0| . As a result, both will
be gapped at the same critical point. However, turning on a
nonzero �, the correlation lengths of two Majorana modes
differ and we have ξ1 ∝ 1/ |m0 + �| and ξ2 ∝ 1/ |m0 − �|.
At � = −m0, the first one has an infinite correlation length
and delocalizes, while the other one has a finite correlation
length. The first Majorana zero mode merges with bulk states
and disappears beyond that point. At � = +m0, the remaining
Majorana mode acquires infinite correlation length and gaps
out accordingly.

(D) A similar phase diagram is expected for the proximity
of an integer quantum Hall (QH) systems (filled Landau levels)
to an s-wave superconductor. The only topological index that
labels the integer QAH or QH states is their Chern number;
therefore, they are topologically indistinguishable. The same
edge theory describes both, so we expect the same topological
phase transitions in both cases.

2. |μ| > 0 case

In Ref. 20, a phase diagram has been presented for this case.
However, we argue that their result is valid only in the weakly
correlated systems where either band structure is far from
being flat or interaction is weak. Going back to the result of Qi
et al., at � = 0, nonzero chemical potential yields a metallic
state. However, turning on the � term, chemical potential
changes only the phase transition point given by the following
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expression:

�2 + μ2 = m2. (3)

B. Generalization to the fractional case

Let us look more carefully at the doped QAH state in
the proximity of an s-wave superconductor, discussed above.
Assuming a nearly flat lowest band for the Hamiltonian
describing the QAH state HQAH and doping this system so
that the filling fraction becomes fractional, e.g., ν = 1

m
, we

can add an interaction whose coupling constant is significantly
larger than the bandwidth and significantly smaller than the
energy gap between lower and upper bands. This is the
definition of a nearly flat Chern insulator. Although doping
leads to a metallic behavior in the integer Chern insulators,
in the present case the many body wave function becomes
nontrivial and exhibits topological order. The excitations
carry fractional charge e∗ = ν at ν = 1

m
filling fraction,

and they have fractional statistics with θ = π
m

. Finally, the
GSD on the torus is m.24–29 When the system has an open
boundary, the edge state is described by a chiral boson mode
ϕ(x,t), from which we can construct the electron operator
�(x,t) = ei

√
mϕ(x,t) (see Fig. 2). Similarly, the anyon operator

with electric charge ±e l
m

can be represented in terms of

the free chiral boson as V±l = e
±i l√

m
ϕ(x,t). These complex

anyon operators have two degrees of freedom, cos l√
m

ϕ(x,t)

and sin l√
m

ϕ(x,t), which are eigenstates of the following

FIG. 2. The quantum critical point (QCP) between an Abelian
and a non-Abelian FTSCs whose parents are 1/m Laughlin state.
At the QCP, the bulk gap vanishes and the localization length of
the edge state diverges. As a result, the top (1,L) and bottom (2,R)
sides of the edge state that are counterpropagating can interact in
the Cooper channel represented by the dashed line. Approaching
the QCP from the Abelian side, the edge quasiparticles are complex
anyons with two degrees of freedom: Vl = eilϕ/

√
m, where l ∈ Zm.

This pairing between (1,L) and (2,R) can gap out the (Vl − V
†
l )/2i

part of the anyon field. Accordingly, only the remaining part, (Vl +
V

†
l )/2 = cos(lϕ/

√
m), which is invariant under the Z2 action, ϕ →

−ϕ, remains gapless. This argument suggests that the edge theory of
the resulting state after gap reopens is achieved by taking cos(

√
mϕ)

as the electron operator instead of ei
√

mϕ . The CFT that contains
this electron operator, and with central charge c = 1, is known to
be a U(1)m/Z2 orbifold theory (Refs. 22 and 23). Interestingly, such
an orbifold CFT contains non-Abelian primary fields with quantum
dimensions

√
2m.

Z2 symmetry operation: R : φ → −φ. Interestingly, these
primary fields do not have a definite electric charge and are
suitable when the electromagnetic gauge symmetry is broken,
i.e., in a superconductor. The key assumption which is used
extensively in the rest of this paper is that above a critical
pairing strength, only one of these Z2 eigenstates survives and
the other becomes gapped. Therefore, the electron operator at
the edge is Ve = �+�†

2 = cos(
√

mϕ), which is self-conjugate,
i.e., Ve × Ve ∼ 1. The CFT that contains this electron operator
at c = 1 has been studied extensively in the CFT literature and
is called U(1)m/Z2 orbifold theory.4,22,23,30–32 This orbifold
is known to have non-Abelian primary fields, suggesting
the name non-Abelian FTSC for the bulk state. It is worth
mentioning that the non-Abelian FTSC can also be obtained
by inducing superconductivity in the FQH states, and the
procedure explained above is not specific to fractional QAH
systems.

III. CFT APPROACH TO THE FTSCs

A. Bulk wave function and correlation functions
of the edge CFT

For the chiral topological states, it is conjectured that the
holomorphic part of the bulk wave function can be described as
the correlation function of the fermion operators in the chiral
edge theory.14,16,33 First of all, we have to identify the CFT
that describes the chiral edge state. Second, we should find
the electron operator Ve (z) that has a half-integer conformal
dimension. This is to makes sure that two electron operators
anticommute. Then the wave function of the ground state of N

electrons with electrons coordinates {zk}, where zk = xk + iyk ,
is simply given in terms of the correlation function involving N

electrons operators at {zk} so �({zk}) = 〈∏N
k=1 Ve(zk)〉. Third,

we can construct the excited wave function by inserting other
primary fields in the correlation wave function. For example,
in the 1/m Laughlin states, the electron operator is Ve = ei

√
mϕ

and the primary field associated with the fractional excitation
with charge is q = e/m is Va = e

i
ϕ√
m . Hence, the holomorphic

part of the wave function for N electrons and n anyons would
be of the following form:

�({ηl}; {zk}) =
〈

n∏
l=1

Va(ηl)
N∏

k=1

Ve(zk)

〉

=
∏
i,l

(zi − ηl)
∏
k<l

(ηl − ηk)1/m
∏
i<j

(zi − zj )m.

(4)

In the next section, we present a comprehensive calculation
of the steps explained above for the non-Abelian FTSCs and
identify the primary fields of the edge CFT, the fusion algebra
of that CFT, and the bulk wave-function. We also study the non-
Abelian statistics of the fractionalized Majorana zero modes
and compute the corresponding braid matrix.

B. Edge theory of the Abelian FTSCs

As we mentioned before, an Abelian FTSC is smoothly
connected to its parent FQH state at the same filling fraction.
Thus, they belong to the same topological class and have
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identical edge theories, except that the number conservation
is broken at the edge of an FTSC. So it is enough to consider
the edge CFT of an FQH state. The edge of a Laughlin state at
ν = 1/m is described by a chiral gapless mode given by the
following action:12

S = − m

4π

∫
dxdt (∂t + vF∂x) ϕ (x,t) ∂xϕ (x,t). (5)

The above edge theory can be written in terms of a U(1) CFT on
the 2D space-time. To this end, we use the following notations:

z = t + ix, z̄ = t − ix, x ∼ x + 2π, (6)

where the periodicity of the x direction is due to the circular
geometry of the edge (x is rescaled to satisfy the above
relation and the Fermi velocity is chosen as vF = 1). By this
transformation, the action of the edge theory becomes

S = − 1

4π

∫
dzdz̄∂zϕ (z,z̄) ∂z̄ϕ (z,z̄) , (7)

in which we have rescaled ϕ by a factor of
√

m. We should be
careful about this scaling as it has a physical effect. Before its
action, the bosonic ϕ is assumed to be living on a circle with
radius R = 1; i.e., ϕ is identified with ϕ + 2π . However, after
it we should take R = √

m, i.e., ϕ ∼ ϕ + 2π
√

m. Technically
speaking the bosonic field is compactified on a circle with
radius R = √

m.
The equation of the motion for the above action is

∂z∂z̄ϕ (z,z̄) = 0, so either ∂zϕ (z,z̄) = 0 or ∂z̄ϕ (z,z̄) = 0. We
choose the latter choice, which means ϕ (z,z̄) = ϕ (z) since we
need a chiral (holomorphic) edge state (the first choice given
an antichiral (nonholomorphic) edge state. The edge state
is enjoying a U(1) symmetry under which ϕ → ϕ + ε with
any arbitrary ε. This symmetry leads to a conserved Noether
current. It is given by the following formula:

j (z) = i∂zϕ (z) , (8)

which is manifestly conserved since ∂z̄j (z) = i∂z̄∂zϕ (z) = 0.
The propagator of the ϕ field satisfies the following equation:

− 1

2π
∂z̄∂zK (z,z̄,w,w̄) = δ(2) (z − w) . (9)

Using the 1
2π

∂z (z̄ − w̄)−1 identity for the δ function in complex
plane, we have

K (z,z̄,w,w̄) = 〈ϕ (z,z̄) ϕ (w,w̄)〉 = − ln |z − w|2
= − ln (z − w) − ln(z̄ − w̄). (10)

For holomorphic solutions of the edge theory we have
〈ϕ (z) ϕ (w)〉 = − ln (z − w). Now let us find the correlation
function of the current operators:

〈j (z) j (w)〉 = −∂z∂w 〈ϕ (z) ϕ (w)〉 = 1

(z − w)2 . (11)

We can read the scaling (conformal) dimension of current
operator off above correlation means leading to hj = 1. An
interesting set of operators known as vertex operators can be
obtained from the bosonic ϕ chiral fields. We have

Vα (z) = eiαφ(z). (12)

It can be easily shown that

〈Vα (z) Vβ (w)〉 = (z − w)αβ . (13)

An important fact about these operators is that they sat-
isfy 〈Vα(z)Vβ(w)〉 = eiπαβ〈Vβ (z)Vα(w)〉, which gives anyonic
statistics for αβ /∈ Z. Taking α = β we can compute the
scaling dimension of Vα , which happens to be

hα = α2/2. (14)

The fact that ϕ is compactified on a circle with R = √
m allows

only discrete values for α. We have

Vα (z) = eiαφ(z) = eiα(φ(z)+2π
√

m) ⇒
α = k√

m
, k ∈ Z. (15)

Note that there is no constraint on the value of the k and it
can be any integer number. Therefore, we still have an infinite
number of primary fields. In the next section, we discuss the
chiral algebra that puts further constraints on the value of k.
Now let us consider the following operator:

Ve (z) = ei
√

mϕ(z), V †
e (z) = e−i

√
mϕ(z). (16)

The scaling dimension of this operator is m/2 and exchanging
two of them yields a minus sign. Accordingly, Ve (z) represents
a fermion operator. By looking at the operator product
expansion (OPE) between Ve and the current operator j we can
measure its electric charge, which happens to be e. Therefore,
Ve is actually an electron operator of U(1) CFT compactified
on a circle with radius R = √

m. Additionally, by choosing
α = 1√

m
and computing the correlation function between two

of them, exchanging them counterclockwise we obtain θ = π
m

for their fractional statistics. The charge of this operator can
also be measured by looking at its OPE with the current
operator and turns out to be e/m. Accordingly, ei

ϕ√
m represents

the Laughlin quasiparticle (anyon) operator.

C. Chiral algebra of the Laughlin-type states

In this section we wish to study the operator content of
the Abelian FQH/FTSC states, through the so-called chiral
algebra. The conformal algebra always contains the Virasoro
algebra, which is given by a central charge c. The edge theory
of the Abelian FQH/FTSC states at ν = 1/m is described by
a CFT with c = 1. The Viraso algebra at c = 1 allows for
an infinite number of primary fields of the form Vαjn with
arbitrary real α and integer n numbers, where Vα = eiαϕ and
j = i∂zϕ. In the physical systems, however, we always have
a finite number of primary fields. One way to obtain a finite
number of primary fields is to extend the Virasoro algebra.
A particular example is through the chiral algebra where we
choose one of the primary fields as well as the current operator
j as the generators of the algebra and find all the primary
fields that have nonsingular OPE with them. The resulting
operators will form a representation of the chiral algebra.
For example, in the c = 1 we can take the electron operator
Ve = exp(i

√
mϕ(z)), V

†
e , and j with scaling dimensions m/2,

m/2, and 1, respectively, as the generating operators. The OPE
of the current operator with vertex operators Vα is always
nonsingular. Now let us consider the OPE of Ve with vertex
operators. We have

Ve (z) Vα (w) ∼ 1

(z − w)
√

mα
. (17)
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In order to get a nonsingular OPE,
√

mα should be an integer.
Therefore, every V k√

m
operator where k ∈ Zm is also allowed in

the chiral algebra. These operators create excitations in the ν =
1/m Laughlin states. The fusion algebra of this chiral algebra
is pretty simple: Vk/

√
m × Vl/

√
m = Vk+lmodm√

m
, which represents

a Zm algebra.
The chiral algebra of the free boson theory compactified

on a circle with R = √
m radius can be further expanded

by choosing the bosonic operators e±i(2
√

mϕ) and j as the
generators of the chiral algebra. This alternative choice turns
out to be very useful in studying the operator content of the
U(1)/Z2 orbifold theory description of the superconductors.
The intuition is that the charge of the Cooper pair is 2 and
they are considered as the bound state of two electrons. On the
other hand, ei(2

√
mϕ(z)) ∼ limw→z Ve (z) Ve (w). Following the

procedure we used above, we find the following operators as
the allowed primary fields:

Vk/2
√

m (z) = e
i k

2
√

m
ϕ(z)

, hk = k2

8m
, k ∈ Z4m. (18)

Form the above relation, it turns out that the previous chiral
algebra is a subalgebra of the new one. The operators that
we encountered before and that represent the Laughlin state
correspond to k = 2l and l � m. The new primary fields
with k = 2l, where m < l � 2m, were identified with k − 2m

primary fields in the previous case (Zm algebra). The primary
fields with k = 2l + 1 are all odd under the ϕ → ϕ + 2π

√
m

symmetry transformation of the original free chiral boson
theory, so they can be removed form the theory at the end.
The resulting theory can be easily shown, which is modular
invariant, thus physical. The fusion rules for this chiral algebra
reduces to a Z4m one. In general, for a chiral boson theory
compactified on a circle with a rational radius of R2

2 = p

p′ form
where p and p′ are coprime (i.e., they their greatest common
divisor is one), the maximal chiral algebra is generated by
j , and e±i

√
2Nϕ , where N = pp′, whose corresponding fusion

algebra reduces to Z2N group.22,23,31 This chiral algebra of
the c = 1 free boson theory is referred to as AN . As a sanity
check, let us consider R = √

m theory that represents the edge
state of a ν = 1/m Laughlin state, R2

2 = m
2 . Since m is odd

(m,2) = 1, then N = 2m. Accordingly, the maximal chiral
algebra is given by A2m and the fusion algebra reduces to Z4m.

D. Vortices and the twist operators

Imagine a superconducting state with a number of vortices.
Because superconductor is a condensate of Cooper pairs with
charge q = 2e, it allows for the vortices with a magnetic flux
half of the quantum flux; i.e., �0 = hc

2e
= π/e in the unit

where h̄ = c = 1. On the other hand, the Aharanov-Bohm
effect tells us that electrons moving around a vortex will pick
up a minus sign. In other words, having a vortex at point �R
requires the introduction of a branch cut in the superconductor
such that electrons change sign by passing through it. This
means a vortex can be imagined as a topological defect in
the superconductor. Now let us formulate this is in a more
elegant way. We wish to consider an operator σ ( �R) referred
to as the twist operator which creates a vortex at point �R. If
we take an electron and turn it around this twist operator, the

electron operator’s sign changes. Within the bulk-boundary
CFT theory correspondence conjecture this means we need an
operator whose OPE with electrons is of the following form:

Ve(z)σ (w) = σ (w)

(z − w)1/2
. (19)

Going around the twist field σ (w), the electron operator picks
up a minus sign. Therefore, the twist operator can change
the boundary condition on the electrons from periodic to
antiperiodic and vice versa along space and/or time directions.
Such a twist operator is quite well studied in the context of the
Ising CFT and physically corresponds to the spin order and
disorder fields.30,31

E. Edge theory of the non-Abelian FTSCs:
U(1)/Z2 orbifold CFT

As we discussed before, it is known that the maximal chiral
algebra of a free boson compactified on a circle with R2

2 =
p

p′ with (p,p′) = 1 is given by AN , where N = pp′.22,23,31

This algebra is generated by the bosonic operators: j and
e±i

√
2Nϕ . Accordingly, the primary fields allowed in this chiral

algebra are e
i k√

2N
ϕ , where k ∈ Z2N , in addition to the current

operator j = i∂zϕ. Therefore, the maximal chiral algebra of
a free chiral bosons compactified on a circle with R = √

m

that describes an Abelian FQH (or an Abelian FTSC) state at
ν = 1/m filling is given by A2m. The free boson edge theory
enjoys a discrete Z2 symmetry which acts on the U(1) boson
field in the following way:

R : ϕ → −ϕ, (20)

or, equivalently, R : j → −j . The action of the Z2 group
R divides the primary fields of the A2m chiral algebra into
the invariant and noninvariant groups: φk = cos(kϕ/2

√
m),

and φ̃k = sin(kϕ/2
√

m). On the other hand, as we discussed
in the previous section, for a range of parameters adding
superconductivity to the system can gap out half of the degrees
of the freedom corresponding to primary fields of the edge
theory and keep the rest gapless, meaning either the invariant
or the noninvariant part of the primary fields should be taken.
As a result, the electron operator can be taken as the cos(

√
mϕ),

which is even under the Z2 orbifold theory.
The above argument suggests that we should look for a

chiral algebra generated by j and cos(
√

2Nφ) (N = 2m). The
resulting CFT is known as the U(1)/Z2 orbifold theory that is
achieved by moding out the discrete symmetryR from the free
boson edge CFT. Moreover, the chiral algebra of this orbifold
theory is given by AN/Z2.

The orbifold theory is known to be relevant in other
topological states of matter as well. In Refs. 4, 23, and 34,
Brakeshli and Wen studied a bilayer FQH state with a strong
interlayer repulsion. In the absence of strong repulsion, the
edge theory of the bilayer FQH state is given through two
free chiral boson fields ϕ1 = ϕ++ϕ−

2 and ϕ2 = ϕ++ϕ−
2 and thus

enjoys a U(1) × U(1) symmetry corresponding to j+ = i∂zϕ+
and j− = i∂zϕ− conservation. A discrete symmetry of the
edge theory corresponds to the exchange of the two layers:
R : ϕ− → −ϕ−. In the (m,m,0) bilayer FQH, the electron
operator in each layer can be represented as ψi = ei

√
mϕi ,
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where i = 1,2. By increasing the interlayer repulsion, it is
energetically favorable for the quasiparticles to reside in the
same layer. This causes only the even combination of electron
operators under theR symmetry to remain gapless and the odd
combination becomes gapped. Consequently, the edge CFT is
generated by ψ1+ψ2

2 = ei
√

mϕ+/2 cos(
√

mϕ−/2). Therefore, the
edge theory is given by the free U(1) theory, corresponding to
ϕ+, and a U(1)/Z2 for the the ϕ− part, thus a U(1) × U(1)/Z2

orbifold CFT. As in our example, the orbifold theory allows
for the twist fields to show up, resulting in a non-Abelian
state. In a different study, Barkeshli and Qi have shown that
Chern insulators with higher Chern numbers can provide
a physical playground to realize a similar physics.35 More
recently, Barkeshli et al. have studied the topological order and
projective non-Abelian properties of these types of models.32

F. Operator content of the U(1)/Z2 orbifold CFT

To obtain the chiral algebra representing the non-Abelian
FTSCs, we should mod out the Z2 subgroup of the CFT that
acts on the current operator as R : j → −j . Moding the Z2

symmetry has two effects. First, the resulting primary fields
should be either symmetric or antisymmetric under the orbifold
action. Second, it allows new primary fields to show up in
the chiral algebra. These new primary operators are twist
fields. The OPE of any primary field in chiral algebra with
the generators of the chiral algebra, i.e., j and cos(

√
2Nϕ),

should be nonsingular. The OPE of the twist fields with
the cos(

√
2Nϕ) vertex operator is nonsingular. However, its

OPE with the current operator j = i∂zϕ has a branch cut,
which means taking the current operator around the twist
field changes the sign of the current operator leading to a
singular behavior of the OPE. For the unorbifold theory with
the full U(1) symmetry, this is not acceptable and as a result
twist fields are absent in the chiral algebra. However, by
moding the Z2 symmetry generated by R, the twist fields are
allowed because −j (z) = R−1j (z)R ∼ j (z). In other words,
the current operator is invariant after going around the twist
fields up to the action of the Z2 group. Therefore, the chiral
algebra of the AN/Z2 theory has to include twist fields as
well. It is these twist fields that make the orbifold theories
significantly richer and more exciting than the original AN

chiral algebra associated with the Abelian FTSC.
There are two kinds of twist fields in the U(1)/Z2 orbifold

theories: σ1 and σ2 fields with conformal dimension hσ = 1/16
and τ1 and τ2 fields with conformal dimension hτ = 1/16 +
1/2 = 9/16. The latter twist fields are related to the first one
through the following relation:

j (z)σi(w) ∼ τi(w)

(z − w)1/2
, (21)

which is consistent with the fact that σi(w) twist operators
change the sign of the j (z) = i∂zϕ(z) field through 2π rotation
around w. As was stated before, twist operators are allowed by
the chiral algebra AN/Z2 since under the action of the twist
field on the current operator, it is invariant up to the action
of the Z2 group (more precisely j ≡ −j in the Z2 orbifold
theory).

The generators of the chiral algebra are the current (j ) and
cos(

√
2Nϕ) operators (N = 2m). We now consider the rest of

TABLE I. Primary fields of the orbifold theory given by an
AN/Z2 chiral algebra with N = 2m and the corresponding conformal
(scaling) and quantum dimensions.

CFT primary Conformal Quamtum
field dimension dimension

0 1 0 1
1 j 1 1
2 φi

2m m/2 1
3 φk k2/(8m) 2
4 σi 1/16

√
2m

5 τi 9/16
√

2m

primary fields that have nonsingular OPE with these generators
other than twist fields. It can be shown that the following set
of operators has nonsingular OPE with these operators:

φk = cos

(
k√
2N

ϕ

)
= cos

(
k

2
√

m
ϕ

)
, (22)

which are simply the Z2-invariant part of the primary fields of
the A2m chiral algebra that we encountered before. There are
two fermion operators in the A2m/Z2 chiral algebra among
which we take the Z2-invariant one as the electron operator.
They are

Ve = φ1
N = cos

(√
N

2
ϕ

)
= cos(

√
mϕ),

(23)

φ2
N = sin

(√
N

2
ϕ

)
= sin(

√
mϕ).

Several properties of these primary fields are summarized in
Table I. The most important information one needs in any CFT
is the fusion algebra of the primary fields. For the Z2 orbifold
theories we are concerned with here, Dijgkgraaf et al.22 have
derived their fusion rules. According to their study, for even N

(in our problem it is the case) the fusion algebra is as follows:

φk × φk′ = φk+k′ + φk−k′(k′ �= k,N − k),

φk × φk = 1 + j + φ2k, (24)

φN−k × φk = φ2k + φ1
N + φ2

N .

The above fusion rules can be verified by interpreting φk fields
as cos(kϕ/(

√
2N )). Also, the fusion rules involving j , φ1

N , and
φ2

N operators are

j × φk = φk, j × j = 1, φi
N × φi

N = 1, φ1
N × φ2

N = j,

(25)

and, most importantly, the fusion rules involving the twist
operators is given by the following formulas:

σi × σi = 1 + φi
N +

∑
keven

φk, σ1 × σ2 =
∑
kodd

φk,

j × σi = τi, φk × σi = σi, φi
N × σi = σi. (26)

The fusion rules for the twist fields τi can also be read
off the τi = j × σi formula. The above relations suggest that
the A2m/Z2 chiral algebra supports 2m + 7 primary fields,

035132-7



ABOLHASSAN VAEZI PHYSICAL REVIEW B 87, 035132 (2013)

among which φ1
N , φ2

N , and j are Abelian fields and φk’s
are non-Abelian primary fields with a quantum dimensions
equal to 2 and the non-Abelian twist fields with a quantum
dimensions equal to

√
N . Now let us make comments on

the above fusion algebra. First of all, as we stated before,
φ1

2m field with conformal dimension h = m/2 is a fermion
field and invariant under under the R symmetry. We choose
it to represent the electron operator. The above fusion rule
between an electron operator and a twist field σ1 along with
their conformal dimensions suggest the following OPE (and a
similar relation for the τ1):

Ve (z) σ (w) = σ (w)

(z − w)m/2 . (27)

This relation is consistent with the fact that taking an electron
around the twist field flips the sign of the electron operator and
changes the boundary conditions. Second, φ2l = cos( l√

m
) op-

erators represent the R invariant non-Abelian anyon operators
with conformal dimensions h2l = l2/2m. The OPE of these
anyon fields with the twist fields σ1 is (and a similar relation
for the τ1)

φ2l (z) σ (w) = σ (w)

(z − w)l
2/2m

, (28)

which means taking an anyon operator around the twist field
will change its phase by θ2l = l2π/m. We use this important
observation in studying the zero modes of the anyon operators.

IV. TOPOLOGICAL ORDER OF THE
NON-ABELIAN FTSCS

In this section, we study different properties of the non-
Abelian excitations. We prove the existence of the zero modes
bound to vortices, compute their quantum dimensions and
derive the non-Abelian part of the braid matrix that acts on the
degenerate ground state by braiding fractionalized Majorana
zero modes.

A. Mode expansion and zero modes

In this section, we study the physical effects of the twist
fields and show that they allow for the existence of the
fractionalized Majorana zero modes. First of all, let us mention
the following mode expansion for the primary fields. For an
arbitrary chiral primary field � (z) with conformal dimension
h� we can write the following mode expansion:

� (z) =
∑

n=n′− p

q

αn

zn+h�
n′,p,q ∈ Z. (29)

In order to determine the allowed values for p and q

integers, we need to know the behavior of the �(z) field
under the twist, i.e., the value of the θ in �(e2πiz) =
e−iθ�(z). On the other hand, the above mode expansion
suggests that �(e2πiz) = e−i(h�−p/q)2π�(z). Therefore, p

q
=

h� − θ
2π

mod1. If p/q = 0, then it means α0 is allowed in
the system and we say that the � field supports a zero
mode. For physical systems we usually have periodic boundary
conditions on fields, i.e., θ = 0, and therefore for the primary
fields with rational conformal dimension zero mode is absent.

For example, in the Laughlin FQH state at ν = 1/m filling
fraction, p

q
= m

2 − 0
2π

mod1 = 1/2. This means n = m + 1/2
and, accordingly, there is no electron zero mode. An interesting
question that arises is what can cause a twisted boundary
condition (i.e., θ �= 0) on the �(z)? The answer is simply
the twist fields. A physical realization of the twist field is the
flux insertion (vortex) that through the Aharanov-Bohm effect
can change the boundary condition. For example, a single
half vortex with φ0/2 magnetic flux can change the boundary
condition on electrons from a periodic to an antiperiodic
one. For such a boundary condition, p

q
= m

2 − π
2π

mod1 = 0.
Consequently, the zero mode is now allowed. This is, for
example, the reason why zero modes are bound to the vortices
in p + ip superconductors.

As the fusion rules of the U(1)/Z2 orbifold theory suggest
[see Eq. (26)], fusing two twist fields (vortices) of the same
kind can generate φ2k primary fields. Now let us take the anyon
primary field with the least conformal dimension, i.e., φ2 =
cos( ϕ(z)√

m
) among them. The mode expansion of this primary

field whose conformal dimension is 1
2m

reads as follows:

φ2 (z) =
∑

n=n′− p

q

αn

zn+1/2m
n′,p,q ∈ Z. (30)

In the usual periodic boundary condition, p/q = 1/m, and
therefore n = n′ − 1/(2m), so the zero-mode operator, α0, is
absent. Now imagine we have put a twist field corresponding
to the half vortices at w = 0. Taking the φ2 (z) field around
the twist field will result in θ = π

m
. As a result, in this case

p

q
= 1

2m
− θ

2π
mod0. Accordingly, n ∈ Z and the zero-mode

operator α0 exists in the mode expansion of the φ2 (z) field in
the presence of a twist field at w = 0 (or by flux insertion at
w = 0).

Let us consider the fusion algebra between φk and φ2N−k

fields, which is φk × φ2N−k = 1. This means φ2N−k is the
conjugate of the φk; i.e., their fusion gives the vacuum. Thus,
we represent the φ2N−k as φ

†
k . In particular, take the anyon

operator, φ2, whose conjugate field is φ2(m−1) with a conformal

dimension equal to (2m−1)2

2m
. According to their fusion, the OPE

between these fields is given by the following formula (up to
a constant number):

φ
†
2(z)φ2(w) ∼ 1

(z − w)2(m−1)+1/m
,

(31)

φ2(w)φ†
2(z) ∼ 1

(w − z)2(m−1)+1/m
,

from which we obtain the following commutation relation:

φ
†
2 (z) φ2 (w) = e−iπ/mφ2 (w) φ

†
2 (z) . (32)

Using the mode expansion, the commutation relation
between the modes can be achieved, which is

α
†
kαl = e−iπ/mαlα

†
k. (33)

Another important property of the φ2 field is that fusing it 2m

times with itself gives the identity, i.e., φ2m
2 ∼ 1. This property

has an important consequence for the zero modes. To see that
we first mention that modes can be written in terms of the
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following contour integrals:

αk =
∮

c

dz

2π
φ2 (z) zk+1/(2m)−1, (34)

where c encloses the origin. Using this relation, it can be shown
that

α2m
0 = α

†
0

2m = 1. (35)

The above relation suggests that α0 is the generalization of the
Majorana zero ψ0 mode for which ψ2

0 = 1. In this problem
αm

0 = α
†
0
m acts like a Majorana zero mode and for m0 > 1

we refer to the zero-mode operator α0 as the fractionalized
Majorana zero mode for obvious reasons.

B. Quantum dimension of the non-Abelian excitations

One of the features of the topological order is the GSD.
This degeneracy is related to the so-called quantum dimension
of the zero modes. A zero mode, as its name implies, excites
quasiparticles with zero energy. In other words, by applying
a zero mode on the ground state we yield a new state with
the same energy. The degeneracy of the ground state is
a topological index of the system which is robust against
perturbations. Clearly, the ground state(s) of a Hamiltonian
depends on the boundary conditions. The existence of some
fields can change the boundary condition and as a result the
GSD. For example, as we mentioned in detail before, a twist
operator at the �R1 point exchanges the boundary condition
on electrons moving around it and gives the possibility of the
zero modes. One way to define the quantum dimension of
an operator, in this case twist fields, is to consider n of such
operators at isolated points ( �R1, . . . , �Rn). Then compute the
GSD with respect to this constraint. The GSD usually grows
with the number of such fields. Accordingly, the quantum
dimension of these operators is defined as follows:

ln d = ln GSD

n
n → ∞. (36)

There are several other ways to define the quantum
dimension of an operator, but we stick to the above definition
for our purposes in this paper. Now let us consider an FTSC
on a torus (or an infinite plane) with two vortices at �R1 and
�R2 in it. The vortices can be modeled by putting σ1 twist

fields at these points. As we argued before, twist fields allow
the existence of zero-mode operators bound to (localized at)
twist operators. This bound state can be justified in an intuitive
way. Naively, a vortex means a circular puncture with radius
L (of the order of the correlation length of Cooper pairs)
centered at �R1. We expect an edge state propagating along the
boundary of the puncture and localized in the perpendicular
direction. The reason for this expectation is that inside the
puncture is a trivial state while outside it is an FTSC. The
chiral anyons (corresponding to the φ2 field) that propagate
along the boundary have energies of the form E = vFk,
where k is their momentum and vF represents the Fermi
velocity. However, since L is finite, the momentum of the
quasiparticles is quantized as kn = 2πn

L
, where n is an integer

due to the fact that the twist field (vortex) allows for the zero
mode. Therefore, level spacing is �E ∝ 1/L → ∞, meaning

that only the zero mode (n = 0) can be observed at that
point. Therefore, twist fields at �R1 allows for the fractionalized
Majorana zero mode, α0, at that point and similarly does the
twist field at �R2. Let γ1 and γ2 operators denote zero modes at
�R1 and �R2. They follow the following algebra:

γ
†
1 γ2 = exp (−iπ/m) γ2γ

†
1 , γ 2m

1 = γ 2m
2 = 1. (37)

Using the above algebra we can show that γ
†
1 γ2 operator

satisfies the relation

(γ †
1 γ2)2m = exp(−iπ (2m + 1)) = −1, (38)

which defines a 2m state with the following eigenvalues:

eiπ/(2m)γ
†
1 γ2 |q〉 = exp (iπq/m) |q〉 . (39)

Therefore, we can consider eiπ/(2m)γ
†
1 γ2 as the generalization

of the familiar fermion parity operator for Majorana fermions.
Hence, we call it the Z2m character of the ground state. To
understand the nature of the degenerate ground states, the
following relations that can be easily proven will be found
useful:

γ
†
1 |q〉 = exp(−iπξ1(q − 1/2)/m)|q + 1mod2m〉,

γ1|q〉 = exp(iπξ1(q − 1/2)/m)|q − 1mod2m〉,
(40)

γ
†
2 |q〉 = exp(−iπξ2(q − 1/2)/m)|q + 1mod2m〉,

γ2|q〉 = exp(iπξ2(q − 1/2)/m)|q − 1mod2m〉,
where ξ2 − ξ1 = 1, and ξ2 can be any real number. The
ambiguity in the value of the free parameter ξ2 indicates
that only quadratic combinations of the form γ

†
1 γ2 are

unambiguous and thus physical and measurable. However, the
value of the ξ2 does not affect the quantum dimension of the
fractionalized Majorana zero modes (γi operators) as well as
their projective braid statistics. Therefore, we fix the gauge
and assume ξ2 = 1, and ξ1 = 0 as of now. With this gauge
convention, the ground-state |q〉 can be constructed in either
of the following ways:

|q〉 = γ
†
1

q |0〉 = exp(iπ/2m(q2 − 2q))γ †
2

q |0〉. (41)

The above relations play a key role in our paper. To see how
powerful the CFT methods is, note the fusion rule given for two
twist fields in Eq. (26). It simply means that taking every two
twist fields (vortices), their composite state results in different
fusion channels, which is a signature of their non-Abeilan
nature. The final state can be either vacuum or a state with one
of the anyon operators φ2,φ4, . . ., and φ4m−2. Note that the zero
mode of the φ2k operator can be created by taking the kth power
of the fractionalized Majorana zero mode of the φ2, i.e., γ k

i (i
can be either 1 or 2 since we have fused twist fields at R1 and
R2), which can be easily proven using the fusion rules for φ2l

operators. Therefore, fusing every two twist operators results in
one of the following states {|0〉,γ †

i |0〉,γ †
i

2|0〉, . . . ,γ †
i

2m−1|0〉}.
As a concluding remark, remember that fractionalized
Majorana zero-mode operator γi is bound to σ1 (Ri).
Therefore, fusing two twist fields can be viewed as considering
a γ

†
1 γ2 operator, which happens to define a 2m degenerate

states. So the results of the CFT are consistent with the direct
calculation.
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The main result of our discussion so far is that by taking
any two vortices we can define the Z2m character eiπ/(2m)γ

†
i γj

that takes values in Z2m and as a result defines 2m degenerate
states. Accordingly, taking n vortices, we can define n/2 of
such Z2m characters (remember that in a compact space there
are always an even number of vortices) and results in the
(2m)n/2 degenerate states. However, we should note that the
number of electrons in a superconductor is conserved mod 2.
Each electron operator is formed of m anyon operators (φ2

fields) in A2m/Z2 chiral algebra. So the number of anyons
is conserved mod 2m. This generalized parity of anyons
can be computed through the Z2m characters. It is indeed
χ = ∏n/2

i=1 eiπ/(2m)γ
†
2i−1γ2i . The conservation of the χ operator

reduces the number of degenerate states by a factor of 1/(2m),
since one of the Z2m characters is fixed by the value of the
χ and the rest of Z2m characters. Altogether, we reach the
following conclusion:

GSD (n) = (2m)n/2−1 ⇒ dσ =
√

2m, (42)

which agrees with the result of the CFT.

C. Projective braiding statistics of the fractionalized
Majorana zero modes

Braiding means an adiabatic evolution of the ground
state in space-time, after which two quasiparticles exchange
their position. For example, exchanging the position of
two electrons causes the change of the ground-state wave
function by π . In the FQH state at ν = 1/m, exchanging
the position of two anyons counterclockwise changes the
phase of the ground-state wave function by π/m phase factor.
For non-Abelian quasiparticles, however, the ground state
is degenerate and exchanging two quasiparticles may cause
a unitary transformation of the ground state; i.e., it may
mix different degenerate ground states after exchanging two
non-Abelian quasiparticles (for example two Majorana zero
modes) adiabatically. In the CFT, braid matrix (that acts on
the ground states) is defined through the four-point correlation
functions. Take four primary fields � (z1), � (z2), � (z3), and
� (z4). Then compute the following correlation function:

〈� (z1) � (z2) � (z3) � (z4)〉 . (43)

Suppose the fusion algebra of the � primary fields is given
by � × � = ∑d

l=1 �l for some know �l fields. Using this
fusion algebra, there are several ways to compute the four-point
correlation function. One way is to fuse �1 with �2 and �3

with �4 in the l channel and sum over different channels. For
each particular channel let us call the result F34

12 (l,z), where
z = z12z34

z13z24
and zij = zi − zj . The second way is to fuse �1 with

�3 and �2 with �4 in the l′ channel and sum over different
l′ channels. Again for each particular channel let us call the
result F24

13 (l′,1/z). The consistency check requires F34
12 (l,z) to

be a linear combination of F24
13 (l′,1/z) functions, say

F34
12 (l,z) =

∑
l′

(B23)l
′
l F24

13 (l′,1/z). (44)

B23 is called the braid matrix that acts like a unitary
transformation on the degenerate ground states formed of four
� fields inserted upon braiding �2 and �3. Let us go back

to our problem. Upon vortex (the dual of the edge CFT’s
twist fields in the bulk of the FTSC) insertion, a fractionalized
Majorana zero mode is created at that point. Instead of braiding
zero modes, we can instead braid vortices that obviously
braid the zero modes bound to them as well. It should be
emphasized that the braid matrix can be decomposed in the
Abelian (phase factor) and non-Abelian parts. The Abelian
part depends on the microscopic details of the system and
the interaction between superconducting vortices. Since it
does not affect the non-Abelian part of the braid matrix,1 we
neglect the Abelian part of the braid statistics in this paper and
refer to the remaining non-Abelian part as the projective braid
matrix.32 The calculation of the projective braid matrix from
the conformal blocks using the above recipe is straightforward
but tedious. In this section, we employ a somewhat easier
but related method that uses the S matrix to compute the
non-Abelian part of the B23 matrix. To this end, we first
compute B12, which acts on the ground state upon exchanging
twist fields σ1 and σ2 (as well as the zero modes bound to
them). To compute B12 we can actually forget about other
twist fields and consider vortices 1 and 2 only. From the fusion
rule given for two twist fields in Eq. (26), we can write the
OPE between σ1 and σ2 fields (up to constant coefficients).
We have

σ1 (z) σ1 (w)

= 1

(z − w)1/8

⎡
⎣2m−1∑

q=0

(z − w)q
2/(2m) φ2q

(
w + z

2

)⎤
⎦. (45)

Remember that φ2m = φ1
2m = Ve and φ0 ≡ φ4m ≡ 1. The

above formula means that taking two twist fields and fusing
them (and as a result fractionalized Majorana zero modes
bound to them) is ambiguous and depends on the fusion
channel. The qth fusion contains k fractionalized Majorana
zero modes. Therefore, exchanging two twist fields does not
simply give us a phase change like Abelian quasiparticles.
Instead, the phase factor that we obtain depends on the fusion
channel. By exchanging z and w [accordingly σ1 (z) and
σ1 (w)] in the qth channel, one can verify from the above OPE
that it results in an eiπ/8e−iπq2/2m phase factor. Forgetting the
Abelian common factor in every fusion channel, i.e., eiπ/8, and
keeping the q-dependent part only, we conclude that in the qth
channel, i.e., |q〉 = γ

†
1

q |0〉 exchanging γ1 and γ2 as a result of
exchanging twist fields, results in e−iπq2/2m |q〉. Therefore,

B12|q〉 = (B12γ
†
1 B

†
12)qB12|0〉 = exp(−iπq2/2m)|q〉

= exp(−iπq/m)γ †
2

q |0〉, (46)

stating that the B12 operator is diagonal in this basis. From
Eq. (41), we can rewrite the above formula as

B12 |q〉 = exp (−iπq/m) γ
†
2

q |0〉 . (47)

Since B12|0〉 = |0〉, by comparing Eqs. (41) and (47) we
find that B12γ1B

†
12 = eiπ/mγ2. To find the way the braid

operator acts on γ2 we can use a similar procedure. We can
also use the fact that the Z2m character, i.e., the eiπ/(2m)γ

†
1 γ2

operator, is a physical and measurable quantity and cannot
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change after braiding γ1 and γ2 and keeping the rest of the
system untouched. To guarantee this physical expectation, the
braid operator has to act on γ1 and γ2 as follows:

B12γ1B
†
12 = eiπ/mγ2,

(48)
B12γ2B

†
12 = eiπ/mγ2γ

†
1 γ2.

Now we wish to compute the B23 braid matrix from the
diagonal B12 braid matrix. For this purpose, we have to
consider four vortices at least. Imagine we are given four
vortices at Ri points, where i = {1, . . . ,4}. Taking the fist
two vortices, we can define a |q〉1,2 state that diagonalizes

the eiπ/(2m)γ
†
1 γ2 operator as well as B12. We can do a

similar job for the third and fourth vortices and define a
|q ′〉34 state on which the eiπ/(2m)γ

†
3 γ4 and B12 operators act

diagonally. Therefore, the ground state of the whole system
is |q,q ′〉(1,2)(3,4). However, we should emphasize that q and
q ′ are not independent as the total Z2m character of the

system χT = eiπ/(2m)γ
†
1 γ2e

iπ/(2m)γ
†
3 γ4 = eiπ

q+q′
m is fixed. For

simplicity, let us assume χT = 1, so q + q ′ = 0mod2m. So
we have

B12 |q,q̄〉(1,2)(3,4) = exp(−iπq2/2m)|q,q̄〉(1,2)(3,4),
(49)

B34|q,q̄〉(1,2)(3,4) = exp(−iπq2/2m)|q,q̄〉(1,2)(3,4).

To find B23 we need a basis in which eiπ/(2m)γ
†
3 γ2 and as result

B23 are diagonal. Since χT = 1 is conserved, eiπ/(2m)γ
†
1 γ4 will

be diagonal on that basis as well. In other words, we need
states of the form |p,p̄〉(2,3)(1,4) in which B23 acts as e−iπp2/2m.
So the procedure is simple. Through basis rotation, we can
diagonalize B23 and then we rotate back to the former bases.
Let us assume there is an S matrix that relates the two bases.
This is actually the same S matrix that we encounter in the
CFT on a 2D torus that exchanges the two nontrivial cycles of
the torus. Let us find the S matrix by simple calculations. We
have

|p,p̄〉(3,2)(1,4) =
∑

p

Sq
p |p,p̄〉(1,2)(3,4) . (50)

The above relation suggests that eiπ/(2m)γ
†
3 γ2 acts diagonally

on the |p,p̄〉(3,2)(1,4) state with an eigenvalue equal to eiπp/m.
On the other hand,

eiπ/(2m)γ
†
3 γ2|q,q̄〉(3,2)(1,4) =

∑
p

Sq
p|p − 1,p̄ + 1〉(1,2)(3,4)

=
∑

p

S
q

p+1|p,p̄〉(1,2)(3,4). (51)

To have a consistent result, we should have S
q

p+1 =
exp (iqπ/m) S

q
p , which can be solved as follows:

Sq
p = exp (ipqπ/m)√

2m
. (52)

To go from the |p,p̄〉(3,2)(1,4) to the |q,q̄〉(1,2)(3,4) basis, we can
use the S−1 matrix. It can be easily verified that S−1 = S†.
Now let use start from the |q,q̄〉(1,2)(3,4) state and braid vortices

2 and 3. To this end, we fist use S† to go to the |p,p̄〉(3,2)(1,4)
basis. Then we act on this state by B23, which is diagonal now.
We finally rotate back to the |q,q̄〉(1,2)(3,4) basis. These steps
can be seen more explicitly in the following relations:

B23|q,q̄〉(1,2)(3,4) =
∑

q

S†
q
pB23|p,p̄〉(3,2)(1,4)

=
∑

q

S†
q
p exp(−ip2π/2m)|p,p̄〉(3,2)(1,4)

=
∑
q,k

S†
q
p exp(−ip2π/2m)Sp

k |k,k̄〉(1,2)(3,4)

=
∑

k

(B23)pk |k,k̄〉(1,2)(3,4),

which can be summarized as

B23 = S†B12S, (B12)qp = δp,qe
−iq2π/(2m). (53)

Since B23 is not diagonal in the |q,q̄〉(1,2)(3,4) basis, it means that
exchanging vortices 2 and 3 (or 1 and 4) causes a unitary non-
Abelian transformation on the ground state. In other words,
it will create other degenerate ground states upon braiding
vortices 2 and 3. In contrast, after braiding vortices 1 and 2
(or 3 and 4), the ground state just acquires an Abelian phase
which depends on the ground state though. An interesting
question that arises concerns how braiding can change the
ground-state despite its adiabatic nature. The answer is that all
the degenerate ground states share exactly the same physically
measurable quantities. For example, they all have the same Z2m

characters and the same energies. Additionally, having vortices
in the system causes branch cuts. Upon braiding, some of the
zero modes that bound to vortices have to cross these branch
cuts. As a result, the zero modes at two vortices involved in
this crossing will rearrange. This rearrangement modifies the
wave function of the many-body system and the resulting wave
function should be still be in the ground space, meaning that
it is a linear combination of different degenerate sectors of the
ground space.

V. WAVE FUNCTION OF FTSCS

As we discussed in Sec. III, according to the bulk-boundary
correspondence conjecture for the chiral states, e.g., FQH
states, the wave function of the bulk Hamiltonian can be
written in terms of the conformal blocks of the edge-state
CFT in an appropriate way. The first step is to identify the
CFT that describes the edge of a chiral state. For an FTSC
whose parent (unpaired) state is a Laughlin state at ν = 1/m,
as argued in Sec. III, the edge CFT is given by the A2m/Z2

chiral algebra of a U(1)/Z2 orbifold theory. The primary fields
of this CFT contain two fermion fields φ1

2m = cos(
√

mφ(z))
and φ1

2m = sin(
√

mφ(z)). These are the counterpart of the
Majroana fermion fields for the m = 1 case. In the FTSC, one
of these two operators become gapped and the other remains
gapless. Let us assume that φ1

2m is gapless. The wave function
in the absence of vortices for a fixed number of electrons with
positions at {zi}, where i = {1, . . . ,N}, can be written in the

035132-11



ABOLHASSAN VAEZI PHYSICAL REVIEW B 87, 035132 (2013)

following way:

|g〉N =
∑
{zi }

� ({zi})
N∏

i=1

c†zi
|0〉 , z = x + iy

(54)

� ({zi}) = 〈
φ1

2m (z1) · · · φ1
2m (zN )

〉 = Pf

(
1

(zi − zj )m

)
.

The BCS-like wave function can be easily obtained by
summing over a different number of electrons (with the same
parity as that of N ). The result would be

|g〉 = exp

(
1

(zi − zj )m
c†zi

c†zj

)
|0〉 . (55)

Now let us find the wave function in the presence of 2n

vortices. Because the twist operator σ1 (η) inserts a vortex at
η, the wave function for n vortices at ηj where i = {1, . . . ,2n}
and for a fixed number of electrons at {zi} points where i =
{1, . . . ,N}, can be similarly written as

�({ηj }; {zi}) = 〈σ1(η1) · · · σ1(ηn)φ1
2m(z1) · · ·φ1

2m(zN )〉.
(56)

The above correlation function can be obtained by using the
OPE between twist fields. As Eq. (45) states, two twist fields
can be fused in 2m different channels. In other words, although
the positions of the vortices are known, the above correlation
function can be evaluated in different ways. We can divide the
n vortices in n/2 pairs, fuse every two twist fields in a pair, and
then find the correlation function. Again, we should be careful
about the last pair, because after all fusions, we should end up
with identity operator for a nonvanishing correlation function.
Therefore, the last channel is dictated by the rest of the system.
Therefore, there are (2m)n/2−1 different conformal blocks,
each corresponding to a wave function corresponding to the
{q1,q2, . . . ,qn/2−1} choice for fusion channels. Therefore, the
number of allowed degenerate ground states, i.e., the GSD, is
(2m)n/2−1 for n vortices in the FTSC.

VI. Z2m GAUGE THEORY OF THE FRACTIONAL
TOPOLOGICAL SUPERCONDUCTORS AT 1/M

FILLING FRACTION

Here, we analyze the gauge symmetry of the ν = 1/m

FTSCs and make a connection between non-Abelian FTSCs
and the ZN rotor model discussed in Ref. 36. In the FQH
state, because of the number conservation, the gauge theory
is described by a U(1) gauge field. However, in the presence
of pairing, this symmetry breaks down, and the number of
electrons conserved is only modulus 2. On the other hand,
the electron operator can be imagined as the bound state of
m anyon operators: Ve = φm

2 . Therefore, adding or removing
two electrons is equivalent to adding or removing 2m anyons.
In other words, the total number of anyons conserved is
only modulus 2m. Therefore, if we imagine anyons as the
fundamental excitations of the ground state, the low-energy
theory of the FTSC at ν = 1/m filling fraction is invariant
under the Z2m gauge transformation. On the other hand, as we
discussed before, the quantum dimension of the topological
defects (vortices) is

√
2m, which agrees with the prediction of

Z2m rotor model. Using the latter formalism, You and Wen have
shown the quantum dimension of the dislocations (vortices) in
the ZN model to be

√
N (Ref. 36). From this consistency

check, we speculate that Z2m symmetric FTSCs at 1/m filling
fraction can be thought of as a realization of Z2m rotor model.

VII. SUMMARY, CONCLUSION, AND OUTLOOK

In this paper, we introduced the notion of an FTSC. There
are two classes of FTSCs, Abelian and non-Abelian. The
Abelian FTSC is topologically the same as the Abelian FQH
state, except that the electron number conservation is violated
by injecting/inducing Cooper pairs into the FQH state. The
superconducting order parameter is small in the Abelian FTSC
so that we can smoothly evolve the Hamiltonian of an Abelian
FQH into that of an FTSC without closing the energy gap.
However, the non-Abelian FTSC is achieved upon closing
and reopening the many-body energy gap of an Abelian
FTSC by increasing the pairing amplitude. The resulting state
allows non-Abelian FMFs with quantum dimensions equal
to

√
2m, where 1/m refers to the filling fraction of the

parent FQH state. We studied the braid statistics of these non-
Abelions and derived the associated projective braid matrix.
The wave function for the non-Abelian FTSCs was suggested
through computing the conformal blocks of the edge CFT. We
finally discussed the gauge theory of the effective low-energy
Hamiltonian of the non-Abelian FTSC which happens to be a
Z2m one. This observation makes a clear connection between
our model of the non-Abelian FTSC with the Z2m rotor model
with similar topological properties.

Due to the robustness of the zero modes in the topological
phases against local perturbations of the Hamiltonian and
disorder, the non-Abelian anyons are promising candidates
for the topological quantum computation. Information can
be stored nonlocally in the degenerate ground states, and
braiding of quasiparticles causes unitary transformation on the
ground state so can be used as the quantum gates. However,
it has been shown that when the square of the total quantum
dimension of a non-Abelian system is integer, it cannot
perform universal quantum computation by braiding only,37

unless supplemented by measurement at the intermediate
stages of the phase gate.32,38 For non-Abelian FTSCs
originated form Laughlin state at ν = 1/m, the square of the
total quantum dimension, D2 = ∑Nqp

i=1 d2
i , where Nqp is the

number of quasiparticles and di their quantum dimension,
is integer. Hence, they are capable of universal quantum
computation with braiding and measurement.

It is worth mentioning that the heat conductance in the
FTSCs depends only on the difference between the central
charge of the right- and left-mover boundary theories. Accord-

ingly, we have κxy = c
π2k2

B
6πh̄

T . This equation can be proven by
deriving the gravitational Chern Simons action of the FTSCs.

Finally, we would like to comment on the topological field
theory (TFT) of the bulk of a non-Abelian FTSC. Moore and
Seiberg39 have shown that for a system whose edge theory is
given by G/H orbifold CFT, where H is a discrete subgroup
of G, its bulk TFT is a Chern-Simons (CS) theory with G � H

gauge group. In our case, G = U(1) and H = Z2, so the bulk
TFT of a non-Abelian FTSC at ν = 1/m is described by an
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O(2) CS action at level m. Furthermore, the gauge symmetry
of the ν = 1/m FTSCs was discussed in this paper and shown
to be a Z2m gauge symmetry. This observation makes our
prediction about the quantum dimension of the FMFs more
comprehensible through the results of the Ref. 36 for a ZN

rotor model as well as those in Ref. 35.
Note added. By the completion of this work, we became

aware that the authors of Refs. 40–42 have independently

achieved similar results for the fractionalized Majorana edge
states.
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