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The in-plane resistivity of the high-temperature oxide superconductor La2−xSrxCuO4 (LSCO) shows a strong
growth of a contribution linear in temperature as the doping is reduced in the overdoped region toward optimal.
This linear term is a signature of non-Fermi-liquid behavior. We find that the appearance of a linear term in
the resistivity can arise in a semiclassical Boltzmann transport theory which uses renormalized quasiparticle
scattering rates derived in a functional renormalization-group calculation and an empirical band structure fitted
to angle-resolved photoemission spectroscopy data on LSCO. The linearized Boltzmann equation is solved
numerically by discretizing the Brillouin zone in a way that fits best to the Fermi surface geometry. The main
trends in the development of the anomalous temperature dependence are well reproduced. There is a substantial
underestimation of the magnitude of the resistivity, which is expected in view of the moderate to weak values we
chose for the on-site repulsion to stay within the one-loop renormalization-group approximation. The analysis
was extended to the Seebeck coefficient with similar agreement with the main trends in the data.
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I. INTRODUCTION

The unconventional temperature scaling of the in-plane
resistivity in high-Tc cuprates has been of considerable
interest for many years. It is now widely accepted that
overdoped cuprates exhibit a T -linear resistivity at high
temperature which crosses over to a T 2 dependence at
lower temperature.1–6 The onset of the linear temperature
dependence appears to coincide with the onset of supercon-
ductivity, and the crossover temperature to a conventional T 2

dependence drops monotonically with the doping level to zero,
roughly around optimal doping.7–10 Hussey and collaborators
measured the resistivity on a number of cuprates, particularly
the single-layer Tl2201 in the overdoped region11,12 and
La2−xSrxCuO4 (LSCO) into the underdoped region.7,8 Very
recently Barišić et al.9 reported results for the resistivity
for more cuprates, e.g., Hg1201 and YBa2Cu3O7−δ over a
wider density range. They found that when the resistivity
was normalized to a give a resistance per Cu4O4 plaquette,
ρ�, universal results for all cuprates followed with identical
coefficients. Furthermore, they argued for a universal trend in
both the linear (ρ� ≈ A1�T ) and quadratic (ρ� ≈ A2�T 2)
regimes, with the coefficients A1 and A2 proportional to 1/p,
the inverse hole density. As Barišić et al.9 remarked, if one
uses a Drude formula for resistance, this behavior is indicative
of a carrier density that is proportional to the density of
holes rather than electrons. Such behavior is consistent with
a doped Mott-insulator scenario. Anderson13–15 has argued
that the cuprates as doped Mott insulators should be in
the strong-coupling regime of the Hubbard model at all
hole densities. He has put forward the hidden Fermi liquid
(HFL) ansatz to describe the connection between the Fermi
surface before Gutzwiller projection and the electronic state
that results from the removal of doubly occupied states by
Gutzwiller projection. This HFL ansatz gives a resistivity with
the observed temperature dependence, crossing over from a
linear to a quadratic form as the temperature is lowered.

An earlier viewpoint interprets the cuprate phase diagram
in terms of an underlying quantum critical point separating

the overdoped and underdoped regions. In these theories
the effective interactions between electrons are mediated and
controlled by the order parameter fluctuations associated with
the quantum critical point.16–19 Another approach recently
put forward by Kokalj and co-workers20,21 is based on an
anisotropic marginal Fermi liquid self-energy. Their phe-
nomenological theory gives good fits to the resistivity and also
to the angular dependent magnetoresistance (ADMR) results22

and a number of other properties.
In an earlier study, which employed a functional

renormalization-group (FRG) treatment of the two-
dimensional Hubbard model to describe the overdoped region,
Ossadnik et al.23 found good qualitative agreement with the
experimental results on overdoped Tl2201 for the temperature
and angular dependence of the relaxation rate determined
from the magnetoresistance.22 Since overdoped Tl2201 shows
a conventional full Fermi surface in angle-resolved pho-
toemission spectroscopy (ARPES) at zero magnetic field24

and in quantum oscillation experiments at finite magnetic
fields,25 a perturbative treatment is of interest. Note that the
FRG calculations are evaluated only to one-loop order and
therefore are quantitatively reliable only for weak to moderate
values of the Hubbard on-site interaction, U . As a result, a
quantitative comparison with the experimental data shows a
substantial underestimate of the magnitude of the calculated
temperature-dependent resistance; e.g., see the comparison of
Kokalj and McKenzie.20

In their calculation of unusual transport behavior, Ossadnik
and collaborators analyzed the quasiparticle scattering vertex
for overdoped cuprates within a FRG approach.23 They found
an anisotropic term in the quasiparticle scattering rate with
an angular form similar to the experiment and with an
unconventional T -linear dependence which increased when
approaching optimal doping starting from the overdoped side.
They argued that this unusual term appearing in the imaginary
part in the quasiparticle self-energy could lead also to an
equivalent temperature dependence for the in-plane resistivity.

The goal of this study is to expand this idea and move
beyond a self-energy analysis of the transport properties
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FIG. 1. (Color online) Experimental results of Cooper et al.7 The in-plane resistivity of LSCO is plotted as a function of the temperature for
samples with doping levels from p = 0.17 to p = 0.33. The red line represents data without external magnetic field, cf. the superconducting
transition, while the red diamonds represent data in high magnetic field which suppresses the superconductivity. The blue dotted line is a fit to
the normal-state resistivity extrapolated down to zero temperature.

to a full calculation of transport properties using solutions
of the Boltzmann equation. This is possible within a FRG
approach since the method computes the strongly renor-
malized quasiparticle interactions. We determine the matrix
elements for the scattering events within the FRG framework
presented in Ref. 23 and use numerical techniques to solve
the linearized Boltzmann equation. A detailed numerical
treatment is required in view of the strong anisotropy in the
transport lifetimes26,27 due to both the anisotropic quasiparticle
interactions and the strongly angle-dependent Fermi velocities
introduced by the anisotropy of the band structure. The
importance of full transport calculations was stressed by
Hlubina and Rice in an early paper.28

As discussed later, our calculations agree qualitatively with
the unconventional temperature dependence, but the magni-
tude of the resistance is substantially lower. This disagreement
in the absolute values is in line with the restrictions on U

required to justify the one-loop approximation in the FRG.
Another discrepancy between our numerical results and the
experiment is the lack of scaling of the resistance coefficients,
A1� and A2�, with 1/p, the inverse hole density, as reported by
Barišić et al.9 Note, however, our results are for the overdoped
samples. The data in Fig. 5 of Ref. 9 deviate from the inverse
doping scaling in the overdoping density range. In the case of
the linear coefficient, A1�, the data show a linear decrease and
vanish at the onset of superconductivity in line with the earlier
results of Hussey and co-workers.7

A good example of such an onset of a non-Fermi-liquid-like
T -linear contribution to the resistivity can be found in the
resistivity measurements by Hussey and co-workers7 upon
reducing the hole concentration from the overdoped regime
toward optimal doping in LSCO (cf. Fig. 1). They observed
a strong growth of the temperature-dependent contribution to
the resistivity with a decrease in the hole doping together
with a remarkable trend toward linear resistivity that goes
down to lowest temperatures. They used strong magnetic fields
to explore the normal-state transport properties within the

superconducting dome. The analysis of the temperature depen-
dence of the resistivity was based on a second-order polyno-
mial fit to the experimental data over a wide temperature range:
ρ(T ) = α0 + α1T + α2T

2. This allows to distinguish doping
regimes with dominant linear versus dominant quadratic
temperature dependence.

We also solve the Boltzmann equation to obtain the Seebeck
coefficient which describes the charge transport in response to
a thermal gradient. Standard Fermi-liquid theory predicts a
metallic Seebeck coefficient with a linear T dependence. The
experiments by Laliberté and co-workers29 showed substantial
deviations from the standard form with a complex density
dependence. Again our calculations reproduce the qualitative
trends in the temperature and density dependence very well.

In Sec. II we show our numerical results and compare
with the experimental data of Refs. 7–9. We also examine the
validity of Matthiessen’s rule, which relies on a decoupling
of impurity and two-particle scattering, in Sec. III. Finally, in
Sec. IV we study the thermoelectric effect of LSCO, use the
Seebeck coefficient as a sign of non-Fermi-liquid transport,
and examine the evidence for quantum critical behavior.

The numerical method that we have developed to study
the transport properties of correlated materials such as LSCO
is explained in detail in Appendices A–C. We solve the
semiclassical Boltzmann equation, taking the full angular and
energy dependence of the distribution function into account.
The two important inputs of the model are the explicit form of
the band structure and the temperature-dependent calculation
of the quasiparticle scattering rates.

II. NUMERICAL RESULTS

We begin by reviewing our numerical results. We use
a semiclassical model to describe the normal-state charge
transport of overdoped LSCO. For the quasiparticle dispersion
we used a two-dimensional tight-binding model and a doping-
dependent hopping parameter renormalization scheme based
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on the values determined in Ref. 30 from the Fermi surface
in APRES data on LSCO. The use of phenomenological
input for the quasiparticle dispersion is important because
the renormalization of the hopping integrals is of two-loop
order in the FRG analysis that we use to determine the
scattering vertex. The calculation of two-loop diagrams for
the renormalization-group (RG) flow is, however, beyond the
scope of this study. For details about the dispersion, see
Appendix A. The FRG technique that we use to compute
the renormalized quasiparticle scattering rates is outlined in
Appendix B together with a brief overview of the doping
and temperature dependence of the scattering vertex and a
discussion of the parameters that enter the RG calculation.

Taking the quasiparticle dispersion and the scattering
vertex as input, the conductivity is computed by solving
the linearized Boltzmann equation with its full angular and
energy dependence. Due to the strong anisotropy in the
scattering rates and the quasiparticle velocities, a full solution
of the Boltzmann equation rather than a single relaxation-time
approximation is required. The collision integral is computed
by introducing an efficient discretization of the Brillouin zone
and the Boltzmann equation is then solved numerically. This
method of solving the Boltzmann equation and discretizing
the Brillouin zone is explained in Appendix C.

A. Simulation estimates of ρ(T ) for LSCO in a range of doping

The in-plane resistivity in our model of the normal state of
overdoped LSCO is shown in Fig. 2 (data for U� = 2.0t).
We also plot the resistivity for different initial values for
the unrenormalized on-site interaction parameter U . The
data corresponding to the different values of U� are derived
from renormalized scattering vertices while the data for U∞
are computed for particles interacting via the bare on-site
repulsion. For a comparison of these calculations, see Sec. II C.

The values for the hole doping p are chosen to match the
experimental measurements of Fig. 1.

Our results compare well to many qualitative aspects of the
experimental data of Ref. 7. First, there is the strong growth
of the resistivity when reducing the hole doping from strongly
overdoped values of p ≈ 0.35 to optimal doping around p ≈
0.17. Second, there is clear evidence for a growing linear term
in the temperature dependence of ρ around optimal doping.
For large values of the hole doping, ρ(T ) displays a rather
quadratic temperature dependence. On the other hand, for
doping concentrations below p ≈ 0.25 a linear T dependence
becomes obvious. We analyze our data in the same scheme as
in Ref. 7 using fits with the form ρ(T ) = α0 + α1T + α2T

2

(Sec. II B1) or also by introducing a “local scaling exponent”
x(T ,p), e.g., ρ(T ) = α0 + α∞T x (Sec. II B3).

For a quantitative comparison to the experiment we convert
our two-dimensional data to the experimental units of a three-
dimensional sample (cf. Appendix D). From Fig. 2 we find
that our calculated values for ρ(T ) at T ≈ 200 K are roughly
smaller by a factor of 4 or 5 than in experiment (cf. Fig. 1).
An underestimation of the resistivity is consistent with the
fact that our unrenormalized interaction strength U = 2.0t is
considerably lower than expected for LSCO.

In spite of the weak-coupling approximation in our calcula-
tion of the scattering rates, the resistivity is in good qualitative
agreement with the observed temperature dependence.

B. Scaling behavior

1. T + T 2 fit to the resistivity curves

Next we analyze the numerical resistivity data using the
polynomial fit up to second order ρ(T ) = α0 + α1T + α2T

2,
in analogy to the work of Cooper et al., cf. Ref. 7. They fit their
resistivity data over the entire temperature range and obtain the
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FIG. 2. (Color online) Numerical calculation of the normal-state resistivity of LSCO (black line, U� = 2.0t) as a function of the temperature
for several doping levels: The resistivity is plotted for several values for the initial on-site repulsion U . The RG cutoff is given by � = 0.01t ,
except for the dashed line (U∞) computed from unrenormalized scattering rates. The T → 0 extrapolation of ρ corresponds to the residual
resistivity due to impurity scattering (nimpW

2
δ-imp = 0.25t2). We have converted the temperature and resistivity to the units used in the experiment.

For details see Appendix D.
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FIG. 3. (Color online) Left: Experimental results obtained by Cooper et al.7 The quantities α1 and α2 are coefficients of fit to the
experimentally measured resistivity (Fig. 1): solid black squares, fit as in our numerical analysis, ρ = α0 + α1T + α2T

2 fit; solid green circles,
parallel resistor fit, 1/ρ = 1/(α0 + α1T + α2T

2) + 1/ρmax; open symbols correspond to the same analysis for experimental data of Ando
et al.31 Right: Linear (α1) and quadratic (α2) term of the ρ = α0 + α1T + α2T

2 fit to our numerical resistivity data of Fig. 2 as a function of the
hole concentration p: coefficients for different initial values of the on-site repulsion U and for the calculation with unrenormalized interactions
(U∞). We convert the coefficients to resistivity units by introducing the average temperature scale Tm = 150 K of the fit regime.

fit coefficients α1 and α2 as a function of the hole doping; cf.
Fig. 3 (left panel). They found the linear coefficient α1 grows
strongly with a decrease in doping while there is a constant or
decreasing value of α2.

The linear α1 and quadratic α2 coefficients from fitting our
numerical results are shown in Fig. 3 (right panel) for the
entire range of hole doping from p ≈ 0.15 to p ≈ 0.35. The
fit was performed for temperatures ranging from 30 K up to
300 K. For the comparison of the two coefficients we introduce
an average temperature scale Tm = 150 K in the conversion
to resistivity units. The coefficient representing the residual
resistivity, α0, is discussed later.

The direct comparison of our fit coefficients to the ex-
periment yields very good qualitative agreement. The linear
term shows a strong increase with reduced hole concentration
toward optimal doping while above p ≈ 0.30 it becomes
indistinguishable from zero. On the other hand, the quadratic
contribution does not grow and even decreases almost down
to zero toward optimal doping for larger U . A vanishing
α2 indicates within our model a purely linear temperature
dependence. Whether the quadratic coefficient of the fit
to the experimental data vanishes is not really clear from
Ref. 7, although it appears that the α2 determined with the
conventional T + T 2 fit indeed decreases and finally vanishes
around p ≈ 0.19, while the quadratic coefficient determined
from a parallel resistor fit remains constant.

The coefficients in the overdoped regime disagree with the
1/p dependence reported by Barišić et al.9 As already men-
tioned in the introduction, in the overdoped regime, their data
suggest a deviation from the remarkable 1/p dependence of the
linear term in the underdoped regime. The experimental data
of both Refs. 7 and 9 indicate that the linear term eventually
goes to zero for sufficiently large hole density, p ≈ 0.30.

2. Scaling regimes

An alternative analysis of the experiments was recently
put forward by Hussey et al.8 Taking the derivative

ρ ′ = dρ(T )/dT they distinguished two regimes which
are not immediately obvious in the resistivity data, but in
which ρ(T ) scales differently with temperature. Hussey and
co-workers identified a high-temperature regime where ρ ′ is
constant; i.e., the resistivity depends linearly on T . Toward
lower temperatures ρ ′ deviates downward from this constant
value. With this rather abrupt change one can associate a
temperature Tcoh, the “coherence temperature” in Ref. 8, which
decreases with lowering the hole concentration and disappears
probably around the same value of p where the characteristic
temperature for the pseudogap vanishes extrapolated from
the underdoped side. In Fig. 4 the doping dependence of Tcoh

measured in Ref. 8 is shown. It was experimentally shown

Hole doping

T
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0.16 0.20 0.24 0.28
0

100
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300
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FIG. 4. (Color online) Experimentally determined coherence
temperature Tcoh (p > 0.19) as a function of the hole doping of LSCO.
The coherence temperature is where the temperature derivative of the
conductivity deviates from its constant value at high temperature
(data adopted from Ref. 8).
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FIG. 5. (Color online) Left: Plot of the temperature derivative of the resistivity ρ ′(T ). Three intervals are identified in which ρ(T ) shows
different scaling behavior. Shown is ρ ′(T ) for four different values of the hole doping, illustrating the doping dependence of T1 and T2. For the
bottom-right inset at doping level p ≈ 0.20, the temperature scales cannot be clearly identified anymore. In Fig. 6 T1 and T2 are plotted as a
function of the doping. Right: Limiting behavior of the linear term that dominates the temperature dependence of the resistivity. The coefficient
α1(0) represents the T → 0 extrapolation of the slope in the resistivity curve while α1(∞) corresponds to the coefficient of the dominating
linear term in the high-temperature regime. The strong growth of α1(0) for doping levels p < 0.25 reflects the fact that the unconventional
scaling behavior extends down to low temperature for these dopings. The definition of α1(0,∞) only allows these quantities to be obtained in
a finite doping range.

that Tcoh coincides with the loss of the quasiparticle coherence
peak.32

Plotting ρ ′(T ) for different doping levels in our calculation,
we can analogously identify distinct regimes in the temperature
scaling of the resistivity; cf. Fig. 5 (left panel). There is
a low-temperature regime with finite slope of ρ ′(T ), an
intermediate-temperature regime with finite but smaller slope,
and a high-temperature regime where ρ ′(T ) is constant. The
temperatures that separate these three regimes are referred to
as T1 and T2.

The temperature scales T1 and T2 are displayed in Fig. 6.
The doping dependence of T2 shows a very similar trend
as Tcoh. This is interesting because there is no real loss of
quasiparticle coherence in our semiclassical model based on
the Boltzmann transport equation. Note that we have not
considered the values for T1 and T2 for p < 0.2 as it becomes
difficult to distinguish the regimes for p ≈ 0.19.

It is interesting to relate the onset of the unconventional
scaling, T1, to the proximity of the Fermi energy to the
van Hove level, EvH. We introduce the temperature scale
T�vH = 4|μ − EvH|/kB , which is shown as the red squares
in Fig. 6. The factor of 4 is introduced for convenience, as we
consider only those low-energy states relevant for the transport
that live within an energy range of 4kBT from the Fermi level.
The doping dependence of T�vH and T1 is very similar and we
conclude that proximity to a van Hove singularity plays an im-
portant role in the development of non-Fermi-liquid behavior.

To compare to the analysis in Ref. 8 we fit the high-
temperature linear part of ρ ′ with a constant α1(∞) and the
low-temperature regime by a linear function α1(0) + α2T . In
the high-temperature regime, α1(∞) represents the coefficient
of the dominating linear term in the resistivity, while α1(0)
corresponds to the coefficient of the dominating linear term in
the limit T → 0. The results for these coefficients are shown
in Fig. 5 (right panel).

3. Derivation of the local scaling exponent

A different way to illustrate the regime change on the
resistivity data is to define an exponent of ρ(T ) for each
temperature formulated as

ρ(T ) = α0 + αT x, x = x(T ). (1)

The exponent x(T ) is obtained by taking the logarithmic
derivative of the ρ(T ),

x(T ) = d

d ln T
ln[ρ(T ) − α0], (2)

where α0 denotes the residual resistivity. The results for x(T )
over a wide range in doping are shown in Fig. 6.

Even though such a local scaling law has large uncertainties,
it is intriguing to find a very good qualitative match between
the function of x(T ,p) and the generic scaling behavior of
the cuprates; cf. Ref. 1. In the overdoped low-temperature
region of the phase diagram, the local exponent rises to the
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Note that the unconventional scaling x < 2 goes down to the lowest
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value of x ≈ 2, corresponding to a standard Fermi liquid.
Around optimal doping, x(T ,p) is always well below 2 down
to the lowest temperature of our study. In the high-temperature
regime, the onset of unconventional scaling [x(T ,p) < 2] is
shifted to higher temperature with increasing doping.

4. Angular resolved scaling analysis

Using the nonequilibrium distribution function, we can
analyze the angular dependence of this unconventional scaling
and compare to the difference in the temperature dependence
between isotropic and anisotropic scattering rates in the
FRG study.23 The quasiparticle scattering rates are strongly
anisotropic and especially the quasiparticles close to the
saddle points (antinodal direction) in the Brillouin zone
have very short transport lifetimes. The scattering rates that
cause these short lifetimes are strongly enhanced as the
doping level decreases toward optimal doping. To examine
the role of strong scattering of the antinodal quasiparticles
for the unconventional temperature dependence of the overall
resistivity, we interpret the angular patches of our Brillouin
zone discretization (cf. Fig. 13) as individual resistors and
parametrize the low-energy quasiparticle states as a parallel
resistor network. Each resistor is characterized by the conduc-
tivity σ̃i and resistivity ρ̃i = 1/σ̃i , where the index i labels
the angular patch. The total conductivity and resistivity are
determined by

σ =
∑

i

σ̃i , ρ =
(∑

i

1/ρ̃i

)−1

. (3)
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top, the weighted linear term Ãi

1 is plotted, and the lower plot shows
the weighted quadratic term Ãi

2, defined in Eq. (5). These Ãi
a’s are

weighted according to the contribution of the angular patch i to the
total charge transport. The patches range in angular direction from
θ = 0 (patch 1) to θ = π/2 (patch 10). The Ãi

a’s are evaluated at the
temperature Tm = 150 K, the average temperature of the fit region.

In Fig. 7 we depict the angle-resolved scaling by plotting
the linear and quadratic contributions to the patch resistivity
as functions of the angular patch index i and the hole
concentration. The temperature dependence of each resistor
was analyzed by a linear plus quadratic fit, ρ̃i(T ) = α̃i

0 +
α̃i

1T + α̃i
2T

2. In order to compare linear and quadratic terms,
we give them a weight factor that represents their contribution
to the total resistivity and normalize their sum, the total
resistivity ρ, to unity,

1 =
∑

i

ρ

ρ̃i

α̃i
0 + α̃i

1T + α̃i
2T

2

ρ̃i

=
∑

i

Ãi
0 + Ãi

1 + Ãi
2, (4)

with

Ãi
a = ρ

ρ̃2
i

α̃i
a T a, a = 0,1,2. (5)

Thus Ãi
a represents the normalized contribution of the angular

patch i to the term in the total resistivity that scales with
temperature exponent a.

From Fig. 7 one can clearly see that in the strongly
overdoped regime only the quadratic term is present and is
essentially independent of the angle. On the other hand, below
p ≈ 0.30, the linear term grows, showing strong anisotropy.
The linear term appears first close to the nodal direction
(patches 4–7) and constantly spreads out. Below p ≈ 0.27
the linear term starts to dominate the transport. The quadratic
term, however, remains finite in the nodal direction down to
the lowest doping levels.

It is interesting to see that around optimal doping, where
the Fermi surface is very close to the van Hove singularity,
the charge transport from the angular patches 1 and 10,
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FIG. 8. (Color online) Plot of the angular distribution of the current for doping levels p = 0.23 and p = 0.29. The curves correspond to
temperatures between 30 and 600 K indicated by their color. Shown is merely the angular range between 0 and π/2 due to the fourfold lattice
symmetry. Note that the dip between 3π/8 and π/4 comes from the (2π/a,0)-umklapp scattering process. There are many states close to
(π − δ,0) that can scatter to (−π + δ,0) due to partial nesting and the flat dispersion. To compensate for the momentum transfer, there are only
few states on the Fermi surface. Those lie between θ = 3π/8 and π/4 and have therefore extremely high scattering rates.

which contain the saddle points, essentially vanishes. This
is consistent with the strong growth of the scattering rates
from the FRG analysis. These angular patches are short
circuited as a consequence of strong scattering; cf. Ref. 28.
Our discussion here is fully compatible with the behavior of
the angle-dependent scattering rates found by the FRG study
by Ossadnik and collaborators.23

We can also analyze the current distribution as a function of
the temperature. In Fig. 8 we display the angular distribution
of the charge current for two different doping levels. At
the lowest temperatures the distribution function changes its
angular dependence strongly and the weight of the current
is shifted from small angles to larger angles, while above a
certain temperature the angular distribution remains invariant.

These regimes can be associated with two different kinds
of scattering mechanisms. While at low temperature impurity
scattering dominates, for sufficiently high temperature the
transport is mainly determined by particle-particle scattering.
Since only umklapp scattering contributes noticeably to the re-
sistivity, the two-particle scattering contribution is anisotropic,
while the δ-potential impurities give isotropic scattering. This
difference accounts for a qualitative change in the angular
dependence of the distribution function. We return to the
interplay of the two scattering mechanisms in the context of a
discussion of Matthiessen’s rule in Sec. III.

C. Effect of the vertex renormalization

We turn now to the role of the renormalization of the
scattering vertex in the unconventional nature of the transport
properties. As explained in Appendix B 2 we used a value of
U� = 2t for LSCO. When we extend our calculation to a series
of lower initial values of U� the temperature dependence of the
resistivity and the coefficients of the corresponding linear plus
quadratic fit are shown in Figs. 2 and 3. In addition we show
the resistivity for the unrenormalized interaction U∞ = 2.0t

which corresponds to a FRG treatment with infinite cutoff.
In this case the scattering rates are determined only by the
scattering phase space which is specified by the Fermi function
and the geometry of the Fermi surface.

Comparing the resistivity curves for U� = 2.0t and U∞ =
2.0t , we observe very similar overall trends as a function of
doping. The high-temperature resistivity grows upon reducing
the hole concentration and the T -linear part increases at the
same time. It is obvious that the scattering phase space plays
an important role in the change of the behavior of resistivity
for different hole concentrations. Overall the behavior is,
however, less pronounced for the unrenormalized than for the
renormalized vertex as is clear in Fig. 3. The renormalization
of the vertex causes a sizable increase of the resistivity as one
can see in the comparison of the curves for U� > 2.0t and
U∞ = 2.0t , and it also strongly enhances the trend toward
linear resistivity. This feature is also easily identified from the
U dependence of the quadratic term in Fig. 3. For stronger
initial interaction, and therefore stronger renormalization
effects, the quadratic term is substantially reduced, even as
the total resistivity, the sum of linear and quadratic terms, is
increased. Thus, it is evident that correlation effects included
in the vertex renormalization by the FRG scheme make
a substantial contribution of the unconventional transport
properties, particularly in the regime close to optimal doping.

The vertex renormalization leads to a nontrivial
momentum-space structure of the effective scattering vertex
which can be translated to a longer-ranged real-space in-
teraction compared to the local Hubbard U . As a second
effect of the FRG analysis, the momentum-space structure
but also the absolute values of the scattering vertex become
temperature dependent. In order to discriminate between these
two effects we modified our calculations in a way as to
include only the momentum-space renormalization of the
vertex, but neglecting the temperature dependence. This was
implemented by stopping the RG flow with a large cutoff �.
In this case large refers to the cutoff exceeding the largest
temperature of our study. While this completely suppresses
the temperature dependence of the scattering vertex, it still
introduces momentum-space anisotropy.

The result resembles the behavior of the simple unrenormal-
ized on-site repulsion U∞ = 2.0dt of Fig. 2. The introduction
of momentum anisotropy through the RG flow has almost
no qualitative effect on the temperature dependence of the
resistivity. From this comparison we can conclude that the
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pronounced linear resistivity in the limit of T → 0 is a con-
sequence of the strongly temperature-dependent quasiparticle
scattering rates. This supports the idea of Ref. 23 where the
unconventional temperature dependence of the scattering rates
through the RG flow were described.

At high temperature, however, the growth of the linear-
temperature term when the doping is decreased toward optimal
doping is mainly due to the Fermi surface geometry and
the temperature dependence of the scattering volume, while
the momentum anisotropy of the scattering interaction is
responsible for the enhanced value of the resistivity.

III. MOMENTUM RELAXATION MECHANISM
AND MATTHIESSEN’S RULE

In the cuprates the resistivity is caused by electron-electron
interactions, which raises the question of how the total
momentum of the entire distribution function is relaxed. In
the following we discuss which contributions are combined in
the resistivity calculations of the previous section.

A. Impurity and umklapp scattering

In impurity scattering processes, the momentum difference
between initial and final states is transferred to the lattice
and determines the residual resistivity as the zero-temperature
limit. A deeper analysis shows that the resistivity from
impurity scattering can have a weak temperature dependence
due to thermal broadening of the distribution function and a
possible bias toward higher or lower quasiparticle velocity. In
our calculation the impurities are modeled as δ potentials.

A second and more complex contribution to the electrical
resistivity originates from electron-electron scattering with
finite momentum transfer to the lattice, so-called umklapp
scattering, where a momentum corresponding to a reciprocal
lattice vector is transferred to the lattice. Note that the Fermi
surface has to be sufficiently large in order to allow for
umklapp-assisted scattering between different momenta on the
Fermi surface.

For a square lattice we can distinguish between two kinds
of umklapp scatterings: with momentum transfers of the type
(2π/a,0) and (2π/a,2π/a) to the lattice. The first kind of
umklapp scattering has a large phase space for a sufficiently
large Fermi surface with regions where the x component of
the Fermi vector satisfies the condition |kFx | � π/2a and
other regions with |kFx | � π/2a. The second type of umklapp
process is only possible if the Fermi surface intersects with
the so-called umklapp surface, which is the rotated square
(diamond) that connects the four saddle points at (0,±π/a)
and (±π/a,0). This umklapp scattering has relatively small
phase space due to the stringent momentum constraints.
Within our model for LSCO the (2π/a,0) umklapp process
largely dominates over the (2π/a,2π/a) umklapp process for
all doping levels as far as the charge transport resistance
is concerned. On the strong overdoped side, (2π/a,2π/a)
umklapp scattering is even completely absent in the low-
temperature limit.

Due to the geometrical constraints for umklapp scattering
the momentum-space structure of the scattering vertex can play
an important role. The temperature dependence of the resistiv-

ity is controlled by umklapp scattering. If the scattering rates
become especially high on certain parts of the Fermi surface,
their contributions to transport will be suppressed, yielding the
possibility for unconventional temperature scaling.

B. Deviations from Matthiessen’s rule

Often different contributions to the resistivity are assumed
to be decoupled and one adds them as serial resistors. This
decoupling leads to Matthiessen’s rule, which is only justified
if each individual contribution can be well described by a
single relaxation time. In this case the collision integral in the
Boltzmann equation directly splits into the scattering channels.
In the general case, when such a single relaxation-time
approximation is insufficient, the collision integral does not
decouple.

In Fig. 8 we have seen that in the low-temperature regime
the angular distribution of the current changes its form. This
was attributed to a crossover from an impurity-scattering-
dominated regime to a two-particle scattering regime. These
different scattering mechanisms lead to different current
distributions due to their difference in the scattering ge-
ometry. While impurity scattering is isotropic, the umklapp
processes responsible for the momentum relaxation in the two-
particle scattering channel are highly anisotropic, leading to a
nontrivial interplay of impurity scattering with two-particle
interactions and a potential breakdown of Matthiessen’s
rule.

To examine the deviations from Matthiessen’s rule we
compare our calculation with the sum of the “individual”
contributions to the resistivity. First, we remove the impurities
to obtain a “bare” electron-electron resistivity ρee; second, we
estimate ρimp by considering free (noninteracting) electrons
scattered by impurities.

In a first step we compare the linear and quadratic coeffi-
cients of a T + T 2 fit for the clean limit, ρee, to the coefficients
in the original calculation including impurities of Fig. 3. The
quadratic coefficient grows weakly down to p ≈ 0.25 and
remains constant at p < 0.25, while for the full calculation
the quadratic coefficient decreased below p ≈ 0.30 and even
went to zero for sufficiently strong coupling. Furthermore,
the linear term is somewhat smaller without impurities. This
difference in the behavior of the coefficients is a violation of
Matthiessen’s rule.

In order to make this more evident, we plot the deviation
from Matthiessen’s rule, δM , quantitatively defined as

δM = [ρfull − (ρee + ρimp)]/ρfull, (6)

as a function of the temperature for different doping levels.
The result is shown in a color plot in Fig. 9. We immediately
observe that the deviation from Matthiessen’s rule is strongest
at the optimally doped regime at low temperature. The
difference in the scattering geometry for impurity scattering
and two-particle scattering is most pronounced in this part of
the diagram. Here the deviation δM reaches values as large as
16%.

It should be noted that the one-loop FRG approximation
is less reliable at low temperature and low doping, as
pointed out earlier. Hence, the magnitude of δM in our
calculation carries considerable uncertainties in this part of
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FIG. 9. (Color online) Deviation from Matthiessen’s rule. We
subtract the sum of the resistivity for pure impurity scattering and pure
electron-electron scattering from the resistivity of the full calculation
ρfull and normalize it to ρfull. It is clearly visible that the deviation δM

[cf. Eq. (6)] is most pronounced in the critical region of the phase
diagram.

the diagram. Nevertheless, the violation of Matthiessen’s
rule is a generic property for systems featuring a crossover
from isotropic impurity scattering to strongly anisotropic
interparticle-scattering-dominated transport.

IV. THE SEEBECK EFFECT IN OVERDOPED LSCO

The Seebeck effect is a further example which allows us
to test Fermi-liquid properties in transport. This effect as
the electric response to a temperature gradient is based on
thermodiffusion of charge carriers and can be analyzed with
Boltzmann transport theory too.

A. Experimental observation of the Seebeck
effect in Eu-LSCO

Laliberté et al. measured the Seebeck coefficient Q of
La1.8−xEu0.2SrxCuO4 (Eu-LSCO); cf. Ref. 29. While their
study aims at probing the Fermi surface reconstruction
scenarios in the underdoped regime of the phase diagram,
they also present data up to a hole-doping level of p = 0.24.
Data of the Seebeck coefficient are displayed in Fig. 10 (left
panel) for the doping regime p > 0.11. Europium doping of
LSCO is believed to have a stronger influence on the properties
of underdoped samples, but little effect is expected in the
overdoped regime.

For underdoped samples Q/T shows a sign change;
starting negative at low temperature, it turns positive at higher
temperature. On the other hand, for overdoped samples Q/T

remains positive for all temperatures measured and shows a
rather strong increase toward low temperature near optimal
doping. The inset of Fig. 10 (left panel) demonstrates the
log(1/T ) dependence of Q/T at low temperature, which has
been interpreted as a signature of quantum criticality.

B. Numerical results

We have numerically calculated the Seebeck coefficient
for LSCO within our semiclassical approach, as explained
in Appendix C 2. The results are shown in Figs. 10 (right
panel) and 11. A good overview on the behavior of the
Seebeck coefficient as a function of doping and temperature
is obtained from Fig. 11 (left panel). At the doping pc ≈ 0.19
we observe a sign change as we cross the Lifshitz transition
at low temperature. Interestingly, for p < pc, increasing the
temperature leads to a sign change from negative at low to
positive at higher temperature. Turning to the other limit
of strong overdoping the Seebeck coefficient turns negative
again, as expected for electrons in a band with small filling.
We also observe a doping-dependent temperature scale where
Q displays a rapid increase. Interestingly, this temperature
compares well with T1.

In order to compare our numerical results with the ex-
perimental results, we have plotted Q/T in Fig. 10 for
some selected values of hole doping. The inset shows the
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low-temperature regime for the doping level p = 0.21 on a
logarithmic temperature scale.

The general structure of the calculated Seebeck coefficient
is in good qualitative agreement with the experimental data
measured for Eu-LSCO (Fig. 10). In both cases, there is
a critical doping level below which the Seebeck coefficient
changes sign with increasing temperature, starting from
negative in the T → 0 limit. Above this critical doping level,
Q/T becomes very large for low temperature and strongly
decreases with temperature. The low-temperature rise of
Q/T becomes less pronounced with increasing hole doping.
In the low-temperature regime, Q/T acquires a log(1/T )
dependence, which is clearly visible in both the experimental
data and the numerical data below 60 K.

A small discrepancy between our model and the experiment
is the value of the critical doping level. We have designed the
band structure that we use to describe LSCO such that the
Lifshitz transition is located at pc ≈ 0.19; cf. Appendix A.
The van Hove singularity at the Lifshitz transition is the origin
for the critical behavior in our model and thus constrains the
critical doping level to pc. In the experimental study, however,
a critical doping level of 0.24 is reported.

C. Signature of critical transport properties

In the previous section, we discussed the low-temperature
log(1/T ) dependence of Q/T and the sign changes with
doping or temperature. These properties of the Seebeck
coefficient are often taken as an indication for the presence
of a quantum critical point.33,34 These features are found in
both the experimental data and the numerical simulation. We
now want to locate the areas of critical behavior in the phase
diagram.

For conventional metals, the Seebeck coefficient is a linear
function of the temperature manifesting Fermi-liquid behavior.
Deviations from this linear dependence may be used as a

signature for non-Fermi-liquid physics. Thus, we analyze the
temperature derivative of Q/T which should vanish for Fermi
liquids. Figure 11 (right panel) displays this function. This
value is largest at low temperature around optimal doping and
a sign change appears at the Lifshitz transition. This is the
region where the strongest differences with the Fermi-liquid
picture emerge. From this finding we may identify the vicinity
of the van Hove singularity and the presence of a Lifshitz
transition as the origin of non-Fermi-liquid behavior and the
signatures of quantum criticality.

Interestingly, Fig. 11 (right panel) allows us also to
see the temperature of the sharp increase of Q/T , cf.
Fig. 11 (left panel), appearing as a maximum of ∂(Q/T )/∂T .
This characteristic temperature Tmax separates the high-
doping low-temperature regime coming closest to Fermi-
liquid behavior (T 2 dependence of resistivity) from the
lower-doping high-temperature regime which is characterized
by the non-Fermi-liquid T -linear resistivity, as discussed in
Sec. II B2.

V. DISCUSSION AND CONCLUSION

We investigate the temperature and doping dependence
of charge transport coefficients using a combination
of an experimentally determined band structure and a
renormalized scattering matrix calculated in a one-loop
renormalization-group approximation. The band dispersion
matches the quasiparticle spectrum in ARPES for LSCO30

and as such includes the renormalization of the dispersion
with hole density due to interactions. The electron-electron
scattering vertex develops momentum-space and temperature
dependence as the hole density is reduced. We have chosen
a moderate to weak value for the bare on-site Coulomb
repulsion consistent with the one-loop approximation. We
also refrain from including the pseudogap region, which would
require a solution of the strong-coupling regime that results
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from divergences in the FRG flow. The Boltzmann transport
equation is solved numerically with collision integrals for
electron-electron and impurity scattering determined by
Fermi’s golden rule. This semiclassical approach determines
the quasiparticle distribution functions taking into account the
full angular and energy dependence of the collision integral.

We find good qualitative agreement with the main trends
in the experiments on the in-plane resistivity of LSCO.7 This
includes the increase of the temperature-dependent term in
the resistivity upon decreasing the hole concentration and the
trend toward a linear temperature dependence of the resistivity
ρ(T ) around optimal doping. A parametrization of our results
using a polynomial fit in T up to second order, inspired by the
experimental analyses,7,9 gives consistency between the trends
in experiment and our model. While the T -linear behavior
of ρ(T ) is often attributed to the existence of a quantum
critical point around optimal doping,35,36 our discussion shows
that this feature may also be understood as a consequence
of the unusual temperature dependence of the renormalized
scattering vertices and the increased scattering phase space
around this doping regime, where a Lifshitz transition of the
band structure leads the chemical potential very close to a van
Hove singularity. The magnitude of the calculated resistivity
is substantially lower than in the experiment, consistent with
the moderate to weak interaction values and one-loop RG
approximation.

Motivated by the experimental data analysis8 we also
identified crossover regimes in dρ(T )/dT and find rather
sharp changes in the temperature dependence. There are
two characteristic temperatures, T1 and T2, where the latter
denotes the lower bound of the T -linear regime of ρ(T ) and
T1(<T2) the upper bound for pure T 2 dependence (Fermi-
liquid regime). The intermediate temperature range may be
considered a combination of both. The resulting phase diagram
gives a very good account of the trends of ρ(T ) observed
in the experiment. In particular, we can show that there is
a clear correlation of the unconventional temperature scaling
with the van Hove singularity, quantified through the effective
distance of the chemical potential from the van Hove level,
kBT�vH = 4|μ − EvH|; cf. Fig. 6.

By comparing the temperature dependence of ρ(T ) for
renormalized and bare scattering rates, we could demonstrate
the importance of the scattering vertex renormalization. While
in the strongly overdoped regime the difference in the numeri-
cal data determined from renormalized and unrenormalized
scattering rates is not very pronounced, around optimal
doping the phase-space-driven growth of a linear term is
strongly enhanced due to renormalization of the quasiparticle
interactions.

It also turns out that the impurity scattering is important in
this respect as well, contributing to the unconventional temper-
ature dependence. This is surprising as impurities contribute
usually only a weakly temperature-dependent offset to resistiv-
ity. We found deviations from Matthiessen’s rule in large parts
of the considered phase diagram. This deviation is especially
pronounced as we approach optimal doping at intermediate to
low temperature due to the different momentum dependence
of impurity and electron-electron scattering. Matthiessen’s
rule, however, is recovered in the more conventional, strongly
overdoped regime at low temperature.

We have also studied the Seebeck coefficient within our
model. We find qualitative agreement between our numerical
data and the main trends in the measurements performed
on a slightly different compound, Eu-LSCO. We believe
that the Eu doping does not strongly influence the Seebeck
coefficient in the optimal to overdoped doping regime which
we are interested in. The calculated Seebeck coefficient
also displays a critical region in the phase diagram with
pronounced deviations from Fermi-liquid behavior. We have
related the critical behavior to proximity of the van Hove
singularity to the Fermi energy which is linked to the Lifshitz
transition.
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APPENDIX A: THE QUASIPARTICLE
DISPERSION OF LSCO

We use a band structure parametrized within a tight-binding
model on a square lattice, including nearest-, next-nearest-, and
next-to-next-nearest-neighbor hopping:

εk = −2t(cos kx + cos ky) + 4t ′ cos kx cos ky

− 2t ′′(cos 2kx + cos 2ky). (A1)

The hopping parameters t , t ′, t ′′, and the chemical potential μ

define the geometry of the Fermi surface and the filling of the
band.

Based on their ARPES study, Yoshida et al.30 fitted the
low-energy quasiparticle spectrum of LSCO and the Fermi
surface in the doping range from p = 0.03 to p = 0.30 using
the model (A1). Fixing the magnitude of t to 0.25 eV and the
ratio t ′′/t ′ = 0.5 for all dopings they used μ and t ′ as fitting
parameters. Their results are shown in Fig. 13. The relation
between μ and t ′ as a function of the doping is linear to a very
good approximation,

μ(p) = −1.85t + 7.26t ′(p). (A2)

Yoshida et al. identified a Lifshitz transition at p ≈ 0.18.
Our hopping parameter renormalization scheme, Eq. (A2),
locates the Lifshitz transition at p ≈ 0.24. Changing t ′′/t ′ to
t ′′/t ′ = 0.25 shifts the Lifshitz transition within our model
to the experimental doping level. Note that a second ARPES
study by Ino et al.37 also confirms the presence of a Lifshitz
transition at a doping level of about p ≈ 0.20.

APPENDIX B: STRONGLY RENORMALIZED
QUASIPARTICLE INTERACTIONS

1. Renormalization of the scattering vertex

The calculation of the renormalized vertex in Ref. 23 is
based on the FRG equation for the one-particle irreducible
generating functional derived in Refs. 38 and 39 which gives
hierarchically coupled flow equations for the one-particle
irreducible vertices. The RG flow follows from a Wilsonian
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flow scheme with a sharp momentum cutoff. The RG equations
are solved using the standard truncation of all vertices with
more than four legs, so that the self-energy and the four-point
vertex are the only remaining quantities in the calculation.
For the vertex, the momentum dependence is discretized
and constrained to momenta lying on the Fermi surface. The
frequency dependence of the vertex is suppressed. For the RG
flow, the flow parameter � is taken from ∞ to zero. In general,
the truncated flow tends to diverge for low temperature at finite
energy scales �, indicating the appearance of an instability.
The energy scale at which the divergence occurs is related
to the critical temperature Tc of the corresponding instability,
in our case superconductivity. Note, however, that due to the
truncation of the RG equations the Tc is largely overestimated.

For a study of normal-state transport, the divergence
of the vertex should be avoided. While in the experiment
superconductivity is suppressed by a magnetic field which
is difficult to incorporate in the RG analysis, we keep the
cutoff energy scale �c > 0 finite and so suppress the leading
d-wave pairing instability in the RG flow. The choice for �c

is discussed in Appendix B 2.
The quasiparticle scattering vertex V ( p1, p2, p3, p4) =

〈 p1 p2 |V̂ | p3 p4 〉 is peaked for momenta pi lying close to
the saddle points (0,π ) and (π,0) and has especially strong
contributions for momentum transfer of (π,π ); cf. Fig. 12.
Further discussions of the RG flow and interpretations of vertex
diagrams as in Fig. 12 are given in Refs. 38–41.

The FRG method is a weak-coupling analysis. On the
underdoped side, below a temperature scale T ∗ a pseudogap
opens as an indication that the system is driven into a strong-
coupling phase. The strong-correlation physics is not included
in our analysis. Hence, we restrict our study to dopings from
optimal to strongly overdoped.

2. Choice of parameters

The on-site repulsion U for the cuprates is a large energy
scale of the order of the bandwidth, as at half-filling a Mott-

insulating phase is realized. Using such large values of U , how-
ever, leads to a divergence of the RG flow within the normal-
state temperature range, since the instability temperatures are
overestimated. This urges us to start with a moderate value of
the on-site repulsion of U ≈ 2.0t , which then is renormalized
to much larger values for the low-energy quasiparticles after
integrating out the high-energy states. Moreover, we suppress
the d-wave pairing instability by keeping the cutoff �c > 0
finite in the RG flow, as mentioned above. For this purpose we
choose �c = kBTmin, corresponding to the lowest temperature
in our study.

APPENDIX C: SEMICLASSICAL TREATMENT OF
NORMAL-STATE CHARGE TRANSPORT OF LSCO

1. The Boltzmann equation and its discretized solution

The Boltzmann equation relates the substantial derivative
of the quasiparticle distribution function to the collision
integral, taking all scattering events into account which yield
a change of the distribution function,

df (r, p,t)

dt
= ∂f (r, p,t)

∂t
+ v( p) · ∇rf (r, p,t)

− [∇rV (r)] · ∇pf (r, p,t)

= ∂f (r, p,t)

∂t

∣∣∣∣
coll

. (C1)

We consider two contributions in the collision integral, two-
particle collisions labeled by “ee” and impurity scattering
labeled by “imp”:

∂f ( p)

∂t

∣∣∣∣
coll

= ∂f ( p)

∂t

∣∣∣∣
ee

+ ∂f ( p)

∂t

∣∣∣∣
imp

. (C2)

The first contribution is expressed as

∂f ( p1)

∂t

∣∣∣∣
ee

= − ∫
d p2 d p3 d p4 �ee

1,2,3,4 F1,2,3,4, (C3)
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FIG. 13. (Color online) (a) Sketch of our curved-patch discretization of first quarter of the Brillouin zone. Plotted in color-code is the
f0( p)(1 − f0( p)), a measure of the scattering phase space. The lines represent the edges of the finite elements (boxes). For illustration purposes
the resolution of the mesh is much lower than used for our calculations. (b) The points represent the relation between μ and the next-nearest
neighbor hopping t ′ observed in the experiment.30 We use the linear fit (red line) to this data as the renormalization scheme for the hopping
parameters in our model. (c) Fermi surface of the tight binding model (A1) with hopping parameters chosen to match the measured parameters
for LSCO for different hole-doping values, cf. Appendix A.

with

�ee
1,2,3,4 = 1

2
|〈 p1 p2 |V̂ | p3 p4 〉 − 〈 p1 p2 |V̂ | p4 p3 〉|2

× δ( p1 + p2 − p3 − p4)
2π

h̄
δ(ε( p1)

+ ε( p2) − ε( p3) − ε( p4)), (C4)

and

F1,2,3,4 = f ( p1)f ( p2)[1 − f ( p3)][1 − f ( p4)]

− [1 − f ( p1)][1 − f ( p2)]f ( p3)f ( p4), (C5)

where the transition rates � are generated through Fermi’s
golden rule from the matrix elements of the quasiparticle in-
teraction vertex V̂ ; cf. Appendix B. The second contribution to
the collision integral is simpler due to its single-particle form:

∂f ( p1)

∂t

∣∣∣∣
imp

= − ∫
d p2 �

imp
1,2 F1,2, (C6)

with

�
imp
1,2 = nimp|〈 p1|Ŵimp| p2〉|2

2π

h̄
δ(ε( p1) − ε( p2)) (C7)

and

F1,2 = f ( p1)[1 − f ( p2)] − [1 − f ( p1)]f ( p2). (C8)

We ignore electron-phonon contributions here because,
in the cuprates, the momentum relaxation of the quasipar-
ticles is dominated by electron-electron interactions as was
concluded, e.g., from the temperature dependence of the
Hall coefficient42 and from the observation of a quadratic
resistivity for overdoped LSCO.10 It is important to notice
that two-particle scattering can only yield a finite resistivity
if momentum is transferred to the lattice, which only can be
realized through umklapp scattering (see Sec. III). Umklapp
scattering has special geometrical constraints and, therefore,
introduces strong anisotropy in the Brillouin zone and requires

a detailed analysis of the collision integral beyond a single-
relaxation-time approach.

We linearize the Boltzmann equation in terms of the
deviation from equilibrium, δf . The collision integral is
interpreted as a linear integral operator acting on δf . We
evaluate the integral kernel on discrete patches of a finite
mesh [see Fig. 13(a)]. Note in this context that the energy
conservation appearing as a δ function in the scattering rates
has to be treated carefully. In discretized momentum space,
the linearized Boltzmann equation is reduced to a set of linear
equations which are solved numerically.

In order to match the Fermi surface, we use a polar angle
and the energy to represent each momentum vector. For our
curved-patch discretization we can adjust the grid spacing
in the radial (energy) direction to the temperature scale and
always cover the relevant scattering phase space. A sketch of
this discretization is given in Fig. 13(a). For the calculations
that we present here we have chosen a discretization of 24
patches in the radial direction and 120 patches in the angular
direction. The latter are not distributed equally but are much
finer in the antinodal than in the nodal direction to take care of
the flat dispersion in the proximity of the saddle points.

2. Calculation of the Seebeck coefficient
within Boltzmann transport theory

For a study of the Seebeck effect, the Boltzmann equation
is extended by a new drift term that accounts for the response
of the distribution function to the external thermal gradient,

− ∂f

∂ε( p)
v( p) ·

(
∇rT

ε( p) − μ

T
− E

)
= ∂f ( p)

∂t

∣∣∣∣
coll

, (C9)

with the electrochemical potential defined as E = ∇(eφ + μ).
The collision integral remains unchanged.

The distribution function that solves this equation carries a
heat current and an electrical current. These two currents are
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defend as the linear response to the external fields as

J i = Kij Fj , with J =
(

j e

j th

)
; F =

(
E

−∇rT

)
.

(C10)

Considering an open circuit geometry with j e = 0, the typical
setup for thermopower measurement, the Seebeck coefficient
is defined as the proportionality factor between the applied
thermal gradient and the induced electrochemical potential,
Q ≡ E/∇T = K12/K11. For simplicity we assume all forces
aligned along one direction and, thus, we can use scalar
quantities. It is important to note that we do not make use
of analytic simplifications as Mott’s formula or Sommerfeld
expansion.

APPENDIX D: CONVERSION OF COMPUTATIONAL
TO EXPERIMENTAL UNITS

According to the ARPES study30 used above to find
the effective tight-binding parameters of LSCO, a value

of 0.25 eV for the nearest-neighbor hopping parame-
ter t fits the ARPES data best. This defines an energy
scale which translates the energy scales of temperatures
in units of t to eV. If we want to study the temper-
ature range up to room temperature of 300 K the cor-
responding energy scale is kB 300 K ≈ 0.025 eV ≈ 0.1t .
In order to cover at least one order of magnitude in tempera-
tures we choose kBTmin = 0.01t and kBTmax > 0.1t .

Our model is based on a two-dimensional interacting
electron gas on a lattice. The experimental setup is based
on the measurement of the resistivity of a three-dimensional
but layered sample. For a quantitative comparison of the
experimental and numerical data, a conversion of the two-
dimensional resistivity to a three-dimensional resistivity is
required. For a layered system this is very easily achieved
by multiplication of the two-dimensional resistivity with the
interlayer distance. The c-axis lattice constant of LSCO is
given by c = 13.4 Å (Ref. 43) and the interlayer distance by
half the lattice constant, because the unit cell of the 2-1-4
compounds contains two layers.
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