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Electric field enhancement in ε-near-zero slabs under TM-polarized oblique incidence
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We investigate local-field enhancement phenomena in subwavelength, ε-near-zero (ENZ) slabs that do not
exploit Fabry-Pérot resonances. In particular, we study the linear response of engineered metamaterial slabs of
finite thickness based on plasmonic nanoshells that show an ENZ band in the visible range, and naturally occurring
materials (e.g., SiO2) that also display ENZ properties, under oblique, TM-polarized plane-wave incidence. We
then introduce active gain material in engineered metamaterial slabs that adds peculiar spectral and angular
features to transmission, reflection, and absorption properties, and leads to a further local-field enhancement.
These findings are supported by two theoretical studies: First, a simple interface between two semi-infinite
media, namely free space and a generic ENZ medium; then, an ENZ slab of finite thickness, with the aim of
understanding the system’s behavior when varying the ENZ properties as well as the incident angle. For either
case we report three distinct physical conditions for which we explain spectral and angular features that might
result in strong field enhancement. The gain-assisted metamaterial implementation has the potential of triggering
and enhancing low-threshold nonlinear phenomena thanks to the large local fields found at specific frequency
and angular bands.
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I. INTRODUCTION

In view of their potential applications, artificial composite
materials that exhibit ε-near-zero (ENZ) properties1–3 have
attracted a great deal of attention. A limited list of such appli-
cations includes tunneling of electromagnetic energy,4,5 highly
directional beaming,6–12 optical nanocircuits,13 lenses,14

cloaking devices,15,16 boosting of optical nonlinearities,17 and
low-threshold nonlinear effects.18,19

A theoretical discussion of electromagnetic tunneling
through thin, ENZ channels without phase accumulation is
reported in Ref. 4, where tunneling is also implemented in
anisotropic, artificial material made of wires. Theoretical
predictions of artificial materials made of wire media
exhibiting refractive indices less than unity have also been
reported in Ref. 3. An experimental demonstration of
microwave tunneling between two waveguides connected by
a thin ENZ channel was discussed in Ref. 5. The ENZ channel
consisted of a planar waveguide where complementary
split ring resonators were patterned on the lower surface.
Experimental results were found to be in agreement with
theory and numerical simulations.

The properties of ENZ materials and their applications are
numerous. A notable example is their ability to radiate highly
directional beams. References 8–11 have shown radiation with
enhanced directivity of a transverse dipole (parallel to the
interface) embedded in an ENZ slab. For example, in Ref. 8 an
experimental demonstration of directional radiation through
ENZ materials at microwave frequencies was carried out.
The metamaterial was made of copper grids with a square
lattice excited by a monopole antenna. A precise physical
explanation of directive radiation of a dipole inside an ENZ
material slab was established in Refs. 9–11, revealing the role
of the excited leaky wave in the radiation mechanism. Based
on the above discoveries, by reciprocity, one may ask if a
large transverse field arises when an ENZ slab is illuminated

with a plane wave close to normal incidence; however, in this
paper, we will show that under plane-wave illumination, in the
low-loss ENZ condition the longitudinal electric field (normal
to the ENZ surface) is larger (up to orders of magnitude)
than the transverse one. In Ref. 10, both effective-medium
theory (including spatial dispersion phenomena) and full-wave
simulations of wire media confirmed the highly directional
nature of the radiation from the low permittivity medium
excited by a dipole. In Ref. 12, the use of ENZ metamaterials
was proposed to tailor the phase of radiation pattern of arbitrary
sources in planar layers and cylindrical shells.

ENZ materials have also been shown to prevent leakage
of the optical electric displacement current in the field of
metatronics.13 In a completely different framework, stacked
subwavelength hole arrays characterized either by an effective
ENZ or a μ-near-zero material parameter were analyzed
both theoretically and experimentally14 in order to realize
lenses. Another exotic application of ENZ metamaterials is
for cloaking devices. In Ref. 15, for example, an experimental
implementation of a microwave frequency cloak based on
scattering cancellation technique was analyzed. The cloak
was composed of an array of metallic fins embedded in
a high dielectric constant environment, and was shown to
cloak a dielectric cylinder by reducing 75% of the total
scattering amplitude. Full-wave simulations of a cloaking
device whose constituents are plasmonic nanoshells were
recently implemented in Ref. 16.

Materials exhibiting ENZ properties were also recently
proposed as an effective solution to stimulate nonlinear
processes because of the strong field enhancement values
that may be achieved when Re(ε) crosses zero. The use of
narrow apertures at cutoff in a plasmonic screen to design ENZ
channels was used in Ref. 17 to enhance optical nonlinearities.
The introduction of Kerr nonlinearities can trigger bistable and
self-tunable response achieved with low threshold intensities.
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The effective response of a homogenized multilayered medium
including Kerr nonlinearities was analyzed in Ref. 18 in the
ENZ regime, showing hyperfocusing and field compensation
properties, as well as propagation of nonlinear waves even if
the medium linear properties would, in principle, not allow
it. The field enhancement capabilities of micrometer-thick,
uniaxially anisotropic ENZ slabs have been analyzed in
Ref. 20, with the goal of achieving efficient second harmonic
generation. The authors of Ref. 20 showed the dependence of
transmissivity and field enhancement on the incident angle of
a TM-polarized plane wave and on the thickness of the slab at
a fixed frequency. They also investigated the role of losses in
the second harmonic generation process.

These contributions notwithstanding, we believe that cur-
rently there is a need to better understand the origin of
strong field enhancement effects occurring when the ENZ slab
has subwavelength thickness, i.e., far from any Fabry-Pérot
resonance of the ENZ etalon. In this sense, singularity-driven
second and third harmonic generation in subwavelength ENZ
slabs have been shown to originate from strong electric field
enhancement.19 Although transmission properties of ENZ
slabs of finite thickness under oblique incidence were briefly
analyzed in Ref. 12 by varying thickness and permittivity
values, here we provide a thorough analysis of transmission,
reflection, and absorption coefficients for varying slab permit-
tivity and incident angles, characterizing spectral and angular
features for three distinct physical conditions which might
result in large field enhancements inside the slab that boost
nonlinear optical processes, for example.

Metamaterial implementations with ENZ properties at
optical frequencies have been reported with a focus on the
limitation of losses.16,21–25 For example, in Ref. 16 the authors
employed plasmonic nanoshells to engineer a low-loss optical
ENZ material using silver or gold. Silver-based designs yielded
effective parameters with lower losses compared to gold-based
designs, partly due to the fact that at optical frequencies silver
is less lossy than gold.26 In Refs. 21–25 the use of active
ideal21,22 and realistic gain materials embedded inside the
nanoshell cores (fluorescent dye molecules in Ref. 23 and
quantum dots in Refs. 24 and 25) was analyzed and found
to provide promising ways to design loss-compensated ENZ
metamaterials.

The latter realistic scenario has motivated us to inspect
field enhancement capabilities in metamaterial slabs composed
of plasmonic nanoshells that exhibit an ENZ band in the

visible range23 and of materials that naturally exhibit an ENZ
band (Sec. III). Note, however, that alternative metamaterial
implementations based on the use of low-loss plasmonic
materials27–29 may in principle be adopted and for this reason
our work continues by dealing with low-loss ENZ slabs. For
example, we will show that losses greatly affect the maximum
achievable enhancements. We then introduce an active gain
material in the metamaterial design (Sec. IV). Our findings
are supported by two theoretical studies (Sec. V), namely the
interface between two semi-infinite media (free space and an
ENZ medium) and an ENZ slab of finite thickness in free
space, which will be used in Sec. VI to justify the behavior of
the linear response observed in Sec. IV.

We demonstrate that in the absence of any active medium,
the metamaterial structure may induce a field enhancement for
wide frequency and angular bands. Instead, when material
losses are partly compensated by introducing an active
material in the nanocomposite structure we observe a much
stronger field enhancement for extremely narrow frequency
and angular bands. This result may for example pave the way
to the development of exotic and extreme nonlinear optical
phenomena.

II. DEFINITION OF THE OPTICAL SETUP
UNDER CONSIDERATION

We consider the optical setup composed of an ENZ slab
with thickness h along the z direction illuminated by an
obliquely incident TM-polarized plane wave, as shown in
Fig. 1(a). Therefore, the incident electric field lies on the x-z
plane, i.e., E1 = E1(cos θi x̂ − sin θi ẑ)eik1·r, where E1 is the
amplitude, r = xx̂ + zẑ is the observation point (the problem
is y invariant), θi is the incident angle, and k1 = kx x̂ + kz1ẑ =
k1(sin θi x̂ + cos θi ẑ) is the wave vector, assumed here in the x-z
plane, with kx the transverse (to the z axis) wave number, kz1

is the longitudinal wave number in medium 1, k1 = k0
√

ε1,
where k0 is the free space wave number, and ε1 is the
relative permittivity in medium 1. A monochromatic, time
harmonic convention exp(−iωt) is implicitly assumed. In the
ENZ medium 2, with relative permittivity ε2, we define the
wave vector k2 = kx x̂ + kz2ẑ = k2(sin θt x̂ + cos θt ẑ), where
k2 = k0

√
ε2, kz2 = βz2 + iαz2 is the longitudinal complex

wave number, and θt is the transmitted angle in medium
2. It is useful to define the dielectric contrast ε̂2 = ε2/ε1

that will play an important role in the subsequent analysis.

FIG. 1. (Color online) (a) ENZ setup under analysis, with |ε̂2| � 1. (b) Metamaterial implementation (x-z plane).

035120-2



ELECTRIC FIELD ENHANCEMENT IN ε-NEAR- . . . PHYSICAL REVIEW B 87, 035120 (2013)

Accordingly, Snell’s law is written as sin θi = √
ε̂2 sin θt ,

and kz2 =
√

k2
2 − k2

x = k1
√

ε̂2 cos θt = k1

√
ε̂2 − sin2 θi , with

k2 = k1
√

ε̂2.
We define the critical incident angle θC

i as the angle
where the vanishing longitudinal wave-number condition
kz2 = k1

√
ε̂2 − sin2 θC

i = 0 is verified. This means that, when
both the slab and the incident medium are lossless, an
increase in the incident angle above θC

i produces a purely
evanescent wave inside the slab. The critical angle may be
expressed as

θC
i = arcsin

√
ε̂2. (1)

Note that the critical angle is purely real if ε̂2 > 0, and purely
imaginary if ε̂2 < 0. In a more general scenario, θC

i is a
complex number when ε̂2 is complex. In addition one may also
define the Brewster incident angle θB

i , the angle that yields no
reflection at the interface, which will be used in the following
sections. The Brewster angle is characterized by the condition
kz2 = ε̂2kz1, leading to

θB
i = arctan

√
ε̂2. (2)

Even though a Brewster transmission condition with zero re-
flection is possible only for lossless media under homogeneous
plane wave illumination, a minimum reflection angle may also
be defined for lossy media and it depends on the imaginary
part of the permittivity.30,31 We note that for lossless media
θB
i < θC

i , and for ENZ materials θB
i ≈ θC

i ≈ √
ε̂2.

The most important physical parameter analyzed in this
paper is the field enhancement in ENZ materials, and the
conditions that lead to it. Because of the field continuity
requirement at the ENZ interface, it is the z component of
the electric field Ez2 in the ENZ medium 2 that experiences
the largest enhancement, as it will be shown in the following
sections. Therefore, it is convenient to define the field intensity
enhancement (FIE), evaluable at various positions z, as

FIE = |Ez2|2/|E1|2 (3)

that will be used and analyzed throughout the paper. Note
that when θi = 0 degrees, i.e., normal incidence, both Ez1

(the z component of the total field in medium 1) and Ez2

are identically equal to zero. In principle, one may define a
field enhancement also for the transverse field component Ex2

analogously to what is done in Eq. (3) for Ez2. However, we
will show that in the case of low-loss ENZ slabs, a much larger
FIE related to Ez2 is attained. Therefore, unless otherwise
specified, by FIE we mean the longitudinal field intensity
enhancement in Eq. (3).

III. FIELD ENHANCEMENT IN ENZ SLABS

We consider two metamaterial slabs made of four periodic
layers of plasmonic nanoshells, whose physical parameters are
shown in Table I, that exhibit effective ENZ properties around
525 THz (slab 1) and 422 THz (slab 2), as previously reported
in Ref. 23 via modal analysis. The nanoshell’s inner core has
radius rc and relative permittivity εc; the shell has outer radius
rs and relative permittivity εs . The system is embedded in
a homogeneous environment having relative permittivity εh,
as schematically reported in Fig. 1(b). The nanoshells are

TABLE I. Physical parameters of the nanoshells composing the
metamaterial slabs.

Slab εc εs εh rc (nm) rs (nm) a,b,c (nm)

1 2.25 Ag 2.25 20 25 75
2 2.25 Au 2.25 30 35 100

periodically spaced with periodicities a,b,c along the x, y,
and z directions, respectively. Here we consider silver (Ag) or
gold (Au) shells, whose permittivity is modeled according
to the Drude model εs = ε∞ − ω2

p/[ω(ω + iγ )] (ε∞ = 5,
ωp = 1.37 × 1016 rad/s, γ = 27.3 × 1012 1/s for silver; ε∞ =
9.5, ωp = 1.36 × 1016 rad/s, γ = 1.05 × 1014 1/s for gold)
also reported in Ref. 23. It has been demonstrated that for
thin metallic shells, the Drude model should be modified
to account for the dependence on metal thickness, surface
effects, and interband transitions, as for example shown in
Ref. 22. However, even a more realistic metal permittivity
does not alter the qualitative analysis and the results on field
enhancement in ENZ slabs shown in this paper nor does
it undermine our discussion and conclusions. Metamaterial
slabs are assumed to be homogeneous and to have a finite
thickness h = 4c along the z direction (Fig. 1). The effective
permittivities of the two slabs shown in Fig. 2 (solid curves,
tagged as without gain) were retrieved at normal incidence by
employing the method outlined in Ref. 32 that uses reflection
and transmission from a finite thickness slab computed via
full-wave simulations based on the finite element method (high
frequency structure simulator - HFSS - by Ansys Inc., and
COMSOL Multiphysics, both in good agreement). Slab 1,
made of silver shells, exhibits an effective relative permittivity
εeff that has a smaller imaginary part than the one of slab 2,
which is made of gold shells, across the entire frequency range.
The presence of a smaller amount of losses across the ENZ
frequency region makes us infer that slab 1 will exhibit better
performance than slab 2, as explained in the following.

We assume slabs 1 and 2 are composed of homogeneous
materials described by the functions shown in Fig. 2 (solid
curves, tagged as without gain). The surrounding material in
Fig. 1(a) has relative permittivity ε1 = 2.25. In Fig. 3 we show
the absorption coefficient A = 1 − |T |2 − |�|2, where |T |2 is
the transmittance, |�|2 is the reflectance (equations for T and
� are found in Sec. V B), and the FIE in Eq. (3) calculated

FIG. 2. (Color online) Relative effective permittivity, retrieved at
normal incidence, versus frequency for (a) slab 1 and (b) slab 2 in
Table I, without and with gain (as explained in Sec. IV). Note the
largely compensated material loss [i.e., Im(εeff ) → 0] near 525 and
422 THz, respectively, in the case with gain.
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FIG. 3. (Color online) Absorption coefficient A as a function of
frequency and incident angle for (a) slab 1 and (b) slab 2 in Table I.
The FIE computed at z = 0+ and z = h/2 as a function of frequency
and incident angle for (c),(e) slab 1 and (d),(f) slab 2 in Table I. The
ENZ slab thickness is h = 4c.

at z = 0+, i.e., slightly inside the slab, and at z = h/2.
All calculations were performed by assuming TM-polarized
plane-wave incidence and varying frequency and incident
angle for the two cases in Table I.

Two properties are observed in Fig. 3: (i) absorption is
larger in the case of slab 2 compared to slab 1, and has
broader frequency and angular bands due to the larger Im(εeff);
(ii) the maximum FIE in slab 1 is ≈2.5 times larger than the
maximum FIE achieved in slab 2 at z = 0+, due to the lower
Im(εeff) and lower losses. However, losses are still relatively
large for the ENZ condition, and field intensity drops when
evaluated inside the slab at z = h/2. These results suggest
that field enhancement in an ENZ subwavelength slab is
sensitive to the imaginary part of the effective permittivity.
The introduction of a gain material (discussed in Sec. IV)
may then boost the local field intensity and eventually support
strong nonlinear phenomena. Next we excite the metamaterial
slabs using a TM-polarized plane wave incident at θi = 19◦
(slab 1) and θi = 30◦ (slab 2) to maximize absorption losses
and field enhancement (refer to Fig. 3), and retrieve reflection,
transmission, and absorption coefficients (Fig. 4). From an
inspection of Fig. 4 one may note a dip in the magnitude of
the transmission coefficient near 522 THz for slab 1, and the
absence of any spectral feature for slab 2, probably due to
higher losses. The FIE calculated at z = 0+ and z = h/2 is
shown in Fig. 5 by varying the frequency. We observe a field
enhancement for both slabs 1 and 2 when evaluated at z = 0+,
whereas field enhancement is still present at z = h/2 only for

FIG. 4. (Color online) Transmission, reflection, and absorption
coefficients as a function of frequency for (a) slab 1 and (b) slab 2 in
Table I, for a TM-polarized plane wave incident at θi = 19◦ for slab
1 and θi = 30◦ for slab 2. The ENZ slab thickness is h = 4c.

slab 1. Note that the peak tends to be located at the frequency
around the minimum of Im(εeff) (see Fig. 2). For completeness,
we also show the FIE related to the Ex2 component of the field,
which is lower but of a comparable order to that in Eq. (3) for
Ez2. Simple calculations reveal that in the ENZ condition, the
maximum attainable FIE for Ex2 is equal to 4. In this case, the
presence of metal losses limits the longitudinal FIE, and as it
will be shown in the next section, FIE for Ez2 can be largely
enhanced by resorting to low-loss ENZ materials.

Behavior similar to that shown in Figs. 3–5 also occurs
in materials that exhibit ENZ characteristics naturally, due
to bound electron resonances. For example, silicon dioxide
(SiO2) displays an ENZ crossing point at ≈37 THz [see inset
in Fig. 6(b)]. A 400-nm-thick slab surrounded by free space
(ε1 = 1) then exhibits large absorption and longitudinal FIE,
as shown in Fig. 6. However, while absorption in the band
30–35 THz is due to increased Im(ε) [see inset in Fig. 6(b)],
the absorption band centered at 37 THz and 60◦ is due to the
condition Re(ε) ≈ 0, and yields FIE ≈ 3.5.

IV. SUPER-FIELD ENHANCEMENT IN GAIN-ASSISTED
ENZ SLABS

Following our discussion in the previous sections one may
infer that losses and field enhancement are intimately related
and that they are mutually exclusive. Losses are associated
with the product Im(ε)|E|2, and thus may arise either from
large local field enhancement, or large Im(ε), or both. These
observations motivate our analysis of a gain-assisted ENZ slab.
Hence, we again consider the two composite-material slabs
described in Table I, but now the nanoshells have silica-like

FIG. 5. (Color online) The FIE computed at z = 0+ and z = h/2
for the two cases and parameters described in Fig. 4. Also, the thin
blue and green lines refer to the FIE related to the x component of
the field Ex2. The FIE related to Ez2 is stronger, even for this case
without gain.
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FIG. 6. (Color online) (a) Absorption coefficient and (b) FIE
computed at z = 0+ as a function of frequency and incident angle
for a slab of SiO2. Slab thickness is h = 400 nm.

dielectric cores that include 10 mM of Rhodamine 6G (slab
1) and Rhodamine 800 (slab 2) fluorescent dye molecules to
provide gain.23 The chosen molecular concentration is quite
large and may thus impact the overall compensation due to the
presence of fluorescence quenching and other nonradiative
phenomena.33 This drawback may be alleviated by using
fluorescent molecules that exhibit larger emission cross section
compared to those considered above, or by using alternative
approaches, such as the inclusion of quantum dots.24,25 The
effective permittivity of a sample composed of four layers
of such nanoshells (slab thickness is h = 4c) is reported in
Fig. 2 for normal incidence (dashed curves, tagged as with
gain). We note that Re(εeff) is affected only slightly near the
zero-crossing point by the introduction of gain, as may be
ascertained by comparing solid and dashed curves in Fig. 2.
A careful comparison of such curves reveals that Im(εeff) is
reduced considerably near the zero-crossing point (525 THz
for slab 1 and 422 THz for slab 2).

In Fig. 7 we show the gain-assisted absorption coefficient
A and the FIE computed at z = 0+ and z = h/2 under
TM-polarized plane-wave incidence as a function of frequency
and incident angle for the two cases in Table I. The surrounding
material in Fig. 1(a) has relative permittivity ε1 = 2.25.
A comparison of Figs. 3 and 7 reveals that the angle of
maximum FIE decreases as Im(εeff) decreases, fact that may
be ascertained by observing that the FIE reaches ≈35 for slab 1
(εeff ≈ 0.12 + i3 × 10−3 at about 526 THz) and ≈180 for slab
2 (εeff ≈ 0.03 + i10−4 at about 422 THz). When compared to
the maps in Fig. 3, the FIE remains nearly constant inside both
gain-assisted slabs. In general, adding gain to the metamaterial
response lowers the damping of the system and thus the losses.
Nevertheless, the simultaneous availability of a Re(εeff) = 0
crossing point and smaller imaginary part leads to a large
enhancement of the longitudinal field at low incident angles,
a condition in which the system experiences absorption rates
similar to absorption rates found in the absence of gain. The
high absorption band centered at about 435 THz in Fig. 7(b) is
due to the first-order Fabry-Pérot resonance in slab 2 (where the
real part of the effective permittivity is about 0.75). Fabry-Pérot
resonators require a π -phase accumulation through the slab,
so that larger thicknesses h or larger permittivity values should
be considered for the etalon. This resonant feature occurs in a
similar way also for TE-polarized incident illumination.

We then excite the two gain-assisted slabs with TM-
polarized plane waves incident at θi = 6◦ for slab 1 and θi = 3◦
for slab 2, i.e., at the angles that maximize absorption losses
and field enhancement (refer to Fig. 7), and retrieve reflection,

FIG. 7. (Color online) As in Fig. 3, for the two gain-assisted meta-
materials slabs in Table I. Note the logarithmic scale [10log10(FIE)]
is used for slab 2, in (d),(f), due to the large FIE values.

transmission, and absorption coefficients (Fig. 8). In both
cases, around the ε ≈ 0 frequency range, the transmission
coefficient is strongly asymmetric (i.e., a dip followed by
a peak for increasing frequency) as absorption increases,
conditions that are not observed in the absence of gain (Fig. 4).
We will discuss these features in Sec. VI.

The FIE computed at z = 0+ and z = h/2 is shown in
Fig. 9, where a FIE ≈ 35 in the case of slab 1, and ≈180 in
the case of slab 2 is predicted. Compared to Fig. 5, we note
that this enhancement remains nearly constant when evaluated
inside the slab around the ENZ frequency band, especially
for slab 2 because it exhibits a smaller Im(εeff) with respect
to slab 1. The peak does not move as in Fig. 5 because here
the conditions Re(εeff) ≈ 0 and Im(εeff) ≈ 0 occur at nearly
the same frequency (Fig. 2). The enhancements observed
here are promising for applications to exotic and extreme

FIG. 8. (Color online) Magnitude of transmission, reflection and
absorption coefficients as functions of frequency for gain-assisted (a)
slab 1 and (b) slab 2 in Table I, assuming a TM-polarized plane wave
incident at θi = 6◦ for slab 1 and θi = 3◦ for slab 2. The ENZ slab
thickness is h = 4c.
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FIG. 9. (Color online) The FIE computed at z = 0+ and z = h/2
for the two cases and parameters described in Fig. 8. Also, the blue
and green thin lines refer to the FIE related to the x component of
the field Ex2. The FIE related to Ez2 is much stronger than the one
observed in Fig. 5, due to the low-loss ENZ condition. Note the
logarithmic scale [10log10(FIE)] is used for slab 2 in (b) due to the
large FIE values.

nonlinear optical phenomena. We also show that the FIE
related to the x component of the field, Ex2, is now negligible
(especially for slab 2) with respect to the one achieved via the
super-enhancement of Ez2 due to the low-loss ENZ condition.
Indeed, Fig. 9 shows that in this case the FIE for Ez2 is much
higher than what shown in Fig. 5. This explains why the main
focus of this paper is the longitudinal FIE in Eq. (3).

V. ANALYTICAL MODEL

The field enhancement observed in ENZ metamaterial slabs
(Figs. 3–5), which is further improved in gain-assisted systems
(Figs. 7–9), may be adopted for efficient second and third
harmonic generation schemes or other applications where the
presence of large fields is critical.34 The next subsections will
be devoted to the introduction of the model required to explain
the field enhancement associated to gain-assisted ENZ slabs
observed in Sec. IV. This model is an effective tool that may
be used to predict field enhancement, angular and spectral
features, and the effect of losses.

A. Interface between two half spaces

We begin by analyzing the case of an interface
between two half spaces, obtained by assuming h → +∞
(see Fig. 1). Following the formulation in Ref. 35,
the incident and transmitted fields into the ENZ
medium are E1 = E1(cos θi x̂ − sin θi ẑ)eik1·r, and E2 =
E1(cos θi/ cos θt )T0(cos θt x̂ − sin θt ẑ)eik2·r, where the trans-
mission coefficient T0 is defined as T0 = Ex2/Ex1, using the
transverse field components. Assuming Er

x1 is the x component
of the reflected field, the reflection coefficient is defined as
�0 = Er

x1/Ex1. Both �0(ε̂2,θi) and T0(ε̂2,θi) are functions of
ε̂2 and θi , and are given by

�0(ε̂2,θi) = kz2 − ε̂2kz1

kz2 + ε̂2kz1
T0(ε̂2,θi) = 2kz2

kz2 + ε̂2kz1
. (4)

The values of �0(ε̂2,θi), T0(ε̂2,θi), and of the z component
of the field Ez2 = −Ex2 tan θt are examined in what follows
under certain parameter and incidence conditions. For what
concerns the reflection coefficient in the general lossy case,
only two sets of parameters lead to total reflection [i.e.,
|�0(ε̂2,θi)| = 1]: (i) ε̂2 = 0 and θi �= 0, treated in Sec. V A1
and referred to as epsilon equal zero (EEZ) condition;

(ii) ε̂2 �= 0 and θi = θC
i , discussed in Sec. V A3 and referred

to as critical angle condition (CAC). If we limit the analysis to
the lossless case, then the sets of parameters that produce total
reflection may be summarized as follows:

ε̂2 < 0, θi �= 0 → |�| = 1,

ε̂2 = 0, θi �= 0 → � = 1,
(5)

ε̂2 > 0, θi = θC
i → � = −1,

ε̂2 > 0, θi > θC
i → |�| = 1.

The z component of the field evaluated at the boundary (z =
0+) may be also computed as Ez2 = Ez1/ε̂2, where Ez1 is the z

component of the total field in medium 1 (z = 0−), accounting
also for reflection. Three important limiting conditions are
investigated in Secs. V A1–3 stressing the enhancement of the
Ez2 field component.

1. Epsilon equal zero condition

The epsilon equal zero (EEZ) condition is defined by
ε̂2 = 0 for any θi �= 0, and it results in �0(0,θi) = 1 and
T0(0,θi) = 2. This condition thus leads to total reflection. Note
that since kz2 = k1

√
ε̂2 − sin2 θi , when ε̂2 → 0 one then has

kz2 → ik1 sin θi . The square-root sign satisfies the boundary
conditions at z → ∞,36 i.e., decaying amplitude for increasing
z. Indeed, given the expression for the field Ez2 in Sec. V A,
one observes that when performing the limit for ε̂2 → 0, Ez2

is given by

Ez2(x,z) = i2 cos θiE1e
k1 sin θi (ix−z). (6)

Expression (6) suggests that light propagation in the ENZ
medium is forbidden. Moreover, Ez2(x,z) → i2E1 when θi →
0, in contrast to what happens for a finite thickness slab
in Sec. V B. One may also look at the continuity of the
component of displacement field normal to the z = 0 boundary
Ez1 = ε̂2Ez2. This condition seems to suggest that Ez2 → ∞
as ε̂2 → 0. However, we note that at z = 0− one has that Ez1 =
−E1 sin θi[1 − �0(0,θi)] → 0 because [1 − �0(0,θi)] → 0 as
ε̂2, and the value of Ez2 at z = 0+ is obtained by a limiting
operation, leading to Eq. (6).

2. Total transmission condition

Total transmission condition (TTC) is defined by
�0(ε̂2,θi) = 0. The condition that leads to TTC is ε̂2 �= 0
and θi = θB

i so that �0(ε̂2,θ
B
i ) = 0 and T0(ε̂2,θ

B
i ) = 1. The

z component of the field Ez2 is

Ez2(x,z) = −E1
1√

ε̂2(1 + ε̂2)
eik1(

√
ε̂2

/√
1+ε̂2)(x+z

√
ε̂2), (7)

which in general is a wave traveling while decaying along
x and z. The field in Eq. (7) has an inverse dependence on
ε̂2, a relationship that is important for the attainment of large
field enhancement. If we now assume that ε̂2 → 0, Eq. (2)
imposes that θi = θB

i → 0 and Eq. (7) predicts infinite field
values, in contrast with Eq. (6). This apparent ambiguity on
the Ez2 value for (ε̂2,θi) → (0,0) critically depends on the path
selected on the (ε̂2,θi) space to approach (0,0). If ε̂2 → 0 at
the TTC, θi goes to 0 as arctan(

√
ε̂2). At z = 0− one has that

Ez1 = −E1 sin θB
i [1 − �0(ε̂2,θ

B
i )] = −E1 sin θB

i goes to 0 as
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√
ε̂2 so that, from the field continuity equation, Ez2 = Ez1/ε̂2

at z = 0+ goes to infinity as 1/
√

ε̂2, as shown in Eq. (7).

3. Critical angle condition

As mentioned at the beginning of Sec. V A, the critical angle
condition (CAC) occurs when ε̂2 �= 0 and θi = θC

i , leading
to �0(ε̂2,θ

C
i ) = −1 and T0(ε̂2,θ

C
i ) = 0. The transmission

coefficient goes to zero as cos θt in correspondence of the
critical angle, thus limθi→θC

i
T0(ε̂2,θi) = 2 cos θt/(cos θC

i

√
ε̂2).

This result is used to compute the z component of the electric
field in medium 2, given by

Ez2(x,z) = − 2√
ε̂2

E1e
ik1

√
ε̂2x, (8)

which in general represents a wave traveling while decaying
along x. Similarly to TTC, the field in Eq. (8) inversely
depends on ε̂2, thus emphasizing the importance of ENZ
capabilities of medium 2 for field enhancements. If we now
consider that ε̂2 → 0, Eq. (8) predicts an infinite value for
the field, in contrast to Eq. (6). Similarly to what happens at
the TTC, if ε̂2 → 0 at the CAC, θi goes to 0 as arcsin(

√
ε̂2).

At z = 0− one has that Ez1 = −E1 sin θC
i [1 − �0(ε̂2,θ

C
i )] =

−2E1 sin θC
i goes to 0 as

√
ε̂2, so that Ez2 = Ez1/ε̂2 at z = 0+

goes to infinity as 1/
√

ε̂2, as shown in Eq. (8).

4. Representative example 1: Analysis by varying
the permittivity of the ENZ slab

Suppose that now we have a TM-polarized plane wave
incident at θi = 20◦ at 400 THz. Transmission, reflection, and
the FIE calculated at z = 0+ as a function of the dielectric
contrast ranging in the interval −0.1 < ε̂2 < 0.3 are shown in
Fig. 10 (assuming ε1 = 1). When ε̂2 = 0, θi �= 0, �0(0,θi) =
1 and T0(0,θi) = 2 ≡ 6 dB, as predicted in Sec. V A1, and
FIE ≈ 3.5, as expected from Eq. (6). The CAC at θC

i = 20◦ is
verified when ε̂2 ≈ 0.117 [Eq. (1)], and |�0(ε̂2,θ

C
i )| = 1 and

T0(ε̂2,θ
C
i ) = 0, as predicted in Sec. V A3; interestingly, the

FIE peaks at θC
i (FIE ≈ 34) as dictated by Eq. (8). When ε̂2 ≈

0.1325 the TTC at the Brewster angle corresponds to θB
i = 20◦

[Eq. (2)], and one has �0(ε̂2,θ
B
i ) = 0 and T0(ε̂2,θ

B
i ) = 1, as

predicted in Sec. V A2; the FIE is about 6.6 as in Eq. (7). Note
also that in view of Eq. (5), when ε̂2 < 0 or 0 < ε̂2 < 0.117
(i.e., θi > θC

i ) the reflection coefficient has unit magnitude
because we are considering a lossless framework.

FIG. 10. (Color online) (a) Transmission and reflection, and
(b) the FIE computed at z = 0+ as a function of the dielectric
contrast ε̂2 assuming a TM-polarized plane wave incident at θi = 20◦

at 400 THz, in the case of the interface between two half spaces.

FIG. 11. (Color online) (a) Magnitude of reflection coefficient
and (b) the FIE computed at z = 0+ as a function of the incident
angle θi for different values of the dielectric contrast ε̂2, assuming
a TM-polarized plane wave incident at 400 THz, in the case of the
interface between two half spaces.

5. Representative example 2: Analysis by varying
the angle of incidence

To verify all the conditions in Eq. (5) in the lossless case,
we consider now a TM-polarized plane wave incident with
an angle in the range 0◦ < θi < 30◦ at 400 THz for the same
setup described in Fig. 10, for different values of the dielectric
constrast ε̂2 (ε1 = 1). In Fig. 11 we show reflection and the
FIE calculated at z = 0+ as a function of the incident angle
θi . When ε̂2 = −0.1, one observes |�0(ε̂2,θi)| = 1 for any
θi , and the FIE is quite limited. When ε̂2 = 0, one observes
�0(ε̂2,θi) = 1 for any θi , and the FIE follows a cos θi envelope
for θi �= 0◦ as dictated by Eq. (6). Finally, when ε̂2 = 0.117
(the same case as in Fig. 10 for which θC

i = 20◦) and
when ε̂2 = 0.05 (for which θC

i = 12.92◦), one observes that
|�0(ε̂2,θi)| = 1 for θi � θC

i ; we note that maximum FIE occurs
in correspondence of the critical angle, as observed in Fig. 10.
Notably, the smaller the parameter ε̂2 is, the larger the FIE will
be (Fig. 11), as previously mentioned in Secs. V A2 and V A3,
where we demonstrated the longitudinal field component to
have an inverse dependence on ε̂2 [Eqs. (7) and (8)]. The
dip in the reflection coefficient in Fig. 11 for the cases with
ε̂2 = 0.117 and ε̂2 = 0.05 is in correspondence of the Brewster
angles θB

i = 18.88◦ and θB
i = 12.6◦, respectively.

One may conclude that the CAC condition gives the
maximum longitudinal FIE for interfaces with ENZ media.
Indeed, referring to Eqs. (6)–(8) for z = 0+, one can ob-
serve that |EEEZ

z2 | = 2 cos θiE1, |ETTC
z2 | = (1/

√
ε̂2) sin θtE1 =

(1/ε̂2) sin θB
i E1, and |ECAC

z2 | = (2/
√

ε̂2)E1, which implies
|ETTC

z2 |,|ECAC
z2 | > |EEEZ

z2 | in the ENZ condition. If we
now analyze the ratio |ECAC

z2 |/|ETTC
z2 | in the ENZ condi-

tion then |ECAC
z2 |/|ETTC

z2 | = (2
√

ε̂2)/sinθB
i = 2

√
1 + ε̂2 ≈ 2,

which shows that the z component of the field at the CAC
condition is the largest. In summary, the physical properties of
the interface between two half spaces, one of which exhibits
near-zero permittivity, are highly dependent on the illumina-
tion incident angle and the value of the ENZ permittivity itself.

B. Finite thickness slab with ENZ properties

We now analyze a slab with finite thickness h (see Fig. 1).
In this case, the transmitted field is E3 = E1T (cos θi x̂ −
sin θi ẑ)eik3·r, with k3 = k1, and both reflection and transmis-
sion coefficients are functions of ε̂2 and θi . For simplicity
it is useful to define sh = sin(kz2h) and ch = cos(kz2h). The
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reflection and transmission coefficients are then given by35,36

�(ε̂2,θi) = −i
(
k2
z2 − k2

z1ε̂
2
2

)
sh

2kz1kz2ε̂2ch − i
(
k2
z2 + k2

z1ε̂
2
2

)
sh

,

(9)

T (ε̂2,θi) = 2kz1kz2ε̂2

2kz1kz2ε̂2ch − i
(
k2
z2 + k2

z1ε̂
2
2

)
sh

.

The field inside the slab may be expressed as a superposition
of forward and backward waves as

E2(x,z) = E1e
ik2x sin θt

cos θi

cos θt

[Af (cos θt x̂ − sin θt ẑ)eik2z cos θt

+Ab(cos θt x̂ + sin θt ẑ)e−ik2z cos θt ], (10)

where

Af = 1 − �0�

1 − �0
, Ab = � − �0

1 − �0
, (11)

with �0 as in Eq. (4) and � as in Eq. (9). Expressions
(9)–(11) will be used in some of the next subsections
to estimate the value of transmission, reflection and field
enhancement in correspondence of EEZ, TTC, and CAC
conditions.

1. Epsilon equal zero condition

The set of parameters that leads to EEZ is ε̂2 = 0 and θi �=
0 for which �(0,θi) = limε̂2→0 �(ε̂2,θi) = 1 and T (0,θi) =
limε̂2→0 T (ε̂2,θi) = 0. Looking at the expression of the z

component of the field Ez2 given in Eq. (10) one may observe
that when performing the limit for ε̂2 → 0, Ez2 is

Ez2(x,z) = −2 cos θiE1e
ik1x sin θi

cos[ik1 sin θi(z − h)]

sin(ik1h sin θi)
. (12)

Alternatively and similarly to what already described in
Sec. V A1, the condition at the z = 0 boundary Ez1 = ε̂2Ez2

seems to imply that the longitudinal component of the electric
field Ez2 inside the ENZ slab becomes singular when ε̂2 →
0. However, we note that at z = 0− one has that Ez1 =
−E1 sin θi[1 − �0(0,θi)] → 0 because [1 − �0(0,θi)] → 0 as
ε̂2, and the value of Ez2 at z = 0+ is obtained by a limiting
operation, leading to Eq. (12). The field in Eq. (12) is a function
of the thickness h and the incident angle θi , and tends to
infinity as either h or θi (or both) tends to zero, as it will be
shown next. This behavior is dramatically different from the
situation described for an interface between two half spaces in
Sec. V A1, where the field was limited as in Eq. (6). Under EEZ
conditions, evanescent waves are excited even for very small
incident angles above the critical angle. While for a single
interface evanescent waves only attenuate in the EEZ medium,
the presence of a second interface at z = h allows multiple
reflections of these waves that add in phase inside the EEZ slab
and lead to the singular behavior in Eq. (12). Indeed the field
in Eq. (12) is a superposition of two evanescent waves, rep-
resented by the term cos[ik1 sin θi(z − h)], whose amplitude
∝ 1/ sin(ik1h sin θi) is inversely proportional to both θi and h.
Moreover, we point out that Eq. (12) tends to Eq. (6) when h →
+∞, whereas at z = 0+ it can be rewritten as Ez2 = Ez1/ε̂2 =
2i cos θiE1e

ik1x sin θi coth(k1h sin θi). In the approximation of
small θi , it follows that Ez2 ∼ 2iE1e

ik1xθi /(k1hθi), whereas
for small h it is Ez2 ∼ 2i cos θiE1e

ik1x sin θi /(k1h sin θi). In

either case, we observe a singular FIE with respect to both
small thickness and small incident angle. This is a general
condition valid for ENZ slabs, and it means that if we
empirically assume that the slabs shown in Secs. III and
IV exhibit ε̂2 = 0 and are illuminated at θi ≈ 0◦, then Ez2

will be almost singular. Likewise, we predict that the same
singularity will occur even for an extremely thin EEZ slab,
i.e., h ≈ 0, illuminated at θi �= 0. A viable way to achieve a
very thin layer of EEZ metamaterial may involve the use of
transformation optics techniques in order to tailor the effective
optical properties of one-atom-thick materials, e.g., graphene,
by properly patterning its surface.37

2. Total transmission condition

The set of parameters that leads to TTC is θi = θB
i

and ε̂2 �= 0, for which �(ε̂2,θ
B
i ) = limθi→θB

i
�(ε̂2,θi) = 0

and T (ε̂2,θ
B
i ) = limθi→θB

i
T (ε̂2,θi) = eikz2h which implies that

|T (ε̂2,θ
B
i )| = 1 in the lossless case. The value of Ez2 is

obtained via Eq. (10) with θi = θB
i and ε̂2 �= 0, leading to

Ez2(x,z) = −E1
1√

ε̂2(1 + ε̂2)
eik1(

√
ε̂2

/√
1+ε̂2)(x+z

√
ε̂2). (13)

We stress that, for Brewster incidence, FIE is independent of
the slab thickness h due to the absence of any reflection from
the two interfaces, i.e., Af = 1 and Ab = 0 in Eq. (11), as can
be explicitly noted by looking at Eq. (13) [equal to Eq. (7) for
the two half space case to remark the thickness independence].
Moreover, the field in Eq. (13) depends inversely on ε̂2, thus
emphasizing the importance of ENZ capabilities of medium 2
for field enhancements. The same arguments regarding the
evaluation of Ez1 and Ez2 in the (ε̂2,θi) space detailed in
Sec. V A2, and the 1/

√
ε̂2 singular behavior, apply here.

3. Critical angle condition

The critical angle condition (CAC) is defined by ε̂2 �= 0 and
θi = θC

i , which implies that kz2 = 0. This leads to

�
(
ε̂2,θ

C
i

) = ihkz1ε̂2

−ihkz1ε̂2 + 2
,

(14)

T
(
ε̂2,θ

C
i

) = 2

−ihkz1ε̂2 + 2
.

It follows that |T (ε̂2,θ
C
i )| ≈ 1 and |�(ε̂2,θ

C
i )| ≈ 0 when

|ε̂2kz1h| � 2, which is likely to be satisfied when considering
ENZ slabs of subwavelength thickness. This result suggests
that light transmission at and above the critical angle for slabs
of ENZ media with finite thickness is mediated by tunneling4,5

of evanescent waves excited at the input interface via frustrated
total internal reflection.38 The low permittivity value of the slab
tends to merge the CAC and the TTC points, as mentioned
in Sec. II. The value of the z component of the field may be
obtained by using Eq. (10) with θi = θC

i and ε̂2 �= 0, leading to

Ez2(x,z) = E1
2ihk1

√
1 − ε̂2ε̂2 − 2

(−ihk1
√

1 − ε̂2ε̂2 + 2)
√

ε̂2
eik1

√
ε̂2x. (15)

Again, we note an inverse dependence on ε̂2 for the field in
Eq. (15), thus emphasizing the importance of ENZ capabilities
of medium 2 for field enhancements. We note that Eq. (15)
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FIG. 12. (Color online) (a) Magnitude of transmission and reflec-
tion coefficients and (b) the FIE computed at z = 0+ as a function
of the dielectric contrast ε̂2 assuming a TM-polarized plane wave
incident at θi = 15◦ at 400 THz. Slab thickness is h = 400 nm for
part (a). In part (b), FP indicates the location of the Fabry-Pérot
resonance when h = 2500 nm.

tends to Eq. (8) when h → +∞ and that arguments similar to
those used in Sec. V A3 regarding the evaluation of Ez1 and
Ez2, and the 1/

√
ε̂2 singular behavior, apply here.

4. Representative example 1: Analysis by varying
the permittivity of the ENZ slab

As an example, now suppose we have a TM-polarized plane
wave incident at θi = 15◦ at 400 THz on a slab with thickness
h = 400 nm. Transmission, reflection, and FIE computed at
z = 0+ are shown in Fig. 12 as a function of the dielectric
contrast in the interval −0.1 < ε̂2 < 0.1 (assuming ε1 = 1).
When ε̂2 = 0, �(0,θi) = 1 and T (0,θi) = 0, as predicted in
Sec. V B1. Moreover, the FIE is about 7.6 as dictated by the
limit in Eq. (12). When ε̂2 = 0.0718, the TTC at the Brewster
angle occurs at θB

i = 15◦ [Eq. (2)], so that �(ε̂2,θ
B
i ) = 0 and

|T (ε̂2,θ
B
i )| = 1, as described in Sec. V B2, and the FIE ≈ 13

as in Eq. (13). The CAC condition occurs at θC
i = 15◦ when

ε̂2 = 0.067 [Eq. (1)] and does not inhibit light transmission, as
discussed in Sec. V B3, leading to the FIE ≈ 15.4 [Eq. (15)].

However, the maximum FIE does not occur either at the
critical angle θC

i , or at the Brewster angle θB
i , but occurs at

θi > θC
i . Indeed, maximum FIE is obtained when ε̂2 = 0.0477,

for which the critical angle according to Eq. (1) is θC
i =

12.62◦ < θi = 15◦. This effect is due to the finite thickness
of the slab, which implies the presence of two interfaces
free space/ENZ and ENZ/free space. As shown in Fig. 12(b),
maximum FIE approaches the critical angle for increasing
slab thickness h, consistent with the semi-infinite space results
described in Sec. V A (Fig. 10). This result suggests that thick
ENZ slabs provide large FIE in proximity of the critical angle,
and proves that the CAC condition is important even for layers
of finite thickness. The FIE peak at ε̂2 ≈ 0.09 for the thicker
slab with h = 2500 nm [blue dashed-dotted curve in Fig. 12(b)]
is due to the first-order Fabry-Pérot resonance of the slab.
Therefore, one may boost nonlinear interactions by exciting
this kind of resonances in optically thick slabs, as reported
in Ref. 20 for second harmonic generation in hyperbolic, low
permittivity slabs. However, for isotropic ENZ slabs such as
those considered in the present paper, the FIE levels achieved
close to the CAC condition are much higher than that at the
Fabry-Pérot resonance, as displayed in Fig. 12(b) as well as
Figs. 7(d) and 7(f).

FIG. 13. (Color online) Magnitude of transmission and reflection
coefficients as a function of the incident angle θi for different values
of the dielectric contrast ε̂2, assuming a TM-polarized plane wave
incident at 400 THz. Slab thickness is h = 400 nm.

5. Representative example 2: Analysis by varying
the angle of incidence

A TM-polarized plane wave is incident with an angle in the
range 0◦ < θi < 20◦ at 400 THz. As before, we assume that
slab thickness is h = 400 nm and ε1 = 1. Transmission and
reflection coefficients are shown in Fig. 13 as a function of the
incident angle θi for different values of the dielectric contrast
ε̂2. When ε̂2 = 0.1, Eqs. (1) and (2) yield θB

i ≈ 17.55◦ and
θC
i = 18.44◦. Accordingly, the TTC at the Brewster angle θB

i

is verified, and �(ε̂2,θ
B
i ) = 0 and |T (ε̂2,θ

B
i )| = 1, as described

in Sec. V B2. Also the CAC at θC
i is verified, and |�(ε̂2,θ

C
i )| ≈

0 and |T (ε̂2,θ
C
i )| ≈ 1, as expected from Eq. (14). A similar

behavior occurs for ε̂2 = 0.01, although now Eqs. (1) and (2)
yield θB

i ≈ 5.71◦ and θC
i = 5.74◦, very close in value [almost

superimposed in Fig. 13(b)]. When ε̂2 = −0.1, Eqs. (1) and
(2) yield complex angles θB

i ≈ i18.76◦ and θC
i = i17.83◦. As

a result TTC and CAC cannot be observed for any angle of
incidence [Fig. 13(c)]. Indeed, analyzing the same situation
for complex angles of incidence, i.e., using inhomogeneous
waves, TTC and CAC take place [Fig. 13(d)].

FIG. 14. (Color online) The FIE computed at z = 0+ as a function
of the incident angle θi for the same cases analyzed in Fig. 13.
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FIG. 15. (Color online) (a) Magnitude of the absorption coeffi-
cient and (b) the FIE computed at z = 0+ as a function of the incident
angle θi for different values of ε̂2,i , assuming a TM-polarized plane
wave incident at 400 THz. The ENZ slab has ε̂2,r = 0 and thickness
h = 400 nm.

In Fig. 14 we show the FIE computed at z = 0+ as a
function of the incident angle θi for the same cases analyzed
in Fig. 13. The figure shows that the incident angle is pivotal
to achieve large FIE. Indeed, the curve that corresponds to
ε̂2 = 0.01 yields FIE ≈ 9.84 at θi = 15◦, in agreement with
the result shown in Fig. 12(b); the result in Fig. 14 also shows
that illuminating at θi ≈ 6.3◦ > θC

i = 5.74◦ instead of 15◦
as in Fig. 12 leads to FIE ≈ 110. This result motivates our
analyses in Secs. III and IV, where we showed color maps as
a function of both frequency and incident angle. Moreover,
when comparing the curves for various values of ε̂2, the FIE
angular band gets smaller as ε̂2 decreases.

6. Analysis of the effect of losses in ENZ slabs

We now estimate the effect of losses in the ENZ slab.
We assume a complex dielectric contrast ε̂2 = ε̂2,r + iε̂2,i for
the 400-nm-thick slab and we set ε̂2,r = 0 and ε1 = 1. The
absorption coefficient A and the FIE calculated at z = 0+
are plotted in Fig. 15 as a function of the incident angle for
four different values of ε̂2,i . We observe that (i) increasing
ε̂2,i increases the incident angle of both maximum absorption
and FIE; (ii) increasing ε̂2,i broadens the absorption and FIE
profiles in the angular domain; (iii) decreasing ε̂2,i dramatically
enhances the FIE inside the slab, proving our predictions of
Eq. (12) in Sec. V B1.

VI. DISCUSSION: CORRELATION BETWEEN THEORY
AND NUMERICAL RESULTS IN CASE

OF GAIN-ASSISTED ENZ SLABS

The result in Fig. 15 justifies and supports the use of
gain-assisted metamaterial ENZ slabs discussed in Sec. IV,
which provided super-field enhancement capabilities. We now
have all the tools in place to explain the exotic behavior
observed in Fig. 8. We first consider the asymmetric behavior
of the transmission coefficient for slab 1 shown in Fig. 8(a). The
fact that the value of the slab permittivity varies with frequency
(Fig. 2) under oblique incidence at a fixed angle θi resembles
the simpler theoretical analysis shown in Fig. 12. In par-
ticular, the dielectric contrast is ε̂2 ≈ (1.34 + i3.35) × 10−3

[ε2 ≈ (3.01 + i7.54) × 10−3] atf ≈ 523 THz. Under these
circumstances, Eqs. (1) and (2) yield θB

i ≈ θC
i = 2.85◦ +

i1.9◦. This value is quite different from the incident angle
θi = 6◦ (i.e., about the angle for which the FIE is maximized;

refer to Fig. 7), thus the metamaterial is experiencing an
EEZ-like condition because ε2 ≈ 0 and θi �= 0◦, for which
|T (0,θi)| = 0 and |�(0,θi)| = 1, as shown in Sec. V B1. At
f ≈ 523.7 THz, instead, ε̂2 ≈ (11.1 + i2.8) × 10−3 [ε2 ≈
(25 + i6.3) × 10−3]. For this value Eqs. (1) and (2) yield
θB
i ≈ θC

i = 6.1◦ + i0.75◦, similar to θi = 6◦. Thus, losses
are low enough to allow TTC/CAC-like conditions to occur,
the transmission |T (ε̂2,θ

B,C
i )| to peak, and the reflection

|�(ε̂2,θ
B,C
i )| to drop even for an incident homogeneous plane

wave.
A similar explanation can be provided for slab 2 in Fig. 8(b).

The slab dielectric contrast is ε̂2 ≈ (1.63 + i0.47) × 10−3

[ε2 ≈ (3.659 + i1.056) × 10−3] at f ≈ 421.8 THz. For these
conditions Eqs. (1) and (2) yield θB

i ≈ θC
i = 2.33◦ + i0.33◦.

This value is different from the incident angle θi = 3◦ (i.e.,
about the angle for which the FIE is maximized; refer to
Fig. 7), thus the metamaterial is experiencing an EEZ-like
condition because ε2 ≈ 0 and θi �= 0◦, for which |T (0,θi)| = 0
and |�(0,θi)| = 1. Atf ≈ 421.85 THz, instead, ε̂2 ≈ (2.89 +
i0.4) × 10−3 [ε2 ≈ (6.5 + i0.9) × 10−3], which leads to θB

i ≈
θC
i = 3.09◦ + i0.2◦, close to θi = 3◦. Losses are thus low

enough to allow TTC/CAC-like conditions to take place. In this
case, however, a smaller effective permittivity imaginary part
now leads to |T (ε̂2,θ

B,C
i )| closer to 1 and |�(ε̂2,θ

B,C
i )| closer

to 0 than the correspondent curves of the case in Fig. 8(a).
In summary, the presence of EEZ, TTC, and CAC condi-

tions leads to the peculiar behavior of the linear properties
of the metamaterial slabs discussed in Sec. IV, inducing
an absorption peak and, more importantly, a large boost
of the electric field inside the slab. Although the gain-
assisted tunneling we have discussed is extremely selective
in both angular and frequency domains and its spectral shape
resembles a Fano-like resonance typical of systems with
electromagnetic-induced transparency, we point out that this
tunneling effect has a nonresonant nature. The selectivity is due
to the simultaneous presence of a Brewster-like condition at
the interface, the zero-crossing point of the slab permittivity’s
real part, and the damping compensation provided by the gain
medium.

VII. CONCLUSION AND FINAL REMARKS

We have investigated transmission, reflection, and ab-
sorption coefficients, as well as local field enhancement, in
subwavelength ENZ slabs illuminated by TM-polarized plane
waves. We have analyzed various configurations, including
metamaterial implementations, without and with the intro-
duction of gain in the system. While the former is strictly
dependent on material properties, the latter leads to super-field
enhancement in a very narrow frequency band and for specific
incident angles. Our study thus shows how control of the
slab permittivity enables the field to take on very large
values and thus improve applications where large fields are
required. We have demonstrated that the FIE in the case of
a single interface may assume large values at the critical
angle and is singular only under TTC and CAC conditions.
A finite thickness, subwavelength ENZ slab may also exhibit
very large FIE values: besides a singularity similar to the
single interface case at TTC and CAC conditions, FIE is

035120-10



ELECTRIC FIELD ENHANCEMENT IN ε-NEAR- . . . PHYSICAL REVIEW B 87, 035120 (2013)

singular also in the limit for vanishing permittivity ε̂2 and
vanishing incident angle that, however, has to be larger than
the critical angle (also vanishing), as predicted by Eq. (12).
Interestingly, the finite subwavelength thickness of the ENZ
slab helps in establishing a FIE enhancement. Moreover,
we predict that if damping is virtually compensated [i.e., if
Im(ε̂2) ≈ 0] near the zero-crossing point of the real part of
the effective permittivity, any increases in field enhancement
may be exploited to significantly lower the threshold of
nonlinear processes, such as optical switching and bistability,
and dramatically increase the frequency conversion efficiency

in devices for the generation of coherent light sources in the
UV and extreme UV.
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A. Alù, Phys. Rev. B 85, 045129 (2012).
18A. Ciattoni, C. Rizza, and E. Palange, Phys. Rev. A 81, 043839

(2010).

19M. A. Vincenti, D. de Ceglia, A. Ciattoni, and M. Scalora, Phys.
Rev. A 84, 063826 (2011).

20A. Ciattoni and E. Spinozzi, Phys. Rev. A 85, 043806 (2012).
21J. A. Gordon and R. W. Ziolkowski, Opt. Express 15, 2622 (2007).
22J. A. Gordon and R. W. Ziolkowski, Opt. Express 16, 6692

(2008).
23S. Campione, M. Albani, and F. Capolino, Opt. Mater. Express 1,

1077 (2011).
24S. Campione and F. Capolino, Nanotechnology 23, 235703 (2012).
25A. Ciattoni, R. Marinelli, C. Rizza, and E. Palange, Appl. Phys. B

(2012), doi:10.1007/s00340-012-5245-9.
26P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
27P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and

A. Boltasseva, Laser Photon. Rev. 4, 795 (2010).
28G. V. Naik, J. Kim, and A. Boltasseva, Opt. Mater. Express 1, 1090

(2011).
29A. Boltasseva and H. A. Atwater, Science 331, 290 (2011).
30G. Ohman, IEEE Trans. Antennas Propag. 25, 903 (1977).
31S. P. F. Humphreys-Owen, Proc. Phys. Soc. 77, 949 (1961).
32S. Campione, S. Steshenko, M. Albani, and F. Capolino, Opt.

Express 19, 26027 (2011).
33E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar,

J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt,
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