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Noncollinear density functional theory having proper invariance and local torque properties
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Noncollinear spins are among the most interesting features of magnetic materials, and their accurate description
is a central goal of density functional theory applied to periodic solids. However, these calculations typically yield
a magnetization vector that is everywhere parallel to the exchange-correlation magnetic field. No meaningful
description of spin dynamics can emerge from a functional constrained to have vanishing local magnetic torque.
In this contribution we present a generalization to periodic systems of the extension of exchange-correlation
functionals to the noncollinear regime, proposed by Scalmani and Frisch [J. Chem. Theory Comput. 8, 2193
(2012)]. This extension does afford a nonvanishing local magnetic torque and is free of numerical instabilities.
As illustrative examples, we discuss frustrated triangular and kagome lattices evaluated with various density
functionals, including screened hybrid functionals.
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I. INTRODUCTION

The significance of density functional theory (DFT) in
condensed-matter physics and quantum chemistry cannot be
overstated. Its low computational cost, combined with increas-
ingly accurate approximations to the exchange-correlation
energy, constitute a powerful theoretical tool. The currently
available functionals, although very successful in predicting
the electronic structure of matter, are not yet general enough
to be applicable for large classes of phenomena. One partic-
ular limitation of DFT is connected with the specific way
the exchange-correlation (XC) functionals are constructed,
namely, within the spin-polarized formalism.1,2 In this ap-
proach, the dependence of the energy on the spin magnetization
is introduced by an external magnetic field of vanishing
magnitude, aligned along what, by convention, we call the
z axis of spin quantization. Therefore, the density functionals
depend solely on the total density n and the z component (i.e.,
the magnitude) of the magnetization vector, or, equivalently,
the spin-up and spin-down densities, n↑ and n↓:

E[n, �m] → E[n,mz] ≡ E[n↑,n↓].

Even though collinear spin-polarized DFT (SDFT) suffices to
describe many magnetic systems, this approximation cannot be
applied in the case where the direction of the local magnetiza-
tion is not constrained to a particular axis but can vary over the
space. This type of behavior is known and has been observed in,
for example, bulk γ -Fe, geometrically spin-frustrated lattices
as jarosites, halogen salts of erbium, and surfaces.3–10

The nontrivial problem of going beyond collinear SDFT
to account for spin noncollinearity has been of much recent
concern. Even though the extension can be formally derived in
terms of the total density and the full magnetization vector,11

this approach has not yet directly benefited from the knowledge
and experience accrued in the development of collinear SDFT
functionals. The most common approach is to retain the

form of the existing density functional approximations but to
modify the basic ingredients of the theory. The spin densities
are transformed to alternative quantities which carry the
information about the magnetization. In other words, E[n, �m]
becomes E[n+,n−]. This approach was pioneered by Kübler
et al.12 for the local spin-density approximation (LSDA),1

where the total spin density n̄ = 1/2(nσ0 + �m · �σ ) at given
point in space is brought to diagonal form by a unitary
transformation,

n̄(�r) = 1

2

(
n(�r) + mz(�r) mx(�r) − imy(�r)

mx(�r) + imy(�r) n(�r) − mz(�r)

)

→
(

n+(�r) 0
0 n−(�r)

)
, (1)

which corresponds to finding a local reference frame where the
magnetization is aligned along the z axis of spin quantization.
The eigenvalues of the above matrix then take the place of spin
densities and are 1/2(n ± | �m|) = n±.

The extension of this formalism to more sophisticated
density functional approximations has been reported by
several authors. These approximations include the generalized
gradient approximations (GGAs),13 meta-GGAs, and hybrid
functionals.14,15 However, many of these extensions that
directly rely on the local reference frame for density derivatives
can suffer from numerical instabilities14,16 or lead to an
exchange-correlation magnetic field that is always parallel to
the magnetization.14 The exchange-correlation magnetic field
is a functional derivative of the exchange-correlation energy
with respect to the magnetization,

�Bxc(�r) = δE[n, �m]

δ �m(�r)
. (2)

It is clear that this field cannot exert a global torque on the mag-
netization; hence it satisfies the zero torque theorem (ZTT).17

However, �m × �Bxc does not have to vanish identically at every
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point in space. On the contrary, it has been shown that this local
contribution plays a crucial role in describing spin dynamics. It
has been pointed out that within the adiabatic approximation
to time-dependent DFT, the density functionals that do not
afford nonzero exchange-correlation torque cannot properly
describe the time evolution of the magnetization.18 Therefore,
an extension of collinear SDFT to noncollinear DFT that
satisfies the ZTT locally (by constraining �Bxc to be collinear
to the magnetization) is not useful for such applications.

Recently, an extension of collinear SDFT was proposed by
two of the present authors.16 This approach not only is readily
applicable to any existing functional including GGAs and
meta-GGAs but also is free of the aforementioned collinearity
constraint. Moreover, it does not suffer from the numerical
instabilities that proved to be problematic in our previous
formulation of noncollinear DFT.14

The purpose of this work is to provide a generalization
of our formalism for periodic systems. It is well established
that many properties of solids, such as band gaps and lattice
parameters, are much more accurate when described in terms
of screened hybrid functionals.19–24 We thus describe here
an extension of general spin-polarized exchange-correlation
functionals that depend on nonlocal Hartree-Fock-type (exact)
exchange to the noncollinear regime. As in previous work, we
adopt a generalized Kohn-Sham (KS) approach25–28 which is
computationally more feasible than the optimized effective
potential scheme reported in the literature18 and does not
suffer from discretization problems when used in connection
with Gaussian orbitals.29 Additionally, exact exchange is not
constrained by any variable transformation, and hence its
contribution, the exchange-correlation magnetic field, does not
suffer problems connected to generalization of the DFT part.
Therefore our formalism seems to be well suited for hybrid
functionals. Furthermore, we provide a simple implementation
scheme that allows us to extend Gaussian orbital-based
collinear SDFT codes to the noncollinear regime. Noncollinear
DFT requires a two-component treatment; thus our formalism
can be combined with relativistic schemes going beyond scalar
effects. In particular, vector spin-orbit effects can be easily
included. Finally, we apply our approach to spin-frustrated
lattices. We explicitly show that our formalism does not lead
to locally vanishing exchange-correlation magnetic torque.
Therefore we provide examples of Gaussian orbital-based
noncollinear DFT self-consistent calculations of extended
systems.

II. THEORY AND IMPLEMENTATION

A. Basic quantities

In order to allow for noncollinearity in Kohn-Sham DFT
(KS-DFT), we start by expressing the nth crystalline orbital as
a two-component spinor (x denotes spin and space coordinate),

ψ
�k
n(x) =

(
ψα,�k

n (�r)

ψ
β,�k
n (�r)

)
,

where ψσ,�k
n (�r) are expanded in terms of Bloch functions,

ψσ,�k
n (�r) =

∑
ν

cσ �k
μnφ̃

�k
μ(�r),

and

φ̃
�k
μ(�r) = 1√

N

∑
�L

ei�k· �Lφ
�L
μ(�r),

where �L is a vector pointing to the Lth (out of N ) cell and
φ

�L
μ(�r) = φμ(�r − �L) is the μth atomic orbital in this cell (we

assume it to be a real function in what follows). The single-
particle density matrix takes the following block structure (the
sum over the band index should be understood as a sum over
occupied bands):

γ (x,x ′) =
∑

�k

∑
n

ψ
�k
n(x)ψ

�k†
n (x ′) =

(
γ αα(�r,�r ′) γ αβ(�r,�r ′)
γ βα(�r,�r ′) γ ββ(�r,�r ′)

)
.

Henceforth, we will drop the dependence on the electronic
coordinate for brevity of notation, unless it could lead to
confusion. As usual, n = trσ [γ ], where the trace is to be
understood in the spin space. Similarly (�σ denotes the vector
of Pauli matrices),

�m = trσ [�σ · γ ] =
⎛
⎝ γ αβ + γ βα

i[γ αβ − γ βα]
γ αα − γ ββ

⎞
⎠ =

⎛
⎝mx

my

mz

⎞
⎠. (3)

Each block of the density matrix has the following represen-
tation in terms of Bloch functions (z̄ denotes the complex
conjugate of z):

γ σσ ′ = 1

N

∑
�L �L ′

∑
μν

φ
�L
μφ

�L ′
ν

∑
�k

ei�k·( �L− �L′)
∑

n

cσ �k
μnc̄

σ ′ �k
νn

=
∑
�L �L ′

∑
μν

[
P σσ ′

μν

] �L �L ′
φ

�L
μφ

�L ′
ν , (4)

which defines [P σσ ′
μν ] �L �L ′

,

[
P σσ ′

μν

] �L �L ′ = 1

N

∑
�k

∑
n

cσ �k
μnc̄

σ ′ �k
νn ei�k·( �L−�L ′).

As usual, the summation over the Brillouin zone can be
approximated with an integral. The density matrix naturally
takes the following spin structure:

(
Pαα Pαβ

Pβα Pββ

) �L �L ′

. (5)

The periodic symmetry and the Hermiticity of the infinite
real-space density matrix implies that (P �L �L ′

)† = P �L ′ �L. Hence,

(
(Pαα)† (Pβα)†

(Pαβ)† (Pββ)†

) �L �L ′

=
(

Pαα Pαβ

Pβα Pββ

) �L ′ �L
. (6)

It is clear that the information encoded in the full P �L �L ′
is

redundant. Therefore, we perform the standard decomposition
of an arbitrary matrix into its Hermitian and anti-Hermitian
components, which later on can be further separated into real
symmetric (RS), imaginary symmetric (IS), real antisymmet-
ric (RA), and imaginary antisymmetric (IA) contributions.
We propose here the following way of carrying out this
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decomposition for periodic systems:[
Pσσ ′

RS

] �L �L ′ = 1
2 [Re(Pσσ ′ + Pσ ′σ )] �L �L ′

(7)

[
Pσσ ′

IA

] �L �L′ = 1
2 [Im(Pσσ ′ + Pσ ′σ )] �L �L ′

. (8)

Analogously, the RA and IS components are obtained by
taking the difference in the equations above. We note that
the symmetry or antisymmetry property of the above matrices
should be understood in the sense that

P
�L �L ′

νμ = ±P
�L ′ �L

μν ,

which can be readily verified using Eq. (6). Clearly, the same
spin RA and IS blocks of density matrices vanish identically.
Note that this decomposition allows one to limit the amount
of data stored not only for the density matrix but also for each
Hermitian matrix that obeys a relation analogous to Eq. (6). For
instance, one only needs to construct the decomposition for,
say, Pαβ for given vectors �L and �L ′. The corresponding block
Pβα can be always obtained for the cell �L ′ and �L. Therefore,
a set of only eight real matrices of dimension N suffices
to reconstruct the full real-space complex density matrix of
dimension 2N .

B. Effective single-particle equations

Using the standard decomposition of the total energy in the
KS scheme, the total energy per unit cell E can be written as

E = ET + EN + EJ + Exc + ESD, (9)

where ET is the kinetic energy, EN is the electron-nuclei
attraction and nuclei-nuclei repulsion energy, EJ is the
classical Coulomb interaction of the electron density, and
the exchange-correlation energy Exc includes the quantum
corrections. The last term describes the energy arising from
additional spin-dependent interactions, for example, spin-orbit
coupling. Variation of the energy expression with respect to
crystalline orbitals leads to the following KS equations:

(t̂ + v̂N + ĵ + v̂xc + ĥSD)ψ
�k
n(x) = εkψ

�k
n(x), (10)

where t = − 1
2∇2.

The kinetic energy, together with the Coulombic part of the
potential, v̂N + ĵ , is diagonal in spin space. Namely,

t̂ + v̂N + ĵ

= σ0

(
−1

2
∇2 −

∑
A

Za

|�r − �RA| +
∫

d�r ′ n(�r ′)
|�r − �r ′|

)
, (11)

where A labels the atoms in the crystal and σ0 is the 2 × 2
identity matrix. Whereas the kinetic energy integrals require
no modification of the one-component code, the Coulombic
part can be easily computed by providing the one-component
routines with few P σσ matrices. Restricting ourselves to a
real Gaussian basis set, only the real symmetric part of these
matrices must be used, which is clear from the symmetry of
the two electron integrals. As usual, care must be taken when
evaluating formally divergent terms in the Coulomb sums. In
the present work we have used the Gaussian fast multipole
method as presented by Kudin et al.30–32

Now, let us turn our attention to the exchange-correlation
part. As mentioned in the Introduction, we wish to consider

general XC approximations that contain a portion of exact
(nonlocal) HF-type exchange. Therefore, we write

v̂xc = aK̂ + (1 − a)v̂DFT
x + v̂DFT

c ,

where K̂ is the Fock exchange operator and a is a mixing
parameter. The underlying interaction does not have to
correspond, however, to the bare Coulomb potential but can
take, for instance, a screened (short-range) or a middle-range
interaction.33 Including all of the above in an operator V̂eff , we
write

K̂ψ
�k
n(x) = −

∑
�k ′

∑
m

∫
d �x ′ψ �k ′

m (x)V̂effψ
�k ′†
m (x ′)ψ �k

n(x ′)

= −
∫

dx ′V̂effγ (x,x ′)ψ �k
n (x ′). (12)

Expanding the two-component spinors in terms of the localized
atomic orbitals, one easily finds that the matrix representation
of the exchange operator takes a spin-blocked form analogous
to the density matrix,

K �L �L ′ =
(

Kαα Kαβ

Kβα Kββ

) �L �L ′

,

where[
Kσσ ′

μν

] �L �L ′ =
∑
λκ

∑
�H �H ′

[
P σσ ′

λκ

] �H �H ′ 〈μ �Lκ
�H ′ |λ �Hν

�L ′ 〉.

In order to perform the exchange integral contraction with
minimal modification of our existing single-component pe-
riodic code, we use the decomposition of the density matrix
established in the previous section. Each portion is a real matrix
whose size is the same as in the single-component case. It is
thus sufficient to contract the two electron integrals with each
block of P. Now, reversing the transformation of Eq. (7) allows
us to reconstruct the full K matrix.

Finally, let us discuss the pure density functional part of
the exchange-correlation energy. As mentioned in the Intro-
duction, the extension of collinear SDFT to the noncollinear
regime relies on the transformation of variables. Namely, a set
of variables (denoted with subscript + and −) is obtained from
the total density and magnetization vector and their gradients,

{n, �m} → {n±,γ±,γmix,τ±,∇2n±},
where γ± mimics the modulus square of the gradient of spin-up
and -down densities, γmix is the cross term, τ± substitutes the
kinetic-energy density, and ∇2n± substitutes the Laplacian. It
should be understood that such a variable transformation is
not unique. Nonetheless, we believe that the particular trans-
formation introduced in Ref. 16 and employed here satisfies
many important requirements: (i) it does not constrain the
relative orientation of magnetization and exchange-correlation
field, thereby allowing for a nonvanishing local magnetic
torque while satisfying the global zero torque theorem,17

(ii) both the XC energy and the intermediate variables are
invariant with respect to spin rotations, (iii) a vanishingly
small magnitude of the magnetization vector does not lead
to numerical instabilities, and (iv) the proper collinear limit is
recovered as all the spins align with respect to any arbitrary
spin-quantization axis.
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For completeness, we present below these transformations
explicitly:

n± = 1

2
[n ±

√
�m ◦ �m], (13)

γ± = 1

4
[∇n · ∇n + ∇ �m ◦ ·∇ �m]

±f∇
2

√
(∇n · ∇ �m) ◦ (∇n · ∇ �m), (14)

γmix = 1

4
[∇n · ∇n − ∇ �m ◦ ·∇ �m], (15)

with ◦ (·) denoting a scalar product in spin (real) space and
f∇ = sgn(∇n · ∇ �m ◦ �m), with sgn being the signum function.
The meta-GGA components are generalized as

τ± = 1
2 [τ ± fτ

√�u ◦ �u], (16)

∇2n± = 1
2 [∇2n ± f∇2

√
∇2 �m ◦ ∇2 �m], (17)

with fτ = sgn(�u ◦ �m) and f∇2 = sgn(∇2 �m ◦ �m). The vector
�u is obtained by replacing γ by 1/2∇�r · ∇�r ′γ (�r,�r ′)|�r=�r ′ in
Eq. (3).

The extension of the one-component code is therefore
straightforward. Translating Eq. (3) into the localized Gaussian
basis, we construct

n(�r) =
∑
μν

∑
�L �L ′

(
Pαα

RS + Pββ

RS

) �L �L ′
μν μ

�L(�r)ν
�L ′

(�r),

mx(�r) = 2
∑
μν

∑
�L �L ′

(
Pαβ

RS

) �L �L ′
μν μ

�L(�r)ν
�L ′

(�r),

(18)
my(�r) = 2

∑
μν

∑
�L �L ′

(
Pαβ

IS

) �L �L ′
μν μ

�L(�r)ν
�L ′

(�r),

mz(�r) =
∑
μν

∑
�L �L ′

(
Pαα

RS − Pββ

RS

) �L �L ′
μν μ

�L(�r)ν
�L ′

(�r).

Again, we have used the fact that we work with real atomic
orbitals as the underlying basis. Furthermore, by tracing the
above combination of density matrices with the gradients
of basis functions, we can construct the gradient of the
magnetization and higher derivatives in the usual way. The
DFT contribution to the Fock matrix can now be explicitly
formed by taking the derivatives of the exchange-correlation
energy with respect to the density matrix,25 with functional
derivatives with respect to ± variables changed into derivatives
with respect to n and �m via the chain rule. Namely, the
functional derivative with respect to, say, my is used just as
in the one-component code to obtain the contributions to the
imaginary symmetric block of the Fock matrix. This step takes
place in the numerical quadrature and requires only minor
modifications to the existing subroutines.

C. Analysis and visualization of the magnetization
and the exchange-correlation magnetic field

The visualization of the magnetization vector field �m(�r)
does not raise any particular issue since it is sufficient to use
Eqs. (18) to map �m(�r) over any selected region of space.

The situation is different for �Bxc(�r). In our implementation
of the KS equations, we do not construct explicit functional

derivatives of the energy with respect to the electron density.
Instead, as mentioned in the Introduction, we take variations
with respect to the one-particle density matrix. Therefore, in
order to evaluate (and visualize) �Bxc(�r) we actually performed
the integration by parts25 required to express the XC magnetic
field as a local function involving only derivatives with respect
to the magnetization density (18), leading to

�Bxc = δExc

δ �m = ∂f

∂n+

∂n+
∂ �m + ∂f

∂n−

∂n−
∂ �m − ∇ ·

(
∂f

∂γ+

∂γ+
∂∇ �m

+ ∂f

∂γ−

∂γ−
∂∇ �m + ∂f

∂γmix

∂γmix

∂∇ �m
)

, (19)

where f is the density functional. The above expression
is significantly more complex than what it is required
to variationally minimize the energy with respect to the
one-particle density matrix (5). In fact, it involves second
derivatives of the functional and the full second derivatives
of the magnetization densities (18). Moreover, in the case of a
meta-GGA functional, the same integration by parts does not
allow us to express the direct dependence of the energy on the
kinetic-energy density (16) as a derivative with respect to �m.
Therefore, Eq. (19) cannot be extended to meta-GGA. It also
cannot be extended to hybrid functionals because the exact
exchange is nonlocal in nature.

In addition to the ability of visualizing �m(�r) and �Bxc(�r),
another important interpretation tool for noncollinear DFT
solutions is the partitioning of the total magnetization into
atomic contributions. In the present work, we employ an
extension of the Hirshfeld population analysis34 to periodic
systems. This approach, originally derived for calculating
atomic charges, relies on the idea of describing the difference
between nonbonded atoms and molecules. This analysis can
be extended to other continuous variables as it partitions space
into single atomic regions. In other words, in this scheme one
defines a “procrystal” density that is composed of spherically
averaged ground-state densities of the atoms of the crystal ñ,

npro(�r) =
∑

�L

∑
A

ñA(�r − �L),

where we split the summation over the unit cell replicas and
atoms in the unit cell. We also define the sharing function ũA,

ũ
�L
A(�r) = ũA(�r − �L) = ñA(�r − �L)

npro(�r)
.

An integrated value Q of a given continuous quantity q(�r) can
be therefore expressed as (u.c. denotes unit cell),

Q =
∫

u.c.

d�r q(�r) =
∑
A

∑
�L

∫
u.c.

d�r q(�r)ũ
�L
A(�r).

Using the periodic symmetries of the quantity of interest and
the sharing function, we change the integral over the unit cell
to an integral over the whole space. Then,

Q =
∑
A

[ ∫
d�r q(�r)ũ

�0
A(�r)

]
=

∑
A

QA,

where the sharing function is now centered in unit cell 0.
This partitions the quantity Q into atomic components QA.
In the actual calculation we also introduce the standard DFT
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integration weights.35 We applied the Becke weights modified
by Stratmann et al.36

III. RESULTS AND DISCUSSION

A. Computational details

As a prototypical application of our methodology, we
have studied two-dimensional spin-frustrated lattice models
with chromium atoms at the nodes. The distance between
individual atoms corresponds to the interatomic separation
of the Ag(111) surface.37 We have adopted this specific
geometry following Ref. 18. For each lattice, we have carried
out calculations employing a representative functional from
each class of commonly used DFT approximations. For the
local ones, we have used the LSDA with Dirac exchange and
the Vosko, Wilk, and Nusair parametrization of correlation
(SVWN5).38 As a model GGA functional we have chosen the
Perdew-Burke-Ernzerhof (PBE)39 functional. For the meta-
GGA we have chosen the Tao-Perdew-Staroverov-Scuseria
(TPSS)40 functional. From the hybrid functionals, we have
employed two range-separated models, the Heyd-Scuseria-
Ernzerhof (HSE)19,20 and the Henderson-Izmaylov-Scuseria-
Savin (HISS).33 The former separates the exchange operator
into short and long ranges, whereas the latter additionally
introduces a middle range. We should stress at this point that
our approach is readily applicable to any functional belonging
to any of the above classes.

Even though our implementation supports spin-orbit cou-
pling terms via relativistic core potentials, we have not
included them in the present calculations. Instead, we have re-
stricted ourselves to scalar-relativistic effective core potentials,
substituting the Ne core of Dolg et al.41 We have adapted the
corresponding basis set to periodic calculations by removing
basis functions with exponents below 0.095 bohr−2. We have

y

x

FIG. 1. (Color online) The structure of the triangular Cr lattice.
The blue points represent the magnetic unit cell employed in the
calculations. The dark blue arrows present the converged magnetiza-
tion obtained with the HSE functional, partitioned according to the
Hirshfeld scheme. Additionally, the translation vectors are presented
(green arrows).

TABLE I. The calculated net magnetic moments of chromium
atoms (in μB ) for the lattices considered in this work.

Functional

LSDA PBE TPSS HSE HISS

Triangular 2.11 2.15 2.18 2.26 2.15
Kagome �q = 0 2.25 2.29 2.32 2.37 2.28
Kagome

√
3 × √

3 2.27 2.31 2.33 2.39 2.30

also neglected the g functions. All calculations were carried
out using the GAUSSIAN suite of programs.42 The default (tight)
GAUSSIAN convergence criteria, which correspond to a conver-
gence of at least 10−7 on the root-mean-square of the density
matrix, has been used. The DFT numerical quadrature has
been set to a pruned grid of 225 radial points and 974 angular
points. The reciprocal space was sampled with 2116 points.

B. Triangular lattice

The first lattice that we have studied is a triangular
one. It is known18 that this system exhibits a noncollinear
antiferromagnetic Néel state, where the magnetization around
each of the lattice points in the magnetic unit cell is oriented at
an angle of 2π/3 with respect to each point. Not surprisingly,
each of the tested functionals properly identified this state.
We have observed good agreement between the ideal and
computed angles between the atomic magnetization vectors.
The geometry of the lattice is shown in Fig. 1.

Despite this qualitative agreement, the total value of
the magnetization divided into atomic contributions reveals
quantitative differences. The results are presented in Table I.
We have observed that the total magnetic moment increases as
one climbs Jacob’s ladder of functionals,43 with the exception
of the HISS functional, which predicts the norm of the
magnetization to be very similar to the PBE value. We note
that the magnetic moment of the chromium atom obtained with

FIG. 2. (Color online) The directions of the magnetization (red
arrows) and the exchange-correlation magnetic field (blue arrows)
obtained with the PBE functional. The color map depicts the
magnitude (in atomic units) of �m × �Bxc in the direction perpendicular
to the Cr surface. The black points indicate the actual magnetic unit
cell used in the calculations.
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FIG. 3. (Color online) The structure of the kagome �q = 0 lattices
of the (left) positive and (right) negative chiralities. The blue points
represent the actual magnetic unit cell used in the calculations, with
arrows representing the converged magnetization obtained with the
HISS functional partitioned according to the Hirshfeld scheme. For
the clarity of the picture, the magnetization for the negative chirality
has been rotated to stress the difference to the left panel. Additionally,
the translation vectors are presented (green arrows).

LSDA, 2.11μB , is in fairly good agreement with the value of
2.0μB reported by Sharma et al.18

Now let us turn our attention to the key point of the present
work, namely, abandoning the collinearity constraint between
the local magnetization vector and the exchange-correlation
magnetic field. Even though our formalism does not impose
such a constraint on any of the functionals (except LSDA,
where it naturally arises), we shall discuss this point only using
pure GGA examples for the reason mentioned in Sec. II C.
However, let us stress that exact exchange is fully nonlocal
and unconstrained; therefore the problem of locally vanishing
magnetic torque, �m × �Bxc, does not apply for the Hartree-Fock
part of hybrid functionals. Additionally, calculations carried
out within the optimized effective potential, where the local
representation of the exchange-correlation magnetic field is
accessible for exact exchange, have shown a nonvanishing
local torque between �m and �Bxc.18

In Fig. 2 we present the local distribution of the afore-
mentioned quantities obtained with the PBE functional. In
the present work, we do not reverse the orientation of �Bxc

with respect to �m, as we have done in Ref. 16. In analogy to
previous studies,14,18 we find that the magnetization tends to
be highly collinear in the core region, with rather strongly
accented boundaries where it changes orientation. These

boundaries coincide with the domains where the calculated
exchange-correlation magnetic field deviates the most from
the collinear alignment with respect to �m. It is clear that the
exchange-correlation magnetic torque is non-negligible and
exhibits rich structure. This, obviously, cannot be captured by
previous generalizations of GGA functionals to noncollinear
SDFT, in which �Bxc was still constrained to be parallel to �m
everywhere.13–15

C. Kagome lattice

Let us turn our attention to the second type of lattice
considered in the present work, the kagome lattice. We
have decided to examine this example using our formalism
for two main reasons. First, this lattice exhibits interesting
noncollinear spin arrangements, identification of which can
further validate the quality of our approach. Second, materials
that display this type of idealized lattice have been realized
experimentally.3,8,10 To the best of our knowledge, the the-
oretical treatment of these systems has not been attempted
with realistic electronic structure Hamiltonians, but rather with
models such as the Heisenberg Hamiltonian.44–47 Because
of the complex chemical environment in real materials, we
believe that a fully ab initio treatment, as provided by our
formalism, is important in studying such systems.

We have started our investigation with a three-atom mag-
netic unit cell. In this arrangement, we expect to identify
two nonequivalent spin structures. These are known as the
�q = 0 spin states,48 which differ by the chirality of the spin
magnetization, not by a global rotation in spin space. In the
positive (negative) chirality, the magnetic moments are rotated
clockwise (counterclockwise) when each of the triangles is
traversed clockwise.8 These lattices correspond to the clas-
sical ground states of the two-dimensional (2D) Heisenberg
antiferromagnet with inclusion of interactions beyond the
nearest neighbor (nn), which lifts the high degeneracy in the nn
models.49,50 The structure of the lattice is presented in Fig. 3.
This figure also depicts the converged magnetic moments for
the HISS functional. Because the spin space is independent
of the geometry of the systems in our calculations, we have
rotated the partitioned magnetization for the negative chirality
to facilitate comparison with the positive one.

FIG. 4. (Color online) The directions of the magnetization (red arrows) and the exchange-correlation magnetic field (blue arrows) obtained
with the PBE functional for the kagome lattice of (left) positive and (right) negative chirality. The color map depicts the magnitude (in atomic
units) of �m × �Bxc in the direction perpendicular to the Cr surface. The black points indicate the actual magnetic unit cell used in the calculations.
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FIG. 5. (Color online) The structure of the
√

3 × √
3 kagome

lattice. The blue points represent the magnetic unit cell employed in
the calculations, with arrows representing the converged magnetiza-
tion obtained with the TPSS functional, partitioned according to the
Hirshfeld scheme. Additionally, the translation vectors are presented
(green arrows).

With all of the functionals employed, we have been able to
identify these magnetic orderings. Additionally, we have found
that all methods studied predict both chiral arrangements to be
exactly degenerate, which is in agreement with the calculations
based on the model Hamiltonians, without explicit inclusion
of perturbations that can lift this degeneracy.10,44 In agreement
with the triangular lattice, the values of the atomic magnetic
moments follow the rungs of Jacob’s ladder. Again, the HISS
functional is an exception, and its predictions of this quantity
closely follow those of PBE. On the other hand, going from
the triangular arrangement to the kagome lattice, we observe
a significant increase of the norm of the magnetic moments.
The values of the atomic magnetization obtained within the
Hirshfeld approach are given in Table I.

In Fig. 4, we present the local distribution of the magnetiza-
tion and exchange-correlation magnetic field. Once again, we
notice a dominantly collinear arrangement in the core region
with significant variations over the atomic boundaries. It is
also clear that the high spin frustration of the underlying
lattice gives rise to an interesting map of the local exchange-
correlation magnetic torque, which could not have been
captured with the previous generalization of collinear SDFT
to the noncollinear regime.

Finally, let us discuss an alternative magnetic unit cell for
the kagome lattice that we have employed in the present

study. This is known as the
√

3 × √
3 alignment, where

corner-sharing triangles differ by chirality. The lattice, together
with the magnetic unit cell, is presented in Fig. 5. This
ordering is also a known ground state for the 2D Heisenberg
Hamiltonian with beyond nearest-neighbor interactions. With
all the methods studied, we succeeded in identifying solutions
to the KS equations that correspond to this state. We have found
that the atomic magnetic moments of the chromium atoms
increase slightly compared to the �q = 0 states (please refer to
Table I for actual values). This observation was confirmed
by all XC functionals tested. The nonequivalent magnetic
structure leads to a slightly different energy per site. We
have found that the �q = 0 lattice is stabilized by 12, 14, 9,
3, and 15 meV per chromium atom with the LSDA, PBE,
TPSS, HSE, and HISS functionals, respectively. Lifting the
degeneracy between these two magnetic orderings has been
also discussed in the literature50 with the connection to the
sign of the next-nearest-neighbor interaction.

IV. CONCLUSIONS

We have presented a generalization to periodic systems
of the recently suggested extension of spin-density functional
theory to the noncollinear regime. Our methodology is suitable
for all commonly employed exchange-correlation density
functionals, including successful range separated and screened
ones. We have shown that our approach does not constrain
the orientation between the magnetization and the exchange-
correlation magnetic field. In other words, this extension does
not suffer from the limitation of a vanishing local magnetic
torque. We would like to stress the importance of this fact
from the perspective of possible future spin-dynamics studies.
Our approach is free of numerical instabilities. We have not en-
countered problems converging our equations to tight criteria.

We have applied our methodology to spin-frustrated atom-
istic lattice models. We believe that our approach, which allows
applying accurate solid-state functionals in the noncollinear
regime, will prove useful for calculations of magnetic proper-
ties. The formalism presented here can be readily employed
in the study of other materials, including those containing f

electrons. Results along these lines will be presented in due
course.
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