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We present an alternative functional renormalization group (fRG) approach to the single-impurity Anderson
model at finite temperatures. Starting with the exact self-energy and interaction vertex of a small system (“core”)
containing a correlated site, we switch on the hybridization with a noninteracting bath in the fRG flow and
calculate spectra of the correlated site. Different truncations of the RG-flow equations and choices of the core
are compared and discussed. Furthermore we calculate the linear conductance and the magnetic susceptibility
as functions of temperature and interaction strength. The signatures of Kondo physics arising in the flow are
compared with numerical renormalization group results.
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I. INTRODUCTION

The single-impurity Anderson model (SIAM) is a minimal
model to describe the interplay of charge and spin fluctuations
of an interacting impurity in a metallic environment, including
the Kondo effect. Through decades of theoretical research
since its first proposal1 in the 1960s it has been thoroughly
investigated. There are exact solutions from the Bethe-Ansatz
technique,2,3 and an accurate method to describe static and
dynamic properties is Wilson’s numerical renormalization
group (NRG).4,5

In the last 20 years renewed interest arose in analyzing the
SIAM. One reason is the fabrication of nanoscale devices, in
which quantum dots are coupled to metallic leads. In certain
cases they can be described by the SIAM and the Kondo
effect was observed.6 Another reason is the development of
the dynamical mean field theory (DMFT).7,8 In the latter
a lattice model is mapped to an impurity model coupled
to a dynamical Weiss-field bath that has to be determined
self-consistently. Therefore the theoretical challenge remains
to develop versatile and numerically inexpensive methods
that can describe a large class of impurity models appearing
in this context. The single channel SIAM can serve as a
benchmark to test those methods. One approach to tackle the
impurity problems that has been developed is the functional
renormalization group (fRG).9 Even though the fundamental
equation of this framework is exact most methods based on
the fRG are perturbative. Hence, so far it has been difficult
to accurately resolve the nonperturbative Kondo physics.
However, the transparency and flexibility of the fRG can
lead to useful applications in more complex contexts, where,
for instance, the NRG is difficult to apply. fRG approaches
to the Anderson impurity model come already in some
variety, for example, there are variants based on a frequency
cutoff,10–12 on Hubbard-Stratonovich fields representing spin
fluctuations,13–15 and on a flowing level broadening.16 In
addition, nonequilibrium situations are subject to current
research.17–19

Here we introduce and test another fRG approach to the
SIAM. As opposed to the previous approaches, our method

starts with the exact solution of a small system of a few sites,
which is termed the “core”. The fRG flow then couples the
core adiabatically to a bath of noninteracting fermions, in a
“hybridization flow”. The main motivation for this approach is
the following. The usual hierarchy of fermionic fRG equations
for the fermionic vertex functions has to be truncated by
neglecting the higher-order vertex functions, typically after
the four-point vertex. In the usual context without bare
higher-order interactions and in standard perturbation theory,
these higher-order vertices would come in higher orders in the
bare interactions. Hence, the expectation is that the truncation
can only be good at weaker interactions. For a normal many-
fermion system with a full Fermi surface, in the beginning of
the fRG flow, the higher-order terms are suppressed by these
higher orders of the bare interactions, while at low scales, near
the Fermi surface additional phase space arguments may limit
their impact. For strong initial interaction no argument can
be given that the impact of these neglected vertex functions
is negligible. Another expectation is, however, that these
higher-order terms are mainly determined by local physics
and by degrees of freedom over a larger energy range in terms
of the free Hamiltonian. Therefore one may hope to arrive
at a satisfactory description also for stronger interaction by
incorporating the higher-order vertices of only a small system
and by neglecting their change when the low-energy physics
is altered during an fRG flow. Hence, in the present approach,
we use the exact four-point vertex and self-energy of a small
system as a starting point for the hybridization flow. These
quantities have built in the effect of all orders in the interaction
at least for this small system. Now, performing the truncated
fRG flow, the hybridization-induced change of the back effect
of the higher-order interactions on the four point and ultimately
on the self-energy will be missing, but this may still be better
than ignoring the higher-order physics completely.

Note that this strategy which we are testing here for an
impurity problem, could also be extended to a lattice problem.
One can imagine using the small-cluster self-energy and four-
point vertices as an initial condition for a flow in the bandwidth
or hopping amplitude of a lattice dispersion. Similar strategies
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have already been pursued for bosonic problems.20,21 In this
context, the present study can be seen as a first step in the
exploration of such a procedure for fermions, with the benefit
that in impurity models quantitative benchmarking is possible.

The application of RG flow equations usually requires a
controlled starting point in the parameter space of the theory
where the vertices are well known. Then one can follow the
flow toward a nontrivial physical point of the theory. In our
case the flow takes place in the effective theory of the first bath
site next to the impurity or correlated core system. Initially, the
bath is decoupled, and hence the bath site is noninteracting,
providing a well-defined starting point with finite density of
states at low energies. Then, in the RG flow, the coupling
to the correlated core is switched on and increased to the
desired value. Thereby the bath theory becomes interacting
and the spectrum of the bath sites is modified. Employing exact
relations of the first bath site self-energy to the self-energy of
the correlated core, we can then deduce the spectrum of the
correlated core as well and study the signatures of Kondo
physics.

This paper is organized as follows. In Sec. II, we describe
the single-impurity Anderson model and its Green’s functions
on the correlated site and on neighboring sites. In Sec. III, we
derive the effective bath theory on the first bath site and give
relations between the bath self-energies and the self-energy of
the correlated site. In Sec. IV, we describe the fRG scheme
in the effective bath theory. Section V is devoted to numerical
results. We conclude with a discussion in Sec. VI.

II. THE SINGLE IMPURITY ANDERSON MODEL

A. Hamiltonian

The Hamiltonian of the single channel SIAM consists of
three parts:

Ĥ = Ĥdot + Ĥbath + Ĥbath−dot. (1)

Ĥdot describes the interacting electron level and is given by

Ĥdot =
∑

σ

(εd,σ − μ)d†
σ dσ + U d

†
↑d↑d

†
↓d↓. (2)

The operators d†
σ and dσ create and annihilate electrons on the

dot level with spin component σ = ±1. The onsite energy is
given by

εd,σ − μ = −U

2
+ Vg + Bσ, (3)

including a magnetic field term B = gμBH with Bohr magne-
ton μB and a gate-voltage energy Vg . The term −U

2 is chosen
such that Vg = 0 corresponds to the particle-hole symmetric
point.

Our bath consists of two semi-infinite tight-binding chains
with hopping parameter t ,

Ĥbath = −t
∑

s=L,R

∑
σ

∞∑
j=1

(b†j,σ,sbj+1,σ,s + H.c.)

−μ
∑

s=L,R

∑
σ

∞∑
j=1

b
†
j,σ,sbj,σ,s . (4)

The operators b
†
j,σ,s and bj,σ,s create and annihilate electrons

on site j of the left (s = L) or the right (s = R) bath with spin
component σ . Different choices of the bath could be easily
incorporated into our formalism. The coupling between the
bath and the interacting dot site is given by

Ĥbath−dot = −v
∑

s=L,R

∑
σ

(b†1,σ,sdσ + H.c.). (5)

We can do a unitary transformation,(
bj,σ,even

bj,σ,odd

)
= 1√

2

(
1 1
1 −1

) (
bj,σ,L

bj,σ,R

)
, (6)

such that only the even combination coupled to the dot site,
since the left and right part of the chain possess the same
chemical potential,

Ĥbath−dot = −v
∑

σ

(b†1,σ,evendσ + H.c.), (7)

where v = √
2v. Ĥbath remains formally unchanged. In the

following we ignore the decoupled odd bath and skip the index
“even” on the remaining even bath. Furthermore we set μ = 0.

B. Green’s function of the SIAM

The free Green’s function on the dot site is given by

G0
σ (iωn,d,d) = [iωn − εd,σ − �(iωn)]−1, (8)

where � (iωn) is the hybridization function, which is given by

� (iωn) = v2gb (iωn,b1,b1) , (9)

with gb (iωn) = gb (iωn,b1,b1),

gb(iωn) = 1

2t2
(iωn − isgn(ωn)

√
4t2 − (iωn)2). (10)

Details for the derivation are given in Appendix A.
The retarded Green’s function on the first bath site is given

by

gb(ω + i0+) = 1

2t2
(−i

√
4t2 − ω2�(2t − |ω|)

+ω −
√

ω2 − 4t2�(|ω| − 2t)sgn(ω)).

The density of states on the first bath site is then semielliptic,

ρb(ω) = − 1

π
Im[gb(ω + i0+)]

= 1

2πt2

√
4t2 − ω2�(2t − |ω|), (11)

with band width W = 4t . In most studies of the SIAM in the
literature one considers a constant DOS and the wide-band
limit, that is, W is much larger than all other scales for the
problem. Then the physics for the symmetric model SIAM
mostly depends on the ratio of interaction scale U and the
hybridization scale �. Here we keep the ω dependence of
the hybridization function. We define the quantity �0 =
πv2ρb (0) = v2

t
. We choose for simplicity v = t , so that

�0 = t . This means that we do not have two independent
parameters for bandwidth and hybridization as one usually
does for studies of the SIAM and the finite bandwidth actually
enters the problem. Therefore, our results differ quantitatively
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FIG. 1. (Color online) The semi-infinite tight-binding chain is
separated into two parts: The “core” includes the correlated site and
L bath sites. The “bath” consists of the remaining bath sites. The
two parts are coupled by a hopping term which is proportional to the
parameter 	.

from the wide-band limit, which is common in the literature.
In some sense it is more similar to the first iteration of a DMFT
calculation with a semielliptic DOS. We take �0 = t = 1 as
a reference energy scale in the following. We would like to
emphasize again at this point that our formalism can also
deal with more general bath functions, as long as they can
be mapped onto a linear chain with certain onsite and hopping
parameters.

Because the bath is noninteracting, the self-energy is local
on the dot site. By the Dyson equation the full Green’s function
is related to Qσ (iωn) and the full Green’s function on the dot
reads

Gσ (iωn,d,d) = [iωn − εd,σ − 
d,σ (iωn) − � (iωn)]−1.

(12)

III. EFFECTIVE THEORY FOR THE BATH

A. Integrating out the “core”

We now separate the system into two parts as illustrated in
Fig. 1. One part (called “core” in the following) contains the
correlated site and the first L bath sites of the noninteracting
tight-binding chain (L = 0,1,2,3). The other part (called
“bath”) contains all bath sites of the tight-binding chain with
index i � L + 1. In the following we integrate out the “core”
in a functional integral representation of our model leading to
an effective theory for the bath.22

Our model is described by the grandcanonical partition
function,

Z =
∫

D[b̄,b] exp[−S(b̄,b)], (13)

with the action,

S(b̄,b) = Score(b̄0,b0,b̄1,b1, . . . ,b̄L,bL)

+ Sbath(b̄L+1,bL+1,b̄L+2,bL+2,...)

+ S	
coupling(b̄L,bL,b̄L+1,bL+1). (14)

To make the notation more compact, we denote the dot site d

as the 0th bath site b0. We define the scalar product,

(ψ,φ) =
∫ β

0
dτ

∑
σ

ψσ (τ )φσ (τ ). (15)

Score and Sbath are given by

Score(b̄0,b0,b̄1,b1, . . . ,b̄L,bL)

= (b̄0,(∂τ + εd,σ )b0) + U

∫ β

0
dτ n↑(τ )n↓(τ ) − v [(b̄0,b1)

+ H.c.] +
L∑

j=1

(b̄j ,∂τ bj ) − t

L−1∑
j=1

[(b̄j ,bj+1) + H.c.],

(16)

Sbath(b̄L+1,bL+1,b̄L+2,bL+2,...)

=
∞∑

j=L+1

(b̄j ,∂τ bj ) − t

∞∑
j=L+1

[(b̄j ,bj+1) + H.c.], (17)

where we introduced nσ (τ ) = b̄0,σ (τ )b0,σ (τ ). The coupling
between the core and the bath is described by

S	
coupling(b̄L,bL,b̄L+1,bL+1) = −	t [(b̄L,bL+1) + H.c.]. (18)

We introduced the flow parameter 	. The original model
(1) corresponds to 	 = 1 and for 	 = 0 core and bath are
decoupled. In the case L = 0, Score is just given by the first
line of Eq. (16) and one has to replace 	t by 	v in Eq. (18).

The generating functional for the connected Green’s func-
tions of the core problem is given by

Wcore(J̄ ,J ) = ln

[
1

Zcore

∫
D [c̄,c] exp

[
−Score (c̄,c)

+
L∑

i=0

(
J̄i ,ci

) + H.c.

] ]
, (19)

with the core fields c = (b0,b1,b2,...,bL). Zcore is the partition
function of the core problem given by

Zcore =
∫

D [c̄,c] exp[−Score (c̄,c)] . (20)

Wcore can be expanded in the fields,

Wcore(J̄ ,J )

=
∞∑

n=0

(−1)n

n!2

∑
i1,...,in
i ′1,...,i

′
n

∫ β

0
dτ1...

∫ β

0
dτn

∫ β

0
dτ ′

1...

∫ β

0
dτ ′

n

×Gc,(n)
core (i1,τ1; ...; in,τn|i ′1,τ ′

1; ...; i ′n,τ
′
n)

× J̄i1 (τ1)...J̄in (τn)Ji ′n(τ ′
n)...Ji ′1 (τ ′

1), (21)

such that

Gc,(n)
core (i1,τ1; ...; in,τn|i ′1,τ ′

1; ...; i ′n,τ
′
n)

= δ2nWcore(J̄ ,J )

δJ̄i1 (τ1)...δJ̄in (τn)δJi ′n(τ ′
n)...δJi ′1 (τ ′

1)

∣∣∣∣
J=J̄=0

. (22)

With the definition of the (L + 1)-component field χ =
t(0,0,...,bL+1) we can rewrite the action (14) as

S = Score(c̄,c) −
L∑

i=0

(c̄i ,	χi) − H.c.

+ Sbath(b̄L+1,bL+1,b̄L+2,bL+2,...). (23)
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Now we can formally integrate out the c fields,∫
D [c̄,c] exp

[
−Score (c̄,c) +

L∑
i=0

(c̄i ,	χi) + H.c.

]
= Zcore exp[Wcore (	χ̄,	χ )] ,

yielding an effective action for the bath,

Z =
∫

D[c̄,c,b̄L+1,bL+1,...] exp

[
−Score(c̄,c) +

L∑
i=0

(c̄i ,	χi) + H.c. − Sbath(b̄L+1,bL+1,b̄L+2,bL+2,...)

]

=
∫

D[b̄L+1,bL+1,b̄L+2,bL+2,...] exp
[−Seff

bath(b̄L+1,bL+1,b̄L+2,bL+2,...)
]
.

When we expand Wcore (	χ̄,	χ ) in the χ̄ ,χ fields the effective action has the following form:

Seff
bath(b̄L+1,bL+1,b̄L+2,bL+2,...)

= Sbath(b̄L+1,bL+1,b̄L+2,bL+2,...) − Wcore (	χ̄,	χ )

= Sbath(b̄L+1,bL+1,b̄L+2,bL+2,...) −
∞∑

n=0

(−1)n	2n

n!2

∑
i1,...,in
i ′1,...,i

′
n

∫ β

0
dτ1...

∫ β

0
dτn

∫ β

0
dτ ′

1...

∫ β

0
dτ ′

n

×Gc,(n)
core (i1,τ1; ...; in,τn|i ′1,τ1; ,...; i ′n,τ

′
n)χ̄i1 (τ1)...χ̄in (τn)χi ′n(τ ′

n)...χi ′1 (τ ′
1).

In the following we neglect the term with n = 0, which does not contain any fields. Furthermore, we truncate the sum over n

after n = 2. This means we consider only the first and second order of the expansion and neglect all correlation functions Gc,(�3)
core .

When we transform the action to Matsubara frequencies we get

Seff
bath(b̄L+1,bL+1,b̄L+2,bL+2,...)

= Sbath(b̄L+1,bL+1,b̄L+2,bL+2,...) + 	2

β

∑
iω

∑
i1,i

′
1

χ̄i1 (iω)Gc,(1)
core (iω,i1,i

′
1)χi ′1 (iω)

− 	4

4β3

∑
iω1,iω2,

iω′
1,iω

′
2

∑
i1,i2,

i ′1,i
′
2

χ̄i1 (iω1)χ̄i2 (iω2)Gc,(2)
core (iω1,i1; iω2,i2|iω′

1,i
′
1; iω′

2,i
′
2)χi ′1 (iω′

1)χi ′2 (iω′
2)δω1+ω2,ω

′
1+ω′

2

= Sbath(b̄L+1,bL+1,b̄L+2,bL+2,...) + (	t)2

β

∑
iω

∑
σ

b̄L+1,σ (iω)Gc,(1)
core,σ (iω,bL,bL)bL+1,σ (iω)

− (	t)4

4β3

∑
iω1,iω2,

iω′
1,iω

′
2

∑
σ1,σ2,

σ ′
1,σ

′
2

b̄L+1,σ1 (iω1)b̄L+1,σ2 (iω2)Gc,(2)
core (iω1,bL,σ1; iω2,bL,σ2|iω′

1,bL,σ ′
1; iω′

2,bL,σ ′
2)

× bL+1,σ ′
1
(iω′

1)bL+1,σ ′
2
(iω′

2)δω1+ω2,ω
′
1+ω′

2
δσ1+σ2,σ

′
1+σ ′

2
.

In the effective-bath theory there is a local interaction on bath site L + 1. The other bath sites (L + 2,L + 3, . . .) remain
noninteracting and can be integrated out. This leads to the local effective action:

Seff
bath(b̄L+1,bL+1) = − 1

β

∑
iω

∑
σ

b̄L+1,σ (iω)
(
iω − (	t)2Gc,(1)

core,σ (iω,bL,bL) − t2gb (iω,b1,b1)
)
bL+1,σ,iω

− (	t)4

4β3

∑
iω1,iω2,

iω′
1,iω

′
2

∑
σ1,σ2,

σ ′
1,σ

′
2

b̄L+1,σ1 (iω1)b̄L+1,σ2 (iω2)Gc,(2)
core (iω1,bL,σ1; iω2,bL,σ2|iω′

1,bL,σ ′
1; iω′

2,bL,σ ′
2)

× bL+1,σ ′
1
(iω′

1)bL+1,σ ′
2
(iω′

2)δω1+ω2,ω
′
1+ω′

2
δσ1+σ2,σ

′
1+σ ′

2
. (24)

The local correlation functions of the core, Gc,(1)
core and Gc,(2)

core
can be calculated from the Lehmann representation, which is
given in Appendix C. Note that for 	 = 0, the bath theory is
noninteracting. The exact solution of this serves as an initial
condition for the fRG flow in 	.

B. Relation to the dot self-energy

In the effective theory (24) the bath site L + 1 is now
interacting with a frequency-dependent term, while in the
original theory (14) it was noninteracting. The self-energy
and all higher irreducible vertex functions are local on the dot
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site by construction. Nevertheless, the local Green’s function
of the coupled problem on bath site L + 1 is nontrivial and
depends on the dot self-energy, as can be seen in Eq. (A8)
or (A9). This Green’s function can also be derived in the
setup of the effective theory and one can use the identity
Gσ (iωn,bL+1,bL+1) = Geff

σ (iωn,bL+1,bL+1) with

Geff
σ (iωn,bL+1,bL+1)

= [
iω − (	t)2Gc,(1)

core,σ (iω,bL,bL) − t2gb (iω) − 
b,σ (iω)
]−1

,

(25)

to get a relation between the dot self-energy and the effective
self-energy 
b on bath site L + 1. These relations depend on
L and for L = 0,1,2,3 we get the relations given in Eqs. (B1)–
(B4) in Appendix B.

IV. FUNCTIONAL RG FLOW EQUATIONS

The effective action in Eq. (24) reduces to a noninteracting
model for 	 = 0, because the interaction term is proportional
to 	4. This represents a simple starting point for a fRG flow
in 	. In order to use the fRG formalism for one-particle
irreducible (1PI) vertices,9,23,24 the flow parameter 	 should
only occur in the quadratic part of the action. This can
be achieved for any 	 �= 0 by rescaling the fields bL+1 →
bL+1/	 and b̄L+1 → b̄L+1/	. This leads to the quadratic part
of the effective action,

S
eff,0
bath (b̄L+1,bL+1) = − 1

β

∑
iω

∑
σ

b̄L+1,σ (iω)Q	
σ (iω) bL+1,σ,iω.

with

Q	
σ (iω) = iω

	2
− t2Gc,(1)

core,σ (iω,bL,bL) − t2

	2
gb (b1,b1,iω) ,

(26)

and quartic part which does not depend on 	 anymore. Note
that the rescaling changes correlation functions of different
order in the fields differently, but in the end we will study
the case 	 = 1. The one-particle-irreducible (1PI) vertex
functions on scale 	 can be calculated by an infinite set of exact
flow-equations.9,23,24 If we neglect the flow of the three-particle
vertex and of all higher vertex functions we get a closed set of
equations for the self-energy 
	

b and the two-particle vertex
function �	

b ,

d

d	

	

b (k′; k) = −Tr
[
S	�	

b (k′,.; k,.)
]
, (27)

d

d	
�	

b (k′
1,k

′
2; k1,k2)

= Tr
[
S	�	

b (k′
1,k

′
2,.; k1,k2,.)

]
− Tr

[
S	�	

b (.,.; k1,k2)[G	]T �	
b (k′

1,k
′
2; .,.)

]
− Tr

[
S	�	

b (k′
1,.; k1,.)G	�	

b (k′
2,.; k2,.)

]
− [k′

1 ↔ k′
2] − [k1 ↔ k2] + [k′

1 ↔ k′
2,k1 ↔ k2], (28)

in which G	 is the full propagator and S	 is the so-called
single-scale propagator defined by

S	 = G	 d

d	
[Q	]G	. (29)

The k
(′)
i denote one-particle-quantum numbers (in our case

Matsubara frequency, spin, and site index) and the trace
is defined with respect to these quantum numbers. In the
case B = 0, the flow equations (27) and (28) can be further
simplified by using the spin-rotation invariance of the effective
action (26), which is described in Appendix D.

By integrating the flow equations from 	 = 0 to 	 = 1 we
can derive the self-energy of the effective bath theory. Using
the relations (B1)–(B4) we obtain the dot self-energy 
d (iω).

In the simplest approximation one neglects the flow of the
two-particle vertex and integrates Eq. (27) with �	

b = �	=0
b

(in the following called “approximation 1”), where �	=0
b is

given by Eqs. (D1) and (D9). If one integrates the full set of
Eqs. (27) and (28) (called “approximation 2”) the numerical
effort scales with the third power of the number of Matsubara
frequencies.

Motivated by the fullfillment of Ward identities in the RG
flow, the following replacement in the flow equation for the
vertex function was proposed,25

S	 → −dG	

d	
= S	 − G	 d
	

b

d	
G	. (30)

This replacement is used in all following calculations.
Instead of doing the fRG flow in the effective bath theory

(26) one can also derive flow equations for the dot self-energy
(B1)–(B4) and the two-particle (1PI) vertex on the dot site
with the core (1PI) vertex functions as initial condition. For
L > 0 these flow equations have a more complicated structure
that in our case and the calculations are easier in the setup of
the effective bath theory. For L = 0 and approximation 1 we
compared both schemes. It turned out that neglecting the flow
of the two-particle vertex of the effective bath theory leads to
better results than doing an analogous approximation for the
two-particle vertex on the dot.

V. NUMERICAL RESULTS

In the following we present our results for different sizes
of the core (L = 0,1 and L = 3). The data shown here
were produced by integrating Eqs. (27) and (28) numerically
from 	 = 0 to 	 = 1, using typically 100–200 Matsubara
frequencies at temperatures varying between β = 20/�0 and
β = 50/�0. We set �0 = 1 giving the energy scale and
in most cases consider particle-hole symmetry, εd = −U/2.
The results are compared with other fRG approaches and
benchmark NRG calculations. The latter are carried out with
the same semielliptic density of states. We focus on quantities
that can directly be calculated from the data on the imaginary
frequency axis. One of these quantities is the effective mass
m∗ given by

m∗ = z−1 = 1 − dIm
d (iω)

dω

∣∣∣∣
ω=0+

. (31)

In the Kondo regime the quasiparticle weight z determines
the width of the Kondo resonance and is expected to scale
exponentially with the interaction strength. We furthermore
calculate the linear conductance of the dot G = ∑

σ Gσ given
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by (in the following we set h̄ = e2 = 1)

Gσ = 1

2
πv2

∫
dωAd,σ (ω)ρb(ω)

(
−∂nF (ω)

∂ω

)

� 1

2
�0

∫
dωAd,σ (ω)

(
−∂nF (ω)

∂ω

)
. (32)

In the second line we used that the derivative of the Fermi
function is sharply peaked at low temperature at ω = 0
so that the ω dependence of ρb(ω) can be neglected. Of
course the conductance is derived by an integral over the
real frequency axis and at first sight one has also to perform
an analytic continuation. To circumvent this, we follow an
approach, proposed in Ref. 26, that does not require an analytic
continuation. In this approach G follows from the formula,

Gσ � �0T
∑
α>0

RαIm
dGσ (iω̃α)

dω̃α

, (33)

where the imaginary frequencies iω̃α and the weights Rα are
defined in Ref. 26. The frequencies iω̃α differ from the original
Matsubara frequencies and we determine dGσ (iω̃α )

dω̃α
from a Pade

approximation.
We have also done the analytic continuation G(iωn,d,d) →

G(ω + i0+,d,d) to the real frequency axis using a Pade
algorithm described in Ref. 27. As the analytical continuation
of numerical data is mathematically an ill-defined problem we
did not obtain numerically stable and meaningful results for
all parameter sets.

A. The case L = 0

For L = 0 the “core” is given by an isolated dot site.
In this case the core-correlation functions can be calculated
analytically28 and one can also derive analytical results in the
setup of the effective bath-theory.29

The initial self-energy at 	 = 0 for εd = −U/2 is given by


d (iω) = U

2
+ U 2

4iω
, (34)

which is the atomic limit result. 
d (iω) diverges at iω = 0.
In Fig. 2 (upper panel) we show the iω dependence of the
self-energy at the end of the flow for 	 = 1 on the dot for
U = 10�0, β = 30/�0 and for the particle-hole symmetric
case, Vg = 0, computed with the described fRG flow in both
approximations 1 and 2. In the calculation we included 200
Matsubara frequencies. The divergence of the self-energy at
iω = 0 has disappeared, but there is still a discontinuity, which
is not cured by the flow. This shows the flow equations are not
able to restore the expected local Fermi liquid properties of
the SIAM, if we start with the atomic solution. The height
of the unphysical discontinuity becomes however smaller in
approximation 2 compared to approximation 1.

In the spectral density derived from a Pade approximation
to our numerical data at half filling (not shown) two slightly
broadened atomic limit peaks at ±U/2, but no central Kondo
resonance at small frequencies appears. Hence the L = 0
approximation fails to describe the screening of the local
spin-1/2 moment by the conduction electrons. This screening
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FIG. 2. (Color online) Comparison of approximations 1 and 2 to
the Matsubara self-energy for U = 10�0, β = 30/�0, and L = 0,1.
For L = 0 one gets a discontinuity of Im
(iωn) between positive and
negative Matsubara frequencies, which is reduced if one increases
the level of approximation. For L = 1, approximation 1 the self-
energy is continuous for small frequencies. As shown in the inset
one obtains a small step between positive and negative frequencies in
approximation 2.

and singlet formation should develop when 	 is switched on,
while at 	 = 0 the local moment is unscreened. We assume
that this strong mismatch is the reason for the nonoccurrence
of the Kondo resonance in this approximation.

Our results are consistent with the findings in Ref. 28,
where a superperturbation approach to the Anderson model is
developed. In this approach a finite local cluster containing the
correlated dot site is solved exactly. The correlation functions
of this cluster then serve as input for an effective theory of
dual-fermion fields. Like in our setup, no Kondo resonance is
found when the cluster contains only the correlated bath site.

B. The cases L = 1,2 and 3

In the case L = 1 the isolated core consists of an interacting
site coupled by a hopping term v to a noninteracting bath site.
This model is still analytically solvable. The ground state at
half filling is a spin-singlet state. For εd = −U/2 and in the

035111-6



ALTERNATIVE FUNCTIONAL RENORMALIZATION GROUP . . . PHYSICAL REVIEW B 87, 035111 (2013)

limit v � U and this state is given by

|S = 0〉 = 4v

U
(|↑↓,e〉 + |e,↑↓〉)

−
(

1 − 8v2

U 2

)
(|↑,↓〉 − |↓,↑〉) , (35)

with energy 1
4 (−U − √

U 2 + 64v2)
v�U≈ −U

2 − 8v2

U
. The first

entry in |.,.〉 is the correlated site, the second the additional
uncorrelated core site. e stands for an empty site. Now, in
contrast to the case L = 0, the local moment on the dot is
already in a singlet state for 	 = 0. This is a much better
starting point to describe features of the Kondo effect. As can
be seen in Fig. 2 the self-energy at the end of the flow for L = 1
is continuous at iω = 0. For L = 2 the isolated core self-
energy has a similar shape as in the L = 0 case and for 	 = 1
we get a finite step between positive and negative Matsubara
frequencies. In its ground state the core carries again a finite
s = 1/2 moment, doublet ground state, in this case which does
not become screened when we switch on the coupling to the
bath in the fRG flow. This shows once more the importance
of choosing a core with spin-singlet ground state for an at
least qualitatively correct description of Kondo screening in
this setup. The next larger core size with a singlet ground state
contains L = 3 bath sites. Numerically the calculation of the
two-particle vertex function is limited due to the exponential
growth of the core Hilbert space. We just used approximation
1 in the L = 3 case, because here we only need to calculate
the vertex for two instead of three independent frequencies.

Let us now discuss the numerical results in more detail.
The spectrum of the isolated two-site core with L = 1 consists
of four delta peaks. Two of them are located at ε1,2 =
± 1

4 (
√

U 2 + 64v2 + √
U 2 + 16v2)

v�U≈ ±(U
2 + 10v2

U
), which

belong to excitations from the ground state (35) to the
one-particle state 2v

U
|σ,e〉 + (1 − 2v2

U 2 ) |e,σ 〉 (v � U ) and
its corresponding three-particle state, which is connected by
a particle-hole transformation. In the limit v → 0 they are
equal to the atomic ±U/2 excitations of the L = 0 core.
When we switch on the coupling to the bath in the fRG flow,
they evolve into hybridization broadened peaks. The other
two peaks in the spectrum of the L = 1 core lie at ε3,4 =
± 1

4 (
√

U 2 + 64v2 − √
U 2 + 16v2)

v�U≈ ± 6v2

U
. They belong to

excitations from the ground state to the one-particle state
2v
U

|σ,e〉 + (1 − 2v2

U 2 ) |e,σ 〉 (v � U ) and its corresponding
three-particle state. Note that due to these excitations, there
is a finite spectral weight near zero energy already for 	 = 0
that can evolve into a central Kondo resonance.

It turns out that already in the most simple approximation
1 we get a quasiparticle resonance at ω = 0. The change of
the spectrum for different values of 	 is shown in Fig. 3 for
U = 6�0. The peaks ε1,2 become slightly broadened, but their
position does not change significantly. In the end of the flow
(for 	 = 1) their maxima are not located at ±U/2 = ±3�0,
the position usually expected in the wide-band limit with
a purely imaginary hybridization function �(ω). However,
in the present case where the bandwidth is less than U

the hybridization function �(ω) has a finite real part which
renormalizes this position. The position of the peaks, ±3.9�0

turns out to be comparable with what is found in NRG
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ω / Δ

0
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d(ω
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Δ 0
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Λ = 0.5
Λ = 0.75
Λ = 1.0

FIG. 3. (Color online) L = 1 dot spectra for several values of 	

at half filling and U = 6�0 and β = 50/�0, obtained from a Pade
approximation to our numerical data on the imaginary frequency
axis. The atomic limit peaks become slightly broadened and their
position changes from 4.2�0 to 3.9�0. At small frequencies a central
resonance with height Ad (ω = 0) = 1/π�0 is emerging during the
fRG flow from 	 = 0 to 	 = 1.

calculations. The small broadening of these high-energy peaks
is related to the fact that they lie outside the bandwidth
(−2�0,2�0) of the bath, such that the width is purely due to
self-energy effects. During the flow, already for small values of
	, the low-energy peaks ε3,4 become broadened and a central
resonance at ω = 0 with Ad (ω = 0) = 1

π�0
emerges. Note that

at the end of the flow, for 	 = 1, there are still remnants
of the peaks ε3,4, which is interpreted as an artefact of the
approximation. The same artefacts are obtained for L = 3.

In Fig. 2 the self-energy calculated in approximation 1 and 2
is shown. In approximation 1 the self-energy is continuous for
small frequencies and the derivative . dIm
d (iω)

dω
|ω=0+ is negative,

which leads to a reduced width z�0 of the resonance at small
frequencies. As shown in the inset of Fig. 2 we obtain a small
step between positive and negative Matsubara frequencies
in approximation 2. This step leads to a slight broadening
of the central resonance, which decreases with decreasing
temperature. Therefore it can be understood as a physically
sensible finite-temperature effect.

C. Results for the effective mass in comparison

In Fig. 4 we show the effective mass for L = 1, approx-
imation 1 and 2 and L = 3, approximation 1 in comparison
with NRG data as a function of the interaction strength U .
The NRG data are calculated at T = 0 for a semielliptic bath
density of states. While the qualitative behavior is similar, the
effective mass from the fRG calculations is systematically too
small compared with the NRG data and we cannot reproduce
the exponential Kondo scale quantitatively. For interaction
strengths U ∼ 8 − 9�0 the Kondo scale TK = W

√
2�0
πU

exp(− πU
8�0

)

becomes comparable with the temperature TK ≈ 1
β

, which we
expect to be part of the reason for the deviations from the NRG
result at large values of U . Note the slight increase of m∗ with
decreasing temperature in Fig. 4. Our results for the effective
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FIG. 4. (Color online) Effective mass (β = 30,50/�0) for L = 1,
approximation 1 and 2 and for L = 3, approximation 1 in comparison
with NRG data. The NRG data are calculated for a bath with
semielliptic density of states.

mass fall in the range of other fermionic fRG approaches to the
Anderson model12,16 (cf. Fig. 5), that are calculated for a bath
in the wide-band limit. A direct comparison of the data needs to
take into account the fact that as can be seen from the NRG data
in Fig. 5 the effective mass for a semielliptic density of states
with finite bandwidth is in general larger than for a bath in the
wide-band limit. The failure in reproducing the exponential
Kondo scale in the effective mass precisely is, however, com-
mon to all finite-frequency fRG approaches to the Anderson
model. Note that all fRG approaches truncate the hierarchy
of flow equations after the four-point level. Hence, we expect
that this approximation is the reason for this deviation.

D. Results for the conductance

Furthermore we calculated the linear conductance G from
Eq. (33). In Fig. 6 we show G as a function of the gate voltage
Vg for several temperatures and U = 8�0. At low temperatures

0 2 4 6 8 10 12 14
U / Δ

0

1

10

100

m
*

NRG large bandwidth
NRG semielliptic DOS
fRG L=3, Approx. 1
fRG Jakobs
fRG Karrasch

FIG. 5. Effective mass (β = 30/�0) for L = 3, approximation
1 in comparison with fRG data from Ref. 16 and approximation
1 in Ref. 12. As reference data we show NRG calculations for a
semielliptic density of states and in the wide-band limit.
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FIG. 6. (Color online) Comparison of the linear conductance
for U = 8�0 and β = 20,30,50/�0, calculated in approximation
1. The value G(VG = 0) decreases quadratically with increasing
temperature.

β = 50/�0 we get a plateau in the conductance for gate
voltages between −U

2 and U
2 , which is due to the pinning of

spectral weight at the Fermi energy. The plateau value is given
by the unitary limit 2G0 = 2e2/h. For higher temperatures
the conductance at Vg = 0 decreases quadratically with the
temperature.

In Fig. 7 the linear conductance derived in the two
approximation schemes 1 and 2 is shown. In approximation
2 the linear conductance for small gate voltages is reduced in
comparison with approximation 1. We understand this again
as a finite-temperature effect. In approximation 2, the Kondo
peak gets narrower (i.e., the effective Kondo scale comes out
smaller). Hence, in this approximation the actual temperature
β−1 is closer to TK as in approximation 1 and the conductivity
shows a stronger finite-temperature suppression.

Figure 8 shows the suppression of the gate voltage at
VG = 0 due to a finite magnetic field. As shown in Ref. 10
one can extract the Kondo scale from this suppression within
a frequency-independent fRG scheme with frequency cutoff.
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approximation 1
approximation 2

FIG. 7. (Color online) Comparison of approximation 1 and 2 to
the linear conductance for U = 8�0, β = 50/�0.
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FIG. 8. (Color online) Linear conductance for U = 8�0, β =
30/�0, and several values of the magnetic field, calculated in
approximation 1.

Therefore one defines the Kondo scale TK as equal to the
magnetic field B1/2 that is required to suppress the gate voltage
G(VG = 0) to G0 = e2/h, which is one-half of the unitary
limit. In Fig. 9 we show B1/2 as a function of U . As shown
the data for small U can be fitted to an exponential curve of
the form a exp(−b U/�0). This behavior is expected in the
Kondo regime. Here we find it already for these intermediate
values of U . For larger U there are systematic deviations from
exponential behavior. These deviations begin at U ∼ 8 − 9�0,
where the Kondo scale according to this association becomes
comparable to the temperature, TK ≈ 1

β
= �0

30 . From our fit
we get b ≈ 0.32, in good agreement with the exact value
b = π/8 ≈ 0.39.2

E. Results for the magnetic susceptibility and Wilson ratio

We also calculated the static magnetic susceptibility which
is defined by

χs = d(〈n↑〉 − 〈n↓〉)
dB

∣∣∣∣
B=0

. (36)
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FIG. 9. B1/2 as a function of U , β = 30/�0, approximation 1,
together with an exponential fit curve.
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FIG. 10. (Color online) Magnetic susceptibility as a function of
U , β = 30/�0,50/�0, approximation 1 in comparison with NRG
data.

Here 〈nσ 〉 is the average occupation of electrons with spin σ ,
which is calculated by

〈nσ 〉 = 1

2
+ 2T

∑
α>0

RαReGσ (iω̃α), (37)

with the same Rα and ω̃α as in Eq. (33). In Fig. 10 we show
the spin susceptibility in comparison with NRG data. For
large values of U the spin susceptibility is expected to be
inversely proportional to the Kondo temperature χs ∼ 1/TK .
Therefore one expects an exponential dependence on the
interaction strength. While the susceptibility definitely rises
with increasing U , the exponential behavior is not found in
our fRG approach. A part of this deviation might again be
a thermal effect, as for U � 8 − 9�0 the Kondo temperature
falls below β−1 where the calculation takes place.

In Fig. 11 we show the Wilson ratio which is cal-
culated as R = 2χs

χs+χc
with the charge susceptibility χc =

limμ→0
∑

σ
d〈nσ 〉
dμ

. With the relation 1
m∗ = 4

π�0(χs+χc) , which
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FIG. 11. Wilson ratio R as function of U , β = 30/�0, approxi-
mation 1 in comparison with NRG data.
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holds in the Anderson impurity model2,30 we get R = �0πχs

2m∗ .
Therefore we can calculate R from our data of the effective
mass and the spin susceptibility. R = 2 corresponds to the
Kondo regime, where charge fluctuations are completely
suppressed and the charge susceptibility vanishes. As seen
in Fig. 11, for U � 8�0 the fRG data come out very close to
R = 2 even though χs is too small in the fRG. This points to
advantageous cancellations of errors for this ratio in the fRG.
Indeed m∗ comes out too small as well. The slight decrease of R

for U > 9�0 might be again due effects of finite temperature.

VI. CONCLUSION

We have presented an alternative renormalization group
approach to the single-impurity Anderson model. The starting
point is the exact result for self-energy and four-point vertex of
a small subsystem (“core”) containing the correlated impurity
site. Then we track the evolution of these two functions
when the coupling to the bath is switched on slowly. This
way, the solution of the small isolated cluster is implemented
exactly, and the flow generates changes of infinite order in the
hybridization with the bath. The main approximation is the
truncation of the flow equations after the four-point vertex. In
the present case this means that the change of the higher-order
vertices (six-point, eight-point, etc.) upon coupling to the bath
is not allowed to influence the lower order vertices (i.e., the
two-particle interaction and the self-energy). Yet, the idea that
led us to take this avenue was that starting with the exact
two-point and four-point vertex of the small core contains
enough strong correlation physics in order to give physically
reasonable results. The local interacting physics, such as the
atomic scales are well represented in our approach. However,
the Kondo effect requires to describe the subtle interplay with
a continuum of states including many energy scales and our
approach captures this only qualitatively, but not quantitatively.
We expect this to be less of a problem in a self-consistent
approach, such as DMFT, where for stronger coupling the
Kondo resonance does not survive.

Indeed, the numerical results for clusters with an odd
number of auxiliary sites (L = 1 and L = 3) show that the flow
equations produce qualitatively correct results, whereas for
even numbers the Fermi liquid behavior is not recovered. The
dependence of the width of the Kondo peak with increasing U

is quantitatively different from NRG results (i.e., the correct
exponential dependence is not reproduced). For larger U the
Kondo scale gets smaller than the nonzero temperatures for
which the fRG scheme is feasible. So no clear statement
can be made regarding the large-U behavior. However, in
the interesting intermediate coupling regime, the deviations
may be tolerable. In this sense embedding this new impurity
solver in a different contexts to describe itinerant and strongly
coupled physics qualitatively correctly (see discussion below)
seems a viable possibility.

In comparison with other finite-frequency functional RG
techniques (e.g., those that are perturbative in U ), our data end
up in the same range, as shown in Fig. 5. As the ground state for
weak and strong coupling remains the same, it is not entirely
surprising that approaches starting at the opposite ends lead
to qualitatively similar answers. The quantitative agreement

could, however, be interpreted further, as a measure of what
is missed by the truncation after the four-point vertex that
is common to both lines of approach. Note that in a recent
paper Streib et al.15 were able to reproduce the exponential
Kondo scale in a fRG scheme with partial bosonization of the
transverse spin fluctuations. By using Ward identities they are
able to avoid further truncations of the flow equations. In this
way they obtain the spin susceptibility and the effective mass
in good agreement with the exact Bethe-Ansatz solution.

While the use of the fRG method as impurity solver is for
most aspects not superior to the established techniques, we
hope that generalizations for correlated lattice systems (i.e.,
with more than one correlated site, like the two-dimensional
Hubbard model) will be feasible. In this case, both self-energy
and interaction vertex will become increasingly nonlocal
during the flow, and certainly, suitable approximations have
to be found in order to keep the amount of information
manageable. For example, small correlated cluster cores can
be coupled together during the flow via switching on the
hopping amplitude between the clusters from 0 to the original
value. The solution of the core will then provide the spectral
weight transfers on the energy scale U and the accompanying
reduction of the spectral weight near the Fermi level. Together
with the core interaction vertex this spectrum will serve as
effective action of a strongly correlated Fermi liquid, which
then can undergo long-range ordering transition when the cores
are coupled together. Note that in extension of earlier ideas in
the vein of cluster perturbation theory (see, e.g. Refs. 31 and
32) the fRG scheme also allows one to determine the nonlocal
hybridization effects on the interaction, which has direct
consequences on the character and scale of low-temperature
instabilities such as unconventional superconductivity. This
way we hope to extend the successful functional RG instability
analysis for weakly correlated fermions to the more strongly
correlated regime. The high-energy physics of a strongly
interacting Hubbard-like system is certainly more local than
the low-energy physics of collective ordering. Hence, the
break-up into small cores and subsequent coupling together
also closely follows the physical intuition of first solving the
problem with the largest energy scale before the low-energy
end is considered.
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APPENDIX A: EXPRESSIONS FOR THE GREEN’S
FUNCTIONS

The inverse free Green’s function Q(iωn) ≡ [G0(iωn)]−1

on the imaginary frequency axis is given by Q(iωn) = iωn1 −
Ĥ0, where Ĥ0 is the noninteracting part of the Hamiltonian (1).
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Written as a matrix Q(iωn) it is given by

Q (iωn) =
[

Q↑ (iωn) 0
0 Q↓ (iωn)

]
, (A1)

where

Qσ (iωn) =

⎡
⎢⎢⎢⎢⎢⎣

d b1 b2 · · ·
d iωn − εd,σ v

b1 v iωn t

b2 t iωn · · ·
· · · · · · · · ·

⎤
⎥⎥⎥⎥⎥⎦ . (A2)

The inverse of Qσ (iωn) can be calculated by using the
identity,[

A B

C D

]−1

=
[

(A − BD−1C)−1 −(A − BD−1C)−1BD−1

−D−1C(A − BD−1C)−1 (D − CA−1B)−1

]
,

(A3)

which is valid for arbitrary invertible matrices A, B, C,
and D.

If we introduce the matrix gb (iωn) by

g−1
b (iωn) =

⎡
⎢⎢⎢⎢⎢⎣

b1 b2 b3 · · ·
b1 iωn t

b2 t iωn t

b3 t iωn · · ·
· · · · · · · · ·

⎤
⎥⎥⎥⎥⎥⎦ , (A4)

the free Green’s function on the dot site follows from the
identity (A3) as

G0
σ (iωn,d,d) = (iωn − εd,σ − v2gb(iωn,b1,b1))−1. (A5)

The function gb (iωn,b1,b1) can be calculated again from the
identity (A3), this time applied to Eq. (A4), as

gb(iωn,b1,b1) = (iωn − t2gb(iωn,b1,b1))−1. (A6)

Here we used that adding or removing the first bath site from
a semi-infinite tight-binding chain do not change the chain.
Equation (A6) can be solved to give the explicit expression for
gb (iωn,b1,b1) in Eq. (10).

By the Dyson equation the full Green’s function is related
to Qσ (iωn) and the self-energy,

[Gσ (iωn)]−1

= Qσ (iωn) − 
σ (iωn)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

d b1 b2 · · ·
d iωn − εd,σ − 
d,σ (iωn) v

b1 v iωn t

b2 t iωn · · ·
· · · · · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(A7)

Inverting this matrix with the identity (A3) gives the full
Green’s function on the dot Gσ (iωn,d,d) in Eq. (12).

In the same way one gets the Green’s function for the first
and second bath site,

Gσ (iωn,b1,b1)

=
(

iωn − v2

iωn − εd,σ − 
d,σ (iωn)
− t2gb (iωn,b1,b1)

)−1

,

(A8)

Gσ (iωn,b2,b2)

=
(

iωn − t2

iωn − v2

iωn−εd,σ −
d,σ (iωn)

− t2gb (iωn,b1,b1)

)−1

.

(A9)

For the other bath sites with site index >2, analogous
expressions can be derived.

APPENDIX B: RELATION BETWEEN BATH
AND DOT SELF-ENERGY

From the identities of the Green’s functions in Sec. III B
we can derive the following relations for the self-energy for
L = 0,1,2,3,

L = 0 : 
d,σ (iωn)

= iωn − εd,σ − (	v)2


b,σ (iωn) + (	v)2 Gc,(1)
core,σ (iωn,b0,b0)

,

(B1)

L = 1 : 
d,σ (iωn)

= iωn − εd,σ − v2

iωn − (	t)2


b,σ (iωn)+(	t)2 Gc,(1)
core,σ (iωn,b1,b1)

, (B2)

L = 2 : 
d,σ (iωn)

= iωn − εd,σ − v2

iωn − t2

iωn− (	t)2


b,σ (iωn )+(	t)2 Gc,(1)
core,σ (iωn,b2 ,b2)

, (B3)

L = 3 : 
d,σ (iωn)

= iωn − εd,σ − v2

iωn − t2

iωn− t2

iωn− (	t)2


b,σ (iωn )+(	t)2Gc,(1)
core,σ (iωn,b3 ,b3)

.

(B4)

APPENDIX C: SOLUTION OF THE “CORE” PROBLEM

To solve the local core problem, we diagonalize the “core”
Hamiltonian exactly. From this solution we derive the local
correlation functions using a Lehmann representation. For the
one-particle Green’s function this representation is given by

G(1) (iωn,i,j ) = 1

Z
∑
m,n

exp[−βEm] + exp[−βEn]

iωn − (En − Em)

×〈n|ci |m〉〈n|cj |m〉∗. (C1)
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The Lehmann representation of the two-particle Green’s function is derived in Ref. 28. It is given by

G(2)(i ′1,σ,iω′
1; i ′2,σ

′,iω′
2|i1,σ,iω1; i2,σ

′,iω2) = 1

Z
∑
i,j,k,l

∑
�

φ
(
Ei,Ej ,Ek,El,iω�1 ,iω�2 ,iω�3

)
× sgn (�) 〈i|O�1 |j 〉〈j |O�2 |k〉〈k|O�3 |l〉〈l|ci2,σ ′ |i〉δω′

1+ω′
2+ω1+ω2,0. (C2)

Here the frequencies corresponding to creation and annihilation operators have the same sign. The operators Oi are defined by
O1 = c

†
i ′1,σ

, O2 = c
†
i ′2,σ ′ , and O3 = ci1,σ . The function φ is given by

φ(Ei,Ej ,Ek,El,iω1,iω2,iω3) = 1

iω3 + Ek − El

[
1 − δω2,−ω3δEj ,El

i (ω2 + ω3) + Ej − El

(
e−βEi + e−βEj

iω1 + Ei − Ej

− e−βEi + e−βEl

i (ω1 + ω2 + ω3) + Ei − El

)

+ δω2,−ω3δEj ,El

(
e−βEi + e−βEj

(iω1 + Ei − Ej )2
− β

e−βEj

iω1 + Ei − Ej

)
− 1

iω2 + Ej − Ek

×
(

e−βEi + e−βEj

iω1 + Ei − Ej

− (
1 − δω1,−ω2δEi,Ek

) e−βEi − e−βEk

i (ω1 + ω2) + Ei − Ek

+ βe−βEi δω1,−ω2δEi,Ek

)]
.

(C3)

From (C2) one gets the connected two-particle Green’s function from the relation,

Gc,(2)(1′,2′|1,2) = G(2)(1′,2′|1,2) − β G(1)(1′|1)G(1)(2′|2) + β G(1)(1′|2)G(1)(2′|1).

APPENDIX D: FRG-FLOW EQUATIONS

Because the action (26) is spin-rotation invariant, the fRG-flow Eqs. (27) and (28) can be further simplified. Using the spin
conservation, the two-particle vertex is given by

�	
b (iω′

1,σ
′
1; iω′

2,σ
′
2|iω1,σ1; iω2,σ2) = V 	

b (iω′
1,iω

′
2|iω1,iω2)δσ1,σ

′
1
δσ2,σ

′
2
− V̄ 	

b (iω′
1,iω

′
2|iω1,iω2)δσ1,σ

′
2
δσ2,σ

′
1
.

From the antisymmetry of �	
b (1′,2′|1,2) under the permutations 1′ ↔ 2′ and 1 ↔ 2 it follows that the functions V 	

b and V̄ 	
b

obey the relation,

V 	
b (iω′

1,iω
′
2|iω1,iω2) = V̄ 	

b (iω′
2,iω

′
1|iω1,iω2) = V̄ 	

b (iω′
1,iω

′
2|iω2,iω1).

Using this parametrization we get the flow equations,

d

d	

	

b (iω) = − 1

β

∑
iω′

S	(iω′)
(
2V 	

b (iω,iω′|iω,iω′) − V 	
b (iω,iω′|iω′,iω)

)
, (D1)

d

d	
V 	

b (iω′
1,iω

′
2|iω1,iω2) = �	

pp(iω′
1,iω

′
2|iω1,iω2) + �	

dph(iω′
1,iω

′
2|iω1,iω2) + �	

crph(iω′
1,iω

′
2|iω1,iω2), (D2)

�	
pp(iω′

1,iω
′
2|iω1,iω2) = 1

β

∑
iω3,iω4

L (iω3,iω4) V 	
b (iω3,iω4|iω1,iω2) V 	

b (iω′
1,iω

′
2|iω3,iω4), (D3)

�	
dph(iω′

1,iω
′
2|iω1,iω2) = − 1

β

∑
iω3,iω4

L (iω3,iω4)
(
2V 	

b (iω′
1,iω3|iω1,iω4)V 	

b (iω′
2,iω4|iω2,iω3)

−V 	
b (iω′

1,iω3|iω1,iω4)V 	
b (iω′

2,iω4|iω2,iω3)

−V 	
b (iω′

1,iω3|iω4,iω1)V 	
b (iω′

2,iω4|iω2,iω3)
)
, (D4)

�	
crph(iω′

1,iω
′
2|iω1,iω2) = 1

β

∑
iω3,iω4

L (iω3,iω4) V 	
b (iω′

2,iω3|iω4,iω1)V 	
b (iω′

1,iω4|iω3,iω2). (D5)

The function L is defined as

L (iω1,iω2) = G	 (iω1) S	 (iω2) + G	 (iω2) S	 (iω1) . (D6)

The single-scale propagator is given by

S	 (iω) = −2	(iω − t2gb(iω,b1,b1))(
iω − (t	)2Gc,(1)

core (iω,bL,bL) − t2gb (iω,b1,b1) − 	2
	
b (iω)

)2 . (D7)
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The initial conditions for 	 = 0 are


	=0
b (iω) = 0, (D8)

V 	=0
b (iω′

1,iω
′
2|iω1,iω2) = t4Gc,(2)

core (iω′
1,bL, ↑; iω′

2,bL, ↓ |iω1,bL, ↑; iω2,bL, ↓). (D9)
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