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Electronic transmission through a polyacene ladder with a substitutional edge impurity
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We provide an analytical and numerical study of the electronic and transport properties of a ladder system
composed of two coupled chains, arranged in the ladder polymer and in the polyacene lattice topology, with a
single substitutional edge impurity embedded in one of them. We evidence in particular the connection between
local density of states, transmittivity, and occurrence of Fano resonances in the transmission spectra. Comparison
of the local density of states and charge transmittivity through the two different ladder systems, as the impurity
position is varied, contributes to evidence the nature of resonant interactions occurring for electronic energies
coinciding with the impurity energy.
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I. INTRODUCTION

Coherent transport in low-dimensional systems in the
presence of constrictions, defects, disorder, and external
fields has been widely addressed in the last decades (see
Ref. 1 and references therein). In fact, such systems revealed
a primary role in simulating and understanding quantum
interference phenomena. One-dimensional and almost-one-
dimensional quantum wire geometries have been generally
adopted to describe electronic states and charge transport
of a variety of systems which exhibit different structures,
kinds of stochastic and correlated disorder, substitutional or
side attached impurities, etc.2–17 In particular, systems with
parallel conduction paths have been fully exploited to study
transmission conductance of electron wave guides, through
single or multiple defects,7–10 and to investigate the nature of
Fano resonances or other quantum interference phenomena
(see Ref. 18 and references therein), the nature of bound states
degenerate with a continuum,19,20 and also chain functional-
ization by side attached impurities.21–24 Often, a tight-binding
description of such systems in terms of appropriate site and
hopping energies on a square net has proven to be very
useful.1,25

In particular, this description can be convenient in molec-
ular electronics, which is based on organic molecules, con-
jugated polymers, and graphene nanoribbons, a field which
opened a very promising new avenue for technological ap-
plications. Differently from the ladder polymer case, however,
mapping of organic materials on a model quantum wire system
leads in general to a lattice with brick-type topology.26 This
is the case, for instance, of fused benzene rings as in acenes
materials.27 Polyacene, in particular, for its simplicity is at
the center of numerous investigations, lasting for several
decades,28,29 as a prototype of conjugated polymers and also,
more recently, as narrowest (two coupled chains) graphene
ribbon (see, e.g., Refs. 30–32 and references therein). Most
importantly, it has recently evidenced the potential of the
presence of groups attached to molecular chains for the control
of the position of the Fano resonances (see Ref. 33 and
references therein). In particular, this can lead to significative
modifications of the energy spectrum at the Fermi energy,

with possible important influences on its thermoelectric and
transport properties.34

In this paper, we revisit the problem of charge transport
in two coupled parallel chains with geometrical arrangement
compatible with the polyacene structure, and with a single
substitutional impurity on one of them. Our approach exploits
the tight-binding model with the decimation-renormalization
procedure and the Green’s function formalism for the elec-
tronic states and for the density of states.35,36 By appropriate
choice of the system parameters, our goal is to provide a recipe
to tune the electronic structure of the ribbon, through chemical
edge modification: this is an item central to nanotechnology
for the control of the device behavior at the atomic scale. To
reach such a goal, we show that coupling between chains
in the presence of the edge impurity allows us to retain
discrete states of the impurity resonant with continuum of the
bands, at specific energies. At these energies, the transmittivity
spectrum may change drastically showing Fano resonances,
as in the case of a ladder polymer with a single substitu-
tional impurity, but may also present isolated antiresonances;
correspondingly, the electronic states may exhibit localized
and propagating character of their wave functions,20 with
peculiar behavior of the projected density of states, the
control of which is essential for understanding the system
transmittivity.

In this article, we investigate and highlight the basic features
of the electronic and transport properties of a two-chain ribbon,
generated by the distinction that can be made in terms of
topology between ladder polymer quantum wire and brick-
type quantum wire. We show in particular that the topological
peculiarity in the conformation of polyacene is at the origin of
interesting novelties in the transport properties, with respect to
the case of a ladder polymer topology, when edge substitutional
impurities are present; these properties can be interpreted in a
natural way by means of the deep differences induced by the
lattice topology in the electronic properties.

In Sec. II, we present some main results concerning the case
of a perfect two-coupled chains system with equal interchain
and intrachain hopping interactions (ladder polymer) in the
presence of a substitutional impurity on one chain; for it
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we calculate the local density of states projected on different
sites, and the system transmittivity. After decoupling the two
chains into a symmetric and an antisymmetric channel, we
show that the energy where the transmittivity of the active
channel vanishes (due to the Fano resonance) coincides with
a zero of the projection of the local density of states at the
position of the impurity. The projection on the corresponding
site of the adjacent channel presents a strong peak at a very
close energy; also, this effect is due to the presence of the
impurity.

In Sec. III, we deduce the expressions for the local density of
states (LDOS) and the transmittivity of a polyacene chain both
perfect and in the case of a substitutional impurity on one edge.
We show that two inequivalent cases may occur, corresponding
to the two inequivalent positions where the impurity can be
located: on a site coupled or on a site uncoupled to the
adjacent chain. We show moreover that the different electronic
structure and in particular the opposite curvature of the bands
in the negative and positive parts of the spectrum are relevant
for the evaluation of the velocities of the charge carriers
entering the expressions of the transmittivity on the two
channels.

Section IV contains the results. We show that if the
impurity is located on a site coupled to the adjacent chain,
two Fano resonances are found in the transmission of one
channel (depending on the attractive or repulsive nature of
the impurity), which resemble the characteristic of the ladder
polymer, while Fano resonances are absent in the other
channel. If the impurity is located on a site uncoupled to
the adjacent chain, a different behavior of the transmittivity
is observed since in both channels an energy where the
transmittivity vanishes exists, but just only one of them has
the typical feature of a Fano resonance. Section V contains the
conclusions.

II. EXPRESSIONS FOR THE LDOS AND THE
TRANSMITTIVITY OF A LADDER POLYMER WITH

A SINGLE SUBSTITUTIONAL EDGE IMPURITY

We consider the case of two coupled periodic chains with
a substitutional impurity of energy ad on the site n = 0 of
one of them, a problem analyzed for instance in Refs. 7 and 8
[Fig. 1(a)]; we provide general expressions for this system
which give information on the LDOS and the transmittivity.
By an appropriate basis change,7 we obtain two decoupled
chains with site energies a + t⊥ (symmetric combination S)
and a − t⊥ (antisymmetric combination A), respectively, and
hopping intrachain interaction t [Fig. 1(b)]; the sites at n = 0
of the S and A chains have energies a + t⊥ + ad/2 and a −
t⊥ + ad/2, respectively, and are coupled by an interaction of
strength ad/2. After resummation of the two semi-infinite left
and right chains,35 we obtain the equivalent system represented
in Fig. 1(c). For the two sites of this system, the LDOS can be
written in the forms (t,t⊥ < 0)

N0S(E) = − 1

π
Im

(
1

E − �S − (ad/2)2

E−�A

)

× [2t + t⊥ � E � −2t + t⊥], (1)

FIG. 1. (a) Two coupled identical chains of equal atoms with a
substitutional impurity at the site n = 0 of one of them; (b) equivalent
system formed by two decoupled (symmetric and antisymmetric)
chains interacting only at the impurity position; (c) effective system
obtained after renormalization of the semi-infinite periodic chains
connected to the impurity.

N0A(E) = − 1

π
Im

(
1

E − �A − (ad/2)2

E−�S

)

× [2t − t⊥ � E � −2t − t⊥], (2)

where (a = 0)

�S = +t⊥ + ad/2 + 2t2g00(E; t⊥,t), (3)

�A = −t⊥ + ad/2 + 2t2g00(E; −t⊥,t), (4)

and g00(E, ± t⊥,t) are the (0,0) matrix elements of the Green’s
functions of the semi-infinite periodic chains reported in
Ref. 21 for the S and A chains, respectively. The effect
of the impurity is to smooth the van Hove singularities of
the LDOS present at the band borders of the perfect system
spectrum. Moreover, the impurity may insert peaks which may
be resonant with the allowed states of a single band, or isolated
states outside the overall spectrum of the perfect system; these
features are located at the right side of the allowed bands for
ad > 0 and at the left side for ad < 0.

We evaluate now the transmittivity of the coupled chains
with a substitutional impurity by exploiting the formalism
of Conwell et al.7 Let TS and TA be the transmittivities of
electrons injected with wave vectors kS and kA, corresponding
to the dispersion relations of the S and A chains, respectively.
We introduce the real coefficients c+

S , c−
S , c+

A , and c−
A

proportional to the velocity of electrons with wave vectors
kS and kA on S and A bands, respectively:

c±
S = t

√
±

[(
E − t⊥

2t

)2

− 1

]
;

(5)

c±
A = t

√
±

[(
E + t⊥

2t

)2

− 1

]
.
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In the intervals where only electrons with wave vector kS or kA

propagate, the transmittivity of the system is T = TS = |tSS |2
or T = TA = |tAA|2 with

tSS[AA] = 2cScA − cS[A](iad/2)

2cScA − (cS + cA)(iad/2)
, (6)

where cS = c−
S and cA = +ic+

A when the channel S is active,
cS = −ic+

S and cA = c−
A when the channel A is active. In

the central energy intervals where electrons with both kS and
kA propagate, T = TS + TA where the transmittivities on the
symmetric and the antisymmetric channels are

TS[A] = c2
S[A]

(
4c2

A[S] + a2
d

/
4
) + cScAa2

d

/
4

4c2
Sc

2
A + (cS + cA)2a2

d

/
4

(7)

with cS = c−
S and cA = c−

A . The conductance of the system can
be evaluated accordingly by the two-probe Landauer formula
G = (2e2/h)T .

At the energies E = 2t − t⊥ [where cA = 0, see Eq. (5)]
and E = −2t + t⊥ [where cS = 0, see Eq. (5)], respectively,
i.e., at the borders of the central energy interval where both
the channels of transmission are active, the symmetric and
antisymmetric components of the transmittivity TS and TA

are equal to one, independently from the value of ad [see
Eq. (6)]. Moreover, if t < 0, Fano resonances in the form of
rapid variation of the transmittivity from 0 to 1 are observed,
for TS (TA) when ad < 0 (ad > 0) (the reverse happens if
t > 0). The energy where TS = 0 (or TA = 0) can be found by
imposing tSS = 0 (or tAA = 0) in the form (6). For instance, the
condition for tAA = 0 is 2cS = iad/2 = −2ic+

S , i.e., ad/2 =
(−t/|t |)

√
(E − t⊥)2 − 4t2. This is illustrated by the plots

of TS and TA reported in Fig. 2, where t = t⊥ = −1 and
ad = 1.

Looking at the corresponding plots of the LDOS projected
on the impurity site, we can observe that, since ad > 0, a strong
peak in the LDOS is visible near the right border of the S band.
Very close to ad , there is a zero of the LDOS in the A band
coincident with the zero of TA: this originates the Fano feature
in the transmittivity spectrum. The same happens for ad < 0

FIG. 2. (Color online) LDOS and transmittivity of the S channel
(light and strong full blue lines, respectively) and A channel (light
and strong dashed red lines, respectively) of two coupled chains
(a = 0, t = t⊥ = −1) with a substitutional impurity of energy ad = 1
on one of them; the LDOS is evaluated at the impurity site.

on the left part of A and S spectra. The above considerations
on the features of the LDOS and of the transmittivity provide
a pictorial interpretation of the connection between the sign of
the impurity site energy and the position of the Fano resonances
in the transmission spectrum.

III. EXPRESSIONS FOR THE LDOS AND THE
TRANSMITTIVITY OF POLYACENE WITH A SINGLE

SUBSTITUTIONAL EDGE IMPURITY

A. Perfect polyacene chain

We address now the energy bands of a system composed
by two coupled periodic atomic chains described by a
tight-binding model with a single orbital per site, constant
site energy a, first neighbor (negative) intrachain hopping
interaction t , and (negative) interchain hopping interaction t⊥
in the topology shown in Fig. 3, equivalent to the polyacene
structure. Exploiting also in this case appropriate symmetric
(S) and antisymmetric (A) linear combinations of the site
orbitals of the two chains, it is possible to reduce the original
ladder to an equivalent system composed by two decoupled
chains with alternate site energies a + t⊥ and a for the S chain,
and a − t⊥ and a for the A chain. Then, by renormalizing (for
instance) the sublattice of the sites with energy a [hereafter
named “noninteracting” because it is not coupled to the
adjacent chain in the original system of Fig. 3(a); accordingly
the sites with energies a ± t⊥ are named “interacting”], two
periodic uncoupled chains are obtained with effective site
energies ãS(E) = a + t⊥ + 2t2/(E − a), ãA(E) = a − t⊥ +
2t2/(E − a), and effective hopping interaction t̃ = t2/(E − a)
[see Fig. 3(d)].

FIG. 3. (a) Polyacene chain; (b) chains coupled at alternate sites
equivalent to the polyacene system; (c) decoupled symmetric and
antisymmetric chains; (d) renormalized system for the calculation of
the Green’s function matrix elements.
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FIG. 4. Band structure of two chains coupled in the polyacene
topology of Fig. 3(a), calculated for a = 0, t = t⊥ = −1. The edges
of the bands E

(1)
S1 = −2.561, E

(2)
S1 = −1, E

(1)
S2 = 0, E

(2)
S2 = 1.561 for

the S chain and E
(1)
A1 = −1.561, E

(2)
A1 = 0, E

(1)
A2 = 1, E

(2)
A2 = 2.561 for

the A chain are evidenced.

The bands can then be extracted from the forms ES,A(k) =
ãS,A ± 2t̃ cos(k). Setting a = 0, from the equations ES,A(k) =

±t⊥ + 2(t2/E) + 2(t2/E) cos(k) we obtain the two couples of
bands:

ES1,S2(k)

=
t⊥ ±

√
t2
⊥ + 8t2(1 + cos(k))

2
(symmetric bands), (8)

EA1,A2(k)

=
−t⊥ ±

√
t2
⊥ + 8t2(1 + cos(k))

2
(antisymmetric bands),

(9)
which are reproduced in Fig. 4 for a = 0, t = t⊥ =
−1. The energy extremals are E

(1)
S1 = (t⊥ −

√
t2
⊥ + 16t2)/2,

E
(1)
A1 = (−t⊥ −

√
t2
⊥ + 16t2)/2, E

(2)
S1 = (t⊥ − |t⊥|)/2, E

(2)
A1 =

E
(1)
S2 = 0, E

(1)
A2 = (−t⊥ + |t⊥|)/2, E

(2)
S2 = (t⊥ +

√
t2
⊥ + 16t2)/

2, E
(2)
A2 = (−t⊥ +

√
t2
⊥ + 16t2)/2.

The LDOS projected on an interacting and a noninteracting
site of the S and A chains can be evaluated by means of
the imaginary part of the Green’s function matrix elements
reported in Appendices A and B, and are reproduced in
Figs. 5(a) and 5(b). In Fig. 5(c), together with the band

FIG. 5. LDOS of the perfect system projected on (a) an interacting (full lines) and a noninteracting site (dashed lines) of the symmetrical
chain S; (b) an interacting (full lines) and a noninteracting site (dashed lines) of the antisymmetrical chain A; (c) on the left part is the sum of
the LDOS on the two sites of the chains S and A, on the right is the total transmittivity as a function of the energy. The quantities are calculated
for a = 0, t = t⊥ = −1.
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structure, are reported the sum of the LDOS on the couple
of sites of the two chains (on the left) and the transmittivity on
the right. It can be observed that T = 2 in the energy intervals
where S and A bands overlap and therefore the transmission
can occur on both the corresponding channels, T = 1 in the
energy intervals covered by a single S or A band, with the
propagation occurring on the corresponding channel; T = 0
elsewhere.

B. Polyacene chain with a substitutional edge impurity

1. Local density of states

A substitutional impurity can be inserted into a polyacene
chain in two nonequivalent positions, which correspond to the
interacting or noninteracting sites of the system in Fig. 3(b). As
for the problem of the coupled chains analyzed in the previous
section, the chains can be decoupled into symmetrical (S) and
antisymmetrical (A) parts, as shown in Figs. 6(a) and 6(b) for
the two cases; after the decoupling, the impurities affect both
chains at the same sites where they are located and are coupled
by the interchain interaction ad/2; the LDOS projected on
relevant sites of the system can be then evaluated by suitable
renormalizations and resummations of the S and A chains, as
shown in Fig. 6.

FIG. 6. Schematic procedure of the decoupling and renormaliza-
tion for a polyacene chain with a substitutional impurity on (a) an
interacting and (b) a noninteracting site.

2. Transmittivity

Exploiting the procedure adopted for the ladder polymer,
we evaluate the transmittivity on the S and A channels of a
polyacene chain with a substitutional impurity of site energy
ad . To calculate the coefficients cS and cA in the case of
impurity located on an interacting or noninteracting site, we
decouple and renormalize the system as in Figs. 6(a) and 6(b),
respectively. The effective site energies and hopping interchain
interactions for the impurity on the interacting site are

ãS = t⊥ + 2t2

E
; ãA = −t⊥ + 2t2

E
; t̃S = t̃A = t2

E
, (10)

while for the impurity on the noninteracting site we have

ãS = 2t2

E − t⊥
; t̃S = t2

E − t⊥
;

(11)

ãA = 2t2

E + t⊥
; t̃A = t2

E + t⊥
.

The above expressions can be inserted into the equations for
the coefficients cS and cA, which in the case of polyacene are

cS = it̃Ssgn(E)

√[
E − ãS

2t̃S

]2

− 1, (12)

cA = −it̃Asgn(E)

√[
E − ãA

2t̃A

]2

− 1. (13)

By substituting Eqs. (10) or (11) into the expressions for cS

and cA, the transmittivity can then be evaluated by means of
Eqs. (6) and (7).

IV. RESULTS FOR THE SUBSTITUTIONAL EDGE
IMPURITY IN POLYACENE

A. Substitutional impurity on an interacting site

1. LDOS

In Fig. 7, we show the LDOS projected on the site where the
impurity is located, for the S (full line) and A (dashed lines)
chain, calculated for t = t⊥ = −1. As it can be noticed, for

FIG. 7. (Color online) LDOS projected on an “interacting site”
where the impurity is located for the S (blue full line) and A channels
(red dashed lines) calculated for t = t⊥ = −1 and ad = 1.
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FIG. 8. (Color online) (a) Transmittivity of the S channel TS (blue full line) and of the A channel TA (red dashed line); (b) total
transmittivity T of a polyacene chain with a substitutional impurity on an interacting site; ad = 1, t = t⊥ = −1. The Fano resonances (FR)
of TA are indicated by arrows.

an impurity of positive energy (ad = 1), two peaks are visible
in the LDOS near the right borders of the two S bands of the
perfect system. They occur at E = −0.947 and 1.586 which
are internal to the continuum of the A bands, very close to dips
at E = −0.942 and 1.598 where LDOS vanishes. A discrete
state is present outside the spectrum of the perfect system, and
is localized at E = 2.698.

The plot of TS and TA for a symmetrical incident wave
calculated for ad = 1 is reported in Fig. 8(a), and the total
transmittivity T is reported in Fig. 8(b). As it can be noticed,
the incident wave can propagate along the two channels
and the impurity may also generate Fano resonances in the
transmittivity. Let us analyze, for instance, the results for TS .
From Figs. 8(a) and 4, we realize that peaks with TS = 1
are found at the onset of the two energy intervals where
two channels of transmission are active [where cA = 0, at
E = (−t⊥ −

√
t2
⊥ + 16t2)/2 = −1.561 and E = −t⊥=1], as

it happens also in the case of the ladder polymer of Sec. II.
An important novelty in the polyacene chain transmittivity

is due to the fact that each channel presents two bands separated
by a gap. For instance, in the case of the S channel, the gap
extends between E = E

(2)
S1 = t⊥ to E = E

(1)
S2 = 0 (see Fig. 4).

If we approach this gap from below, i.e., for E � E
(2)
S1 where

both cS and cA are real, we find that cS → 0 (and cA → t2/t⊥),
and then TS vanishes [see Eq. (7)]. Instead, approaching the
gap from above, i.e., from E � E

(1)
S2 where only the channel S

is active (therefore cS is real and cA imaginary), we find that
cS → |t |√t⊥/E and cA → −i|t |√t⊥/E; these divergences
lead to the result TS → 1 [see Eq. (6)], confirmed by the value
of TS reported in Fig. 8(a).

2. Transmittivity

Let us now investigate the conditions for Fano resonances
in the polyacene chain, exploiting the expressions (12)
and (13) of the coefficients cS and cA for the transmittivity;
we remember that TS = 0 if 2cA − iad/2 = 0, and TA = 0 if
2cS − iad/2 = 0 [see Eq. (6)].7 With respect to the case of the
ladder polymer, for polyacene the S and A bands at E > 0 have
opposite curvatures with respect to the bands at E < 0; this

leads to opposite signs of the coefficients cS and cA, as specified
in Eqs. (12) and (13). By combining these definitions with the
conditions for the cancellation of TS and TA, one finds that for
a positive value of the impurity energy (ad = 1 in our case) no
Fano resonance can be found for the S channel, while two Fano
resonances exist in the transmittivity of the A channel, one for
E > 0 and one for E < 0. The opposite happens if the impurity
energy is negative. Due to the position of the impurity on an in-
teracting site in the original chain, this result can be interpreted
as a replica in the two bands of what is observed in the ladder
polymer.

We remark that the energies of the dips in the Fano
resonance where TA = 0 coincide with the zeros of the
LDOS in the same channel because they occur for conditions
expressed by the same equation. For instance, in the case
of Fig. 8(a), for E < 0 this happens at the solution of the
condition 2cS − iad/2 = 0 (for vanishing TA) and of the con-
dition 2

√
(E − t⊥ − 2t2/E)2 − (2t2/E)2 = ad (for vanishing

LDOS) which, after manipulations, can be shown to be the
same equation. Similar considerations can be made for the
Fano resonances occurring for the transmittivity of the S chain.

FIG. 9. (Color online) S (blue full line) and A (red dashed line)
contributions to the LDOS projected on a “noninteracting site” where
the impurity is located. t = t⊥ = −1, ad = 1.
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FIG. 10. (Color online) (a) Transmittivity of the S channel TS (blue full line) and of the A channel TA (red dashed line); (b) total transmittivity
T of a polyacene chain with a substitutional impurity on a noninteracting site; ad = 1, t = t⊥ = −1. The Fano resonance (FR) of TA and the
antiresonance (AR) of TS are indicated by arrows.

B. Substitutional impurity on a noninteracting site

1. LDOS

In Fig. 9, we show the LDOS projected on the site of the
primitive cell, where the impurity is located, which is not
connected to the adjacent chain. It is worth to notice that
this case is linked to the peculiar topology of the polyacene
structure, and it is absent in the ladder polymer. A peak in the
LDOS is observed at the right border of the higher-energy S

band (at E = 1.650, internal to the spectrum of the perfect
system) very near to a dip with zero minimum (at E = 1.657)
in the LDOS evaluated at the site of the impurity in the A band.
Moreover, another (very small) isolated peak external to the
whole spectrum of the perfect system is found at E = 2.616.

Careful discussion must be paid to the peak in the LDOS
at E ∼ 0. In fact, it is made of the states at the right border of
the lower energy A band and at the left border of the higher S

band (see Fig. 4). The effect of the impurity is to merge these
contributions resulting in the peak at E ∼ 0 and in the dip at
E = 0.058. Differently from the case of Fig. 7, we observe
now that in Fig. 9 no peak occurs at the right border of the
lower S band (E � −1).

2. Transmittivity

The plots of TS and TA are reported in Fig. 10(a); let us
analyze the behavior of TS for specific energies. As it can
be verified, TS = 1 for E = (−t⊥ −

√
t2
⊥ + 16t2)/2 [being

cA = 0, see Eq. (6)]; for E → t−⊥ , cS →
√

t2/(E − t⊥), i.e., cS

diverges, leading again to the result that TS = 1 [see Eq. (6)],
just before the sharp drop to TS = 0 at the onset of the energy
gap; for E → 0±, both cS and cA approach zero: for instance,
for E → 0+, cS ∼

√
−t2E/t⊥ and cA ∼ −i

√
−t2E/t⊥.

It follows that for E → 0+, TS → 1/2 (and TA = 0) and
similarly for E → 0− TA → 1/2 (and TS = 0).

For E → −t⊥, cA → |t t⊥|√|t⊥|/√E + t⊥ and |cS | = 0.5.
Since we are at the border between one- and two-channel
spectra, to estimate TS we have to use the appropriate Eqs. (6)
and (7) for E → −t−⊥ and E → −t+⊥ , respectively. As a
result, we find that at this energy TS = 1/[1 + (a2

d/4)] (in our

case TS = 0.8 for ad = 1); moreover, the energy dependence
of TS presents a different left and right derivative at E = 1
due to the difference between Eqs. (6) and (7) given by the
term cscAa2

d/4.
Thus, differently from the case of impurity located on an

interacting site, in the case of an impurity on a noninteracting
site, only one “0-1” Fano resonance is observed. In fact, for
the A channel a dip approaching zero in the transmittivity
occurs for E = 1.657 (for ad = 1) and the value TA = 1 is
at E = 1.561, which is the right border of the two-channel
transmission [see arrow in Fig. 10(a)]. Instead, for the S

channel only an antiresonance occurs at E = 0.058 (for ad =
1), not associated to an energy value of complete transmittivity.

V. CONCLUSIONS

In this paper, we have studied the electronic and transport
properties of a polyacene chain with a substitutional impurity
on a single edge. We have addressed the effects of quantum
coherence on the sample transmittivity and have shown how
to connect intensity and position of the impurity to Fano
resonances. We have adopted a tight-binding representation
for the ladder system with polyacene topology, evaluating the
density of states by the Green’s function, and the transmittivity
by the scattering matrix formalism.

We have found that if the impurity is located on a
site interacting with the adjacent chain (as it happens in
ordinary ladder polymer situations), two Fano resonances
in the transmittivity are found: according to the sign of the
impurity, these resonances are located in the symmetric or in
the antisymmetric transmission channels. Conversely, we have
observed that if the impurity is located on a site not interacting
with the adjacent chain, only one Fano resonance is found in
one transmission channel associated to an antiresonance in the
transmission of the other channel. In all cases, a zero of the
transmittivity in the symmetric or in the antisymmetric channel
corresponds to a zero of the local density of states in the same
channel projected on the site where the impurity is located,
and to a peak at a close energy in the other channel.
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APPENDIX A: GREEN’S FUNCTIONS AND LDOS OF
PERFECT POLYACENE CHAINS: MATRIX ELEMENTS

RELATIVE TO THE “INTERACTING” SITES

To obtain the Green’s function matrix elements relative
to a given sublattice of the chains S and A, we substitute
the appropriate effective quantities ãS , ãA, and t̃ obtained by
decimation of the other sublattice into the analytic forms for
the infinite and semi-infinite periodic one-dimensional chain,
respectively.21 We can write the relevant energy intervals

as

E − ã ± t⊥ > −2|t̃ |,
E − ã ± t⊥ < +2|t̃ |,

−2|t̃ | < E − ã ± t⊥ < +2|t̃ |,
where the minus sign before the interchain interaction corre-
sponds to the S chain, and the plus sign to the A one. If we
substitute the effective quantities obtained by the decimation
of the sublattice with site energies 0 (noninteracting sites),

these intervals correspond to

[E − (2t2/E) ± t⊥ + (2t2/|E|)] > 0, [E − (2t2/E) ± t⊥ − (2t2/|E|)] < 0,

[E − (2t2/E) ± t⊥ − (2t2/|E|)] < 0 and [E − (2t2/E) ± t⊥ + (2t2/|E|)] > 0.

We can then write the Green’s function matrix elements relative to the “interacting” sites g∞
00S in the form

g∞
00S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1√(
E−t⊥− 2t2

E

)2
−4

(
t2
E

)2
for E <

t⊥−
√

t2
⊥+16t2

2 [E − ã < −2|t̃ |],

− i√
4
(

t2
E

)2
−
(
E−t⊥− 2t2

E

)2
for

t⊥−
√

t2
⊥+16t2

2 < E < t⊥[−2|t̃ | < E − ã < 2|t̃ |],

− 1√(
E−t⊥− 2t2

E

)2
−4

(
t2
E

)2
for t⊥ < E < 0[E − ã < −2|t̃ |],

− i√
4
(

t2
E

)2
−
(
E−t⊥− 2t2

E

)2
for 0 < E <

t⊥+
√

t2
⊥+16t2

2 [−2|t̃ | < E − ã < 2|t̃ |],

1√(
E−t⊥− 2t2

E

)2
−4

(
t2
E

)2
for E >

t⊥+
√

t2
⊥+16t2

2 [E − ã > 2|t̃ |].

(A1)

The matrix elements g∞
00A are

g∞
00A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1√(
E+t⊥− 2t2

E

)2
−4

(
t2
E

)2
for E <

−t⊥−
√

t2
⊥+16t2

2 [E − ã < −2|t̃ |],

− i√
4
(

t2
E

)2
−
(
E+t⊥− 2t2

E

)2
for

−t⊥−
√

t2
⊥+16t2

2 < E < −t⊥[−2|t̃ | < E − ã < 2|t̃ |],

1√(
E+t⊥− 2t2

E

)2
−4

(
t2
E

)2
for − t⊥ < E < 0[E − ã > 2|t̃ |],

− i√
4
(

t2
E

)2
−
(
E+t⊥− 2t2

E

)2
for 0 < E <

−t⊥+
√

t2
⊥+16t2

2 [−2|t̃ | < E − ã < 2|t̃ |],

1√(
E+t⊥− 2t2

E

)2
−4

(
t2
E

)2
for E >

−t⊥+
√

t2
⊥+16t2

2 [E − ã > 2|t̃ |].

(A2)

The analytic forms of the (0,0) matrix element for semi-infinite chains are

g00S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

(
E
t2

)2(
E − t⊥ − 2t2

E
+

√(
E − t⊥ − 2t2

E

)2 − 4
(

t2

E

)2)
for E <

t⊥−
√

t2
⊥+16t2

2 [E − ã < −2|t̃ |],
1
2

(
E
t2

)2(
E − t⊥ − 2t2

E
− i

√
4
(

t2

E

)2 − (
E − t⊥ − 2t2

E

)2)
for

t⊥−
√

t2
⊥+16t2

2 < E < t⊥[−2|t̃ | < E − ã < 2|t̃ |],
1
2

(
E
t2

)2(
E − t⊥ − 2t2

E
+

√(
E − t⊥ − 2t2

E

)2 − 4
(

t2

E

)2)
for t⊥ < E < 0[E − ã < −2|t̃ |],

1
2

(
E
t2

)2(
E − t⊥ − 2t2

E
− i

√
4
(

t2

E

)2 − (
E − t⊥ − 2t2

E

)2)
for 0 < E <

t⊥+
√

t2
⊥+16t2

2 [−2|t̃ | < E − ã < 2|t̃ |],
1
2

(
E
t2

)2(
E − t⊥ − 2t2

E
−

√(
E − t⊥ − 2t2

E

)2 − 4
(

t2

E

)2)
for E >

t⊥+
√

t2
⊥+16t2

2 [E − ã > 2|t̃ |]
(A3)
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and

g00A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

(
E
t2

)2(
E + t⊥ − 2t2

E
+

√(
E + t⊥ − 2t2

E

)2 − 4
(

t2

E

)2)
for E <

−t⊥−
√

−t2
⊥+16t2

2 [E − ã < −2|t̃ |],
1
2

(
E
t2

)2(
E + t⊥ − 2t2

E
− i

√
4
(

t2

E

)2 − (
E + t⊥ − 2t2

E

)2)
for

−t⊥−
√

t2
⊥+16t2

2 < E < 0[−2|t̃ | < E − ã < 2|t̃ |],
1
2

(
E
t2

)2(
E + t⊥ − 2t2

E
−

√(
E + t⊥ − 2t2

E

)2 − 4
(

t2

E

)2)
for 0 < E < −t⊥[E − ã > 2|t̃ |],

1
2

(
E
t2

)2(
E + t⊥ − 2t2

E
− i

√
4
(

t2

E

)2 − (
E + t⊥ − 2t2

E

)2)
for − t⊥ < E <

−t⊥+
√

−t2
⊥+16t2

2 [−2|t̃ | < E − ã < 2|t̃ |],
1
2

(
E
t2

)2(
E + t⊥ − 2t2

E
−

√(
E + t⊥ − 2t2

E

)2 − 4
(

t2

E

)2)
for E >

−t⊥+
√

t2
⊥+16t2

2 [E − ã > 2|t̃ |].
(A4)

APPENDIX B: GREEN’S FUNCTIONS AND LDOS OF PERFECT POLYACENE CHAIN MATRIX ELEMENTS
ON THE “NONINTERACTING” SITES

By substituting the effective quantities obtained by the decimation of the sublattice of the interacting sites to the analytic
forms, we obtain the Green’s function matrix elements relative to the noninteracting sites in the form

g∞
00S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1√(
E− 2t2

E−t⊥

)2
−4

(
t2

E−t⊥

)2
for E <

t⊥−
√

t2
⊥+16t2

2 ,

− i√
4
(

t2
E−t⊥

)2
−
(
E− 2t2

E−t⊥

)2
for

t⊥−
√

t2
⊥+16t2

2 < E < t⊥,

− 1√(
E− 2t2

E−t⊥

)2
−4

(
t2

E−t⊥

)2
for t⊥ < E < 0,

− i√
4
(

t2
E−t⊥

)2
−
(
E− 2t2

E−t⊥

)2
for 0 < E <

t⊥+
√

t2
⊥+16t2

2 ,

1√(
E− 2t2

E−t⊥

)2
−4

(
t2

E−t⊥

)2
for E >

t⊥+
√

t2
⊥+16t2

2 ,

(B1)

and the matrix elements g∞
00A are

g∞
00A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1√(
E− 2t2

E+t⊥

)2
−4

(
t2

E+t⊥

)2
for E <

−t⊥−
√

t2
⊥+16t2

2 ,

− i√
4
(

t2
E+t⊥

)2
−
(
E− 2t2

E+t⊥

)2
for

−t⊥−
√

t2
⊥+16t2

2 < E < −t⊥,

1√(
E− 2t2

E

)2
−4

(
t2

E+t⊥

)2
for − t⊥ < E < 0,

− i√
4
(

t2
E+t⊥

)2
−
(
E− 2t2

E+t⊥

)2
for 0 < E <

−t⊥+
√

t2
⊥+16t2

2 ,

1√(
E− 2t2

E+t⊥

)2
−4

(
t2

E+t⊥

)2
for E >

−t⊥+
√

t2
⊥+16t2

2 .

(B2)

The analytic forms of the (0,0) matrix element for semi-infinite chains are

g00S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

(
E−t⊥

t2

)2(
E − 2t2

E−t⊥
+

√(
E − 2t2

E−t⊥

)2 − 4
(

t2

E−t⊥

)2)
for E <

t⊥−
√

t2
⊥+16t2

2 [E − ã < −2|t̃ |],
1
2

(
E−t⊥

t2

)2(
E − 2t2

E−t⊥
− i

√
4
(

t2

E−t⊥

)2 − (
E − 2t2

E−t⊥

)2)
for

t⊥−
√

t2
⊥+16t2

2 < E < t⊥[−2|t̃ | < E − ã < 2|t̃ |],
1
2

(
E−t⊥

t2

)2(
E − 2t2

E−t⊥
+

√(
E − 2t2

E−t⊥

)2 − 4
(

t2

E−t⊥

)2)
for t⊥ < E < 0[E − ã < −2|t̃ |],

1
2

(
E−t⊥

t2

)2(
E − 2t2

E−t⊥
− i

√
4
(

t2

E−t⊥

)2 − (
E − 2t2

E−t⊥

)2)
for 0 < E <

t⊥+
√

t2
⊥+16t2

2 [−2|t̃ | < E − ã < 2|t̃ |],
1
2

(
E−t⊥

t2

)2(
E − 2t2

E−t⊥
−

√(
E − 2t2

E−t⊥

)2 − 4
(

t2

E−t⊥

)2)
for E >

t⊥+
√

t2
⊥+16t2

2 [E − ã > 2|t̃ |]

(B3)
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and

g00A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

(
E+t⊥

t2

)2(
E − 2t2

E+t⊥
+

√(
E − 2t2

E+t⊥

)2 − 4
(

t2

E+t⊥

)2)
for E <

−t⊥−
√

−t2
⊥+16t2

2 [E − ã < −2|t̃ |],
1
2

(
E+t⊥

t2

)2(
E − 2t2

E+t⊥
− i

√
4
(

t2

E+t⊥

)2 − (
E − 2t2

E+t⊥

)2)
for

−t⊥−
√

t2
⊥+16t2

2 < E < 0[−2|t̃ | < E − ã < 2|t̃ |],
1
2

(
E+t⊥

t2

)2(
E − 2t2

E+t⊥
−

√(
E − 2t2

E+t⊥

)2 − 4
(

t2

E+t⊥

)2)
for 0 < E < −t⊥[E − ã > 2|t̃ |],

1
2

(
E+t⊥

t2

)2(
E − 2t2

E+t⊥
− i

√
4
(

t2

E+t⊥

)2 − (
E − 2t2

E+t⊥

)2)
for − t⊥ < E <

−t⊥+
√

−t2
⊥+16t2

2 [−2|t̃ | < E − ã < 2|t̃ |],
1
2

(
E+t⊥

t2

)2(
E − 2t2

E+t⊥
−

√(
E − 2t2

E+t⊥

)2 − 4
(

t2

E+t⊥

)2)
for E >

−t⊥+
√

t2
⊥+16t2

2 [E − ã > 2|t̃ |].
(B4)
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