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Using a similarity Hamiltonian renormalization procedure, we determine an effective spin- 1
2 representation

of the Bose-Hubbard model at half-integer filling and at a finite onsite interaction energy U . By means of
bosonization, we are able to recast the effective Hamiltonian as that of a spin- 1

2 XXZ magnetic chain with
pertinently renormalized coupling and anisotropy parameters. We use this mapping to provide analytical estimates
of the correlation functions of the Bose-Hubbard model. We then compare such results with those based on density
matrix renormalization group numerical simulations of the Bose-Hubbard model for various values of U and for
a number L of lattice sites as low as L ∼ 30. We find an excellent agreement up to 10% between the output of
analytical and numerical computations, even for relatively small values of U . Our analysis implies that, also at
finite U , the one-dimensional Bose-Hubbard model with suitably chosen parameters may be seen as a quantum
simulator of the XXZ chain.
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I. INTRODUCTION

The study of magnetic systems is one of the most active
fields of research in condensed matter physics:1 the variety of
emerging ground states, as well as the rich phase diagram of
magnetic lattices, makes these systems an optimal testbed to
probe the competition between various orders and frustration
effects.2 From this perspective, it would be very useful to be
able to engineer synthetic physical systems effectively describ-
ing magnetic model Hamiltonians, with tunable geometry and
parameters.

A promising route is provided by cold-atomic setups: for
instance, itinerant magnetism in bulk ultracold Fermi systems
with repulsive interactions has been experimentally studied,3

while small spin networks have been simulated with ion
chains.4 Effective nearest-neighbor spin-spin interactions for
atoms in neighbor wells of an optical lattice may result from
superexchange couplings: the corresponding second-order
tunneling has been observed in an array of double wells.5

Furthermore, using fast oscillations of the optical lattice,
it is possible to control the sign of the nearest-neighbor
tunneling,6 which has been recently used to simulate classical
frustrated magnetism in triangular lattices.7 One may also
use two-component gases where the two internal degrees
of freedom correspond to the simulated (pseudo)spins. Spin
interactions can be tuned by adjusting the external potential.8

The recent realization of controllable Bose-Bose mixtures9

paves the way towards the experimental simulation of spin
Hamiltonians, in which the atomic counterpart of magnetic
phases, such as antiferromagnetic Néel and XY ferromagnetic
phases (respectively corresponding to the checkerboard and
the supercounterfluid phases10) may be detected and studied.

A key tool in the manipulation of ultracold-atomic systems
is the possibility to superimpose and control optical lattices.11

The low-energy properties of ultracold bosons in deep

optical lattices are well captured by the Bose-Hubbard (BH)
Hamiltonian12

HBH =
∑
〈i,j〉

[−t(b†i bj + b
†
j bi) + V ninj ] + U

2

∑
i

ni(ni − 1).

(1)

In Eq. (1), 〈i,j 〉 stands for any pair of nearest-neighboring sites,
while the operators b

†
i (bi), with [bi,b

†
j ] = δi,j and ni = b

†
i bi ,

create (annihilate) a boson in the site i. The parameter t denotes
the hopping strength, and U (V ) is the interaction energy of
two particles at the same site (at two nearest-neighboring sites).

The use of optical lattices in ultracold-atomic systems is
also central in other proposals to simulate spin Hamiltonians,
such as the quadratic-biquadratic spin model13 or antiferro-
magnetic spin chains.14 Following the latter suggestion, by
means of a tilted one-dimensional (1D) optical lattice, the Ising
chain in a transverse field was experimentally simulated.15

The paramagnetic, as well as the antiferromagnetic phase (and
the corresponding quantum phase transition), were detected
by measuring the probability to have an odd occupation of
sites, while the formation of magnetic domains was observed
using in situ site-resolved imaging and noise correlation
measurements.15

For very large values of U , i.e., for t/U � 1, the BH model
can be mapped into the Heisenberg XXZ spin- 1

2 Hamiltonian

HXXZ = −J
∑
〈i,j〉

(
sx
i sx

j + s
y

i s
y

j − �sz
i s

z
j

)
, (2)

where �si = �σi/2 = (sx
i ,s

y

i ,sz
i ) are the S = 1

2 spin operators, �σi

being the Pauli matrices, J is the nearest-neighbor coupling,
and � is the anisotropy parameter (� = ±1 respectively
correspond to the antiferromagnetic and the ferromagnetic
isotropic Heisenberg models).
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The use of lattice spin systems for interacting bosons traces
back to the classical papers by Matsubara and Matsuda in
the 1950s, where the properties of helium II were studied
assuming that each atom can occupy one of the lattice points.16

The further assumption that two atoms can not simultaneously
occupy the same lattice site (due to the hard-core part of the
interparticle interaction between helium atoms17) leads to an
effective spin model in a magnetic field.16 To qualitatively
understand the emergence of a spin representation of the
one-component BH model, one may say that, for U → ∞
and if two states per site give a dominant contribution to the
energy, an XXZ Hamiltonian is retrieved: this is exactly what
happens when the filling f , defined as the average number of
bosons per lattice site, is half-integer. Indeed, for f = n̄ + 1

2 ,
with n̄ integer, the relevant states in the Fock space are
given by |n̄〉 and |n̄ + 1〉 (deviations from half-integer fillings
would result in a magnetic term in the XXZ Hamiltonian).
For half-integer f , at the leading order in t/U → 0, one
has J = 2t(f + 1/2) and � = V/J (see the discussion
in Sec. III).

The XXZ model is a paradigmatic spin Hamiltonian which
has been the object of many investigations and that in 1D is
exactly solvable by Bethe ansatz;18,19 this provides an ideal
arena to test different analytical and numerical techniques,
from bosonization20,21 to density matrix renormalization group
(DMRG).22 The study of (static and dynamical) correla-
tion functions in this model is currently an active area of
research23–32 and exact analytical results for the correlation
functions at small distance (both at zero and finite temperature)
are by now available.25 The asymptotic form of the ground-
state correlation functions in the thermodynamic limit is power
law with an exponent that has been obtained by comparing
the result of Abelian bosonization with the Bethe ansatz
solution:33 for an open chain in the region −1 � � � 1, the
numerical findings for correlation functions obtained with
DMRG were compared with the results of a low-energy
field theory, showing a very good agreement and allowing
for precise estimates of the amplitudes of the correlation
functions.34 In turn, the obtained amplitudes were found in
agreement with the analytical expressions given by Lukyanov
and Zamolodchikov.35,36 Finally, exact results for the XXZ
chain in a special scaling limit were used to compute the
local correlations of a continuous Lieb-Liniger 1D Bose
gas.37

In this paper, we determine a correspondence between the
BH chain at half-integer filling for finite U and a 1D XXZ
spin- 1

2 model. This enables us to provide analytical expressions
for the BH correlation functions, which we compare with
numerical results obtained with DMRG, showing that there
is a very good agreement both at large and small distances and
also for U/J as low as ∼2 and for a number of sites L � 30. As
a consequence, the numerical determination of the superfluid
to charge-density-wave and superfluid to Mott-insulator phase
transitions (respectively corresponding, in the effective XXZ
chain, to �eff = 1 and −1) well agrees with the analytical
results for the XXZ chain. Using our approach, we are able
not only to provide analytical expressions for the 1D BH
correlation functions, but also to show that the BH chain at
half-integer filling provides a reliable quantum simulator of
the XXZ chain.

In the following, we derive an effective spin- 1
2 Hamiltonian

for the BH chain at half-integer filling as a power series of t/U .
Following Refs. 38 and 39, we perform a continuous unitary
transformation S which block-diagonalizes the Hamiltonian in
the basis of the eigenvectors of HBH with t = 0 and determine
S perturbatively to the order (t/U )2 (a similar technique has
been used in Ref. 40 for the fermionic Hubbard model). We
finally show that, using bosonization, this Hamiltonian can be
recast in the XXZ form with pertinent coupling and anisotropy
parameters. We observe that, while to the first order in t/U

one finds an XXZ model with J = 2t(f + 1
2 ) and � = V/J , to

the next order in t/U one gets an effective spin Hamiltonian
which is not of the XXZ form since it also contains next-
nearest neighbors and three-spin terms (this is the bosonic
counterpart of a similar computation done for the 1D, as well
as for the 2D, Fermi-Hubbard model,41–43 where four-spin
terms appear). However, in 1D it is possible to proceed further
using bosonization: introducing a Luttinger-liquid description
of the effective Hamiltonian, we are able to incorporate the
long-wavelength behavior of non-XXZ terms in the effective
coupling and anisotropy parameters Jeff and �eff , which are
now functions of t , V , f , and U .

The plan of the paper is the following: after introducing
the BH and the XXZ models and recalling some useful
properties and results (Sec. II), we employ the continuous
unitary transformation introduced by Glazek and Wilson38

to approximate the BH chain at half-integer filling with
an effective spin- 1

2 Hamiltonian (Sec. III). In Sec. IV, we
use bosonization to recast this effective Hamiltonian as an
XXZ Hamiltonian, with coupling Jeff and anisotropy �eff ,
while in Sec. V we establish the correspondence between the
correlation functions of the BH model and those of the XXZ
chain. We then proceed in comparing the analytical results
obtained for the BH correlation functions with the numerical
findings obtained by DMRG numerical simulations (Sec. VI),
both for the correlation functions and the phase-transition
points. Section VII is devoted to our conclusions, while more
technical details are contained in the Appendices.

II. MODEL HAMILTONIANS

Let us start by reviewing the basic properties of the BH and
of the spin- 1

2 XXZ Hamiltonians, in particular focusing on
known analytical results about the real-space spin correlations
in the XXZ chain.

A. Bose-Hubbard model

The low-energy properties of interacting bosons in a one-
dimensional deep optical lattice are in general well described
by the Bose-Hubbard Hamiltonian (1), which, in 1D and with
open boundaries, reads as

HBH = −t

L−1∑
i=1

(b†i bi+1 + b
†
i+1bi)

+ U

2

L∑
i=1

ni(ni − 1) + V

L−1∑
i=1

nini+1. (3)
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We denote with N the total number of particles in the L-site
chain so that the filling f , that is, the average number of
particles per site, is given by f = N

L
. For alkali atoms usually

V � U , but with dipolar gases (or polar molecules) V could
be comparable with U : experiments with dipolar gases44

and long-lived ground-state polar molecules45 in optical
lattices have been already performed (see also the review
in Ref. 46).

A large amount of experiments investigated the properties
of the BH model: the main reason for this interest lies in the fact
that this model exhibits a quantum phase transition between
a superfluid phase (for t/U 	 1) and a Mott insulator (for
t/U � 1).47 A finite V generally favors charge-density-wave
phases: e.g., for half-integer filling f = 1

2 , a large V 	 t,U

will result in a ground state of the type |1,0,1,0, . . .〉 (where in
general |n1,n2,n3, . . .〉 is an eigenfunction of HBH with t = 0).
The ground state of the BH model has been studied in the
seminal paper in Ref. 47 using the grand-canonical ensemble,
where the chemical potential μ is introduced to enforce the
constraint on the number of particles. The phase diagram in
the U -μ plane shows the characteristic lobes: for a pertinently
fixed value of μ, the half-integer fillings correspond to the
“basis” of the lobes (i.e., where the lobes touch) and, for V = 0,
one has a superfluid for each finite value of t , while a finite and
positive value of V gives rise to a charge-density-wave region
among the Mott lobes.

The Mott-insulator/superfluid transition was first observed
in 3D (Ref. 48) and subsequently in 1D (Ref. 49) and 2D
(Ref. 50). The effect of a superimposed external potential
(typically a parabolic one) has been also considered: the
so-called wedding-cake-like density has been studied both
theoretically51,52 and experimentally.53,54 The coherence prop-
erties of ultracold bosons in optical lattices have been studied,
as well, showing that phase coherence on short-length scales
still persists deep in the insulating phase.55 The BH model in
a 1D geometry can be obtained either by tightly confining the
bosonic cloud in two radial directions in presence of a periodic
potential in the transverse direction, or by creating many
(eventually uncoupled) tubes with a 2D optical lattice. The
properties of strongly correlated phases across the superfluid
to Mott-insulator phase transition have been analyzed in 1D
by means of Bragg spectroscopy.56 The excitation spectrum
in the strongly interacting regime has been also studied in
presence of a tunable disorder, created by a bichromatic
optical lattice, showing a broadening of the Mott-insulator
resonances.57

The finite-V 1D BH model has been studied with a
number of analytical and numerical techniques: in particular,
in Ref. 58 the phase boundaries of the Mott insulators and
charge-density-wave phases were determined by DMRG. The
zero-temperature phase diagram both of the BH model and of
a spin-S Heisenberg model was constructed and their relation
investigated.59 The role of V in inducing supersolid phases in
the BH chain was also studied.60–63 Bosonization techniques
have been applied as well to BH chains, providing a very
effective way to compute the correlation functions and their
decay at large distance.64

Finally, we mention that the effect of intersite interactions
was considered since the 1990s in the related quantum phase
model, describing Josephson junction arrays:65 this can be

obtained from the BH model for large filling per site when
the number fluctuations are negligible in the kinetic term. The
chemical potential term in the BH model corresponds to the so-
called “offset charge” q, which are external charges present in
the superconducting network:65 the lobes in the quantum phase
model are equal since there is an invariance for q → q + 2e (2e

being the charge of the Cooper pairs), and a half-integer value
of the filling f corresponds to half-integer values of the offset
charges q/2e. The study of intersite interactions is relevant in
Josephson junction arrays since the interaction term depends
on the capacitance matrix Cij , which is in general not diagonal,
resulting in terms of the form Vijninj , where Vij ∝ (Cij )−1:
as a mean-field analysis shows,66 for a diagonal capacitance
matrix one has that at T = 0, the superconducting phase is
obtained for each value of the Josephson energy EJ (∝t in the
mapping) and that at q = e one has a finite critical temperature
for the Mott-insulator/superfluid transition for each finite value
of EJ (unlike q = 0, where a critical value of EJ is required).
Nondiagonal terms of the capacitance matrix favor charge
density waves:65 the role of the intersite terms was considered
for superconducting chains and the corresponding phase
diagram investigated,67,68 revealing that in 1D a (superconduct-
ing) repulsive Luttinger-liquid phase exists. The opening of
Luttinger-liquid phases with tunable parameters also allows for
designing Josephson junction networks supporting emerging
two-level quantum systems with a high level of quantum
coherence.69–71

To conclude this section, let us mention that, in the rest
of the paper, we will mostly deal with half-integer fillings
f ≡ n̄ + 1

2 , with n̄ = 0,1,2, . . . . The reason for such a choice
is that in this case the relevant states for the description
of system for U → ∞ are just |n̄〉 and |n̄ + 1〉. Simple
arguments, reviewed in Sec. II B, then show that, to first order
in t/U , the BH Hamiltonian is mapped into an XXZ spin- 1

2
Hamiltonian which is integrable in 1D. Within the XXZ-model
framework, it is also possible to consider small deviations from
the half-filled regime, which mainly give rise to a uniform
magnetic field in the z direction. Even though we will not
consider large fluctuations in f (of order 1), it is possible
to take them into account by keeping, as relevant states for
U → ∞, |n̄〉, |n̄ − 1〉, |n̄ + 1〉. In this case, an effective spin-1
XXZ effective model (in general not integrable) is expected.72

Spin-1 models exhibit a gapped (Haldane) insulator phase,73,74

which has been investigated in the context of the 1D BH
model.75–78

B. XXZ chain

For a chain with L sites and open boundaries, the Hamil-
tonian of a spin- 1

2 XXZ model given in Eq. (2) particularizes
to

HXXZ = −J

L−1∑
i=1

(
sx
i sx

i+1 + s
y

i s
y

i+1 − �sz
i s

z
i+1

)
. (4)

The global minus sign in the couplings has been introduced
in order to more easily perform the comparison with the BH
model, and it can be readily gauged away by implementing
the canonical mapping to the spin- 1

2 operators τ a
j defined as
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τ
x,y

j = (−1)j sx,y

j , τ z
j = sz

j . Therefore, the chain is antiferro-
magnetic (ferromagnetic) for � positive (negative).

Following Ref. 16, one can derive the Hamiltonian in Eq. (4)
from the BH Hamiltonian (3) at half-integer filling f and for
U → ∞. To do so, let us define sz

j ≡ nj − f (so that the

eigenvalues of sz
j are ± 1

2 ). Since for t = 0 the energy per
particle is (for L → ∞) ε = Uf (f − 1)/2 + Vf 2, it follows

that HBH
t→0−→ V sz

j s
z
j+1, i.e.,

J� ≡ V. (5)

Similarly, for f 	 1, one gets J ≈ 2tf as one can see by
putting bi ∼ √

f eiφi and mapping the obtained result in the
XXZ spin- 1

2 language:67 for finite values of f , one gets (see
Sec. III)

J ≡ 2t
(
f + 1

2

)
. (6)

Equations (5) and (6) provide the desired mapping between the
BH model and the XXZ Hamiltonian to lowest order in t/U .
However, as we are going to see in Sec. V, to get a quantitative
agreement between the BH and the XXZ correlation functions
even for t/U relatively small (as low as 0.1 for f = 1

2 ), one has
to go to the next order in t/U : the corresponding Hamiltonian
is determined in Sec. III and recast in XXZ form via a Luttinger
representation in Sec. IV. We remark that, since our results are
obtained at half-integer filling, we may omit the addition of a
magnetic field term of the form ∝∑L

i=1 sz
i to Eq. (4). Indeed

such a term is proportional to the total spin Sz
T = ∑L

i=1 sz
i

in the z direction and, since the system is half-filled, only
eigenstates of HXXZ with Sz

T = 0 are physically meaningful
[notice that in the following, analytical results based on the
XXZ Hamiltonian (4) are compared with numerical DMRG
simulations of the BH chain in the canonical ensemble, where∑

i ni is conserved and equal to N ].
The Hamiltonian HXXZ is exactly solvable by means of

standard Bethe ansatz techniques:18,19 however, explicitly
computing the real-space spin-spin correlation functions is
quite a difficult task. Exact analytical results for short-range
correlators in a range of up to seven lattice sites were reported
for the isotropic Heisenberg model in Ref. 31, in the thermo-
dynamic limit (L → ∞), and at arbitrary finite temperature,
and for finite chains of arbitrary length L in the ground state.
Results for short-range correlation functions are also available
for the XXZ chain.25 For large distances, using the standard
bosonization approach20,21 to the spin- 1

2 XXZ model,79 one
may find out all the spin-spin correlation functions in terms

of two-point correlators of pertinent conformal operators:34 in
the thermodynamic limit one finds the asymptotic forms

〈ψ0|sz
i s

z
j |ψ0〉 = (−1)i−j Az

|i − j |1/η
− 1

4π2η (i − j )2 , (7)

〈ψ0|sx
i sx

j |ψ0〉 = (−1)i−j Ax

|i − j |η − Ãx

|i − j |η+1/η
, (8)

where |ψ0〉 is the ground state of HXXZ and we set33

η = 1 − 1

π
arccos �. (9)

Analytical expressions for the correlation amplitudes Ax , Ãx ,
and Az entering Eqs. (7) and (8), were presented in Refs. 35
and 36 and further discussed in Ref. 80 (see also the discussion
in Sec. V of Ref. 32):

Ax = Aη

8(1 − η)2
e−Ix , (10)

Ãx = Aη+1/η

2η(1 − η)
e−Ĩx , (11)

Az = 2A1/η

π2
eIz , (12)

with

Ix =
∫ ∞

0

dt

t

(
sinh(ηt)

sinh(t) cosh[(1 − η)t]
− ηe−2t

)
,

Ĩx =
∫ ∞

0

dt

t

(
cosh(2ηt)e−2t − 1

2 sinh(ηt) sinh(t) cosh[(1 − η)t]

+ 1

sinh(ηt)
− η2 + 1

η
e−2t

)
,

Iz =
∫ ∞

0

dt

t

(
sinh[(2η − 1)t]

sinh(ηt) cosh[(1 − η)t]
− 2η − 1

η
e−2t

)
,

and

A =
�

(
η

2(1−η)

)
2
√

π �
(

1
2(1−η)

) , (13)

and �(x) being the Euler’s gamma function.
Analytical expressions (in the large-L limit) for the sub-

sequent prefactors of the correlation functions are reported in
Refs. 27 and 32. For chains of finite size L with open boundary
conditions, one obtains34

〈ψ0|sz
i s

z
j |ψ0〉 = (−1)i−j a2

2f 1
2η

(2i)f 1
2η

(2j )

(
f 1

η
(i + j )

f 1
η
(i − j )

−
f 1

η
(i − j )

f 1
η
(i + j )

)
− 1

4π2η

(
1

f2(i − j )
+ 1

f2(i + j )

)

− a

2πη

{
(−1)i

f 1
2η

(2i)
[g(i − j ) + g(i + j )] − (−1)j

f 1
2η

(2j )
[g(i − j ) − g(i + j )]

}
(14)
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and

〈ψ0|sx
i sx

j |ψ0〉 = f η

2
(2i)f η

2
(2j )

fη(i − j )fη(i + j )

{
(−1)i−j c2

2
− b2

4f 1
2η

(2i)f 1
2η

(2j )

[
f 1

η
(i + j )

f 1
η
(i − j )

+
f 1

η
(i − j )

f 1
η
(i + j )

]

− bc

2
sgn(i − j )

[
(−1)i

f 1
2η

(2j )
− (−1)j

f 1
2η

(2i)

]}
, (15)

where sgn(x) is the sign function and

fα(x) =
[

2(L + 1)

π
sin

(
π |x|

2(L + 1)

)]α

, (16)

g(x) = π

2(L + 1)
cot

(
πx

2(L + 1)

)
, (17)

with

c2

2
≡ Ax,

b2

4
≡ Ãx,

a2

2
≡ Az (18)

(here and in the following all the distances are in units of the
lattice constant).

The agreement between exact numerical calculations of
the XXZ correlation functions and analytical expressions
in (14) and (15) is very good, and it becomes excellent
with L ∼ 100 for −0.8 � � � 0.8.34 Thus, one may readily
assume that Eqs. (14) and (15) provide quite an accurate
analytical expression for the spin-spin correlation functions in
the XXZ model.81 As a consequence, constructing a rigorous
mapping between the BH and the XXZ spin- 1

2 Hamiltonian and
expressing correlation functions of one model in terms of the
ones of the other model gives an efficient and straightforward
way to provide accurate analytic expressions for real-space
correlation functions in the BH model at half-integer filling.

We finally observe that the only system-dependent param-
eter determining the spin-spin correlation functions is the
coefficient η: thus, in tracing out the mapping between the two
models, this is the key quantity to be calculated as a function
of the BH parameters. In particular, one may distinguish
between the regions in parameter space with η > 1

2 and η < 1
2 :

while the former one corresponds to an antiferromagnetic spin
chain, the latter one (which may be realized for pertinently
chosen values of the parameters of HBH, as we shall show
below) corresponds to a ferromagnetic chain.

III. EFFECTIVE SPIN- 1
2 HAMILTONIAN

FOR THE BOSE-HUBBARD MODEL AT
HALF-INTEGER FILLING

As reviewed in the previous section, for U → ∞, the BH
Hamiltonian maps onto the XXZ model in Eq. (4), with the
parameters J,� given in Eqs. (5) and (6). This may be seen as
a first-order term in an expansion (in powers of t/U ) aimed
at computing the effective Hamiltonian: in this section, we
compute this effective Hamiltonian to the next order. As we
shall show in the following, this is enough to fit quite well the
numerical data for the correlation functions of the BH model
using the analytical results obtained for the correlators of the
XXZ chain.

To approach the large-U limit, one may either proceed
by performing a strong-coupling expansion to the second or
higher order of perturbation theory, or by deriving effective
Hamiltonians using alternative techniques, based on canonical
transformations or continuous unitary transformations.82 At
integer filling, for instance, it is possible to evaluate the energy
of the Mott insulator and of the superfluid state in higher-
order perturbation theory and determine the phase diagram
in the U -μ plane.83 Since we are rather interested to the BH
at half-integer filling, i.e., in the region of the phase diagram
where the lobes touch and the superfluid phase persists also
at very small U (with V = 0), we found it convenient to use
an approach based on continuous unitary transformations.38,39

We follow the notation and the method presented in the paper
by Glazek and Wilson (GW) (Ref. 38): systematically using
the GW renormalization procedure, we work out an effective
description of the dynamics of the BH model, restricted to
the low-energy subspace determined by the constraint on the
total number of particles and by the large-U assumption. As a
result, the low-energy subspace is spanned by states with either
n̄ or n̄ + 1 particles per site, with the total number of particles
being fixed to N . Thus, the space of physically relevant states
at each site is in one-to-one correspondence with the Hilbert
space of states of a quantum spin- 1

2 degree of freedom; we
shall see that, at half-integer filling, even for finite U the BH
model may be replaced by an effective spin- 1

2 Hamiltonian,
with pertinently determined parameters. The method amounts
to an iterative block-diagonalization of the BH Hamiltonian
on the space of eigenfunctions of HBH with t = 0.

To illustrate the procedure, we start from the explicit
construction of the “low-energy” Hilbert space of physically
relevant states, in the large-U limit. Neglecting excitations
with energy ∼U amounts to truncating the Hilbert space to a
subspace F , defined as

F = Span{|n̄ + μ1, . . . ,n̄ + μL〉}, (19)

with μi taking the values μi = 0,1 and
∑L

i=1 μi = L
2 . In

Eq. (19), |n1, . . . ,nL〉 labels the state in the Hilbert space with
ni particles on site i. To implement the GW approach, one
splits the Hamiltonian (3) as HBH = H0 + HI , with

H0 = U

2

∑
i

ni(ni − 1) + V
∑

i

nini+1, (20)

HI = −t
∑

i

(b†i bi+1 + b
†
i+1bi). (21)

From Eqs. (20) and (21), one sees that H0 is diagonal with
respect to the partition of the Hilbert space into F plus its
orthogonal complement since

H0|n1, . . . ,nL〉 = E0[n1, . . . ,nL]|n1, . . . ,nL〉 (22)
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with E0[n1, . . . ,nL] = (U/2)
∑

i ni(ni − 1) + V
∑

i nini+1,
while HI exhibits off-diagonal (with respect to the partition of
the Hilbert space) matrix elements which are O(t n̄). In order
to block-diagonalize HBH, one needs to perform a similarity
transformation38

HBH → H̃BH = S†HBHS, (23)

with S unitary. Upon setting S = I + T, the unitarity of S
implies the optical theorem

T + T† + T†T = 0. (24)

Setting T ≡ h + a, with

h = 1
2 (T + T†), a = 1

2 (T − T†), (25)

one finds that Eq. (24) yields

h = 1
2 (a2 − h2). (26)

Equation (26) shows that h is always “higher order” than a.
Following Ref. 38, it is most convenient to define the new
interaction Hamiltonian H̃I as

H̃I = H̃BH − H0 (27)

so that the new “free” Hamiltonian is the same as the old one
(H0).

To further proceed and determine S, one has to require
that the matrix elements of H̃I between states with energy
difference � U are equal to zero, amounting to state that H̃I

is block-diagonal with respect to the partition of the Hilbert
space into F plus its orthogonal complement, i.e.,

PH̃IP + (I − P) H̃I (I − P) = H̃I , (28)

where P is the projector onto F and I − P the projector onto
its complementary subspace.84 One sees that Eq. (28) implies
that

PH̃I (I − P) = (I − P) H̃IP = 0. (29)

Using Eqs. (23), (25), and (27), one may write H̃I as

H̃I = (I + h − a) (H0 + HI ) (I + h + a) − H0 (30)

and Eq. (29) then becomes

P{HI + {H0,h} + [H0,a] + T†HI + HI T

+ T†HI T} (I − P) = 0. (31)

Equation (31), together with the identity

a = Pa (I − P) + (I − P) aP (32)

and with Eq. (26), is all that one needs in principle to fully
determine a and h (and, therefore, the operator T).

However, except for some simple cases,39 an explicit
solution for T can not be exhibited. For this reason, we proceed
by writing the solution for T iteratively, in a series in HI : in
particular, we use Eq. (31) to determine a to first order (a1) in
HI . We provide the details in Appendix A and the result for a1
in Eq. (A4). Using Eq. (A4) and setting T ≈ a1, we find that
Eq. (23) reads as

S†HBHS = HBH + [H0,a1] + [HI ,a1]. (33)

The GW procedure may be readily iterated to determine, in
principle, T to any desired order in HI . However, since keeping

only second-order contributions in HI provides already quite
an excellent estimate for the real-space correlation functions
of operators in the BH model (as explicitly shown by the
numerical calculations we report in Sec. VI), setting T ≈ a1
already provides quite a good approximation to the exact T.

Since the approach we are implementing is perturbative in
HI , one should enforce Eq. (31), as well as Eq. (32), to each
order in HI ; moreover, sinceP[H0,a1]P = 0, one may neglect
the term [H0,a1] in Eq. (33) and approximate the effective
Hamiltonian acting within F as

Heff = P {HBH + [HI ,a1]}P ≡ H
(0)
XXZ + H (1). (34)

The first term in the right-hand side of Eq. (34) yields a
spin- 1

2 Hamiltonian which is actually the spin- 1
2 XXZ chain

introduced in Sec. II B and having the anisotropy and the
coupling given by Eqs. (5) and (6):

H
(0)
XXZ ≡ PHBHP = −J

∑
i

(
sx
i sx

i+1 + s
y

i s
y

i+1 − V

J
sz
i s

z
i+1

)

(35)

with J = 2t(f + 1
2 ) (constant terms have been omitted). The

effective spin- 1
2 operators are defined as

sx
i = 1

2
√

f + 1
2

P(bi + b
†
i )P,

s
y

i = i

2
√

f + 1
2

P(−bi + b
†
i )P, (36)

sz
i = P(b†i bi − f )P;

the boson number eigenstates at site i correspond to the
eigenstates of sz

i according to |n̄〉i ↔ |↓〉i , and |n̄ + 1〉i ↔
|↑〉i . Therefore, the result in Eq. (35) corresponds to the
“naive” large-U limit for the BH model at half-integer filling
discussed in Sec. II B, in which off-diagonal matrix elements
of relevant operators (including the Hamiltonian itself) are set
to zero from the very beginning.

Corrections to H
(0)
XXZ arising from virtual transitions in-

volving states outside of F may be properly accounted for
within GW procedure, allowing to get the effective spin- 1

2
Hamiltonian to the next order in t/U . Summing over all virtual
transitions outside of F induced by HI , one finds

H (1) ≡ P[HI ,a1]P = −t2
∑
j,


P(b†j bj+1 + b
†
j+1bj )

× (I − P)(HBH)−1(I − P)(b†
b
+1 + b
†

+1b
)P. (37)

In particular, when computing H (1), one has to consider
intermediate states with either one of the μj in Eq. (19) being
equal to 2, or to −1 (all these states have energy ∼U , with
respect to states in the subspace F), or states with one of the
μj equal to 2 (−1), and the other equal to −1 (2) (all these states
have energy ∼2U , with respect to states in the subspace F).
Thus, one eventually finds out that H (1) can be written as the
sum of two terms: H (1) = H

(1)
diag + H

(1)
offd, with H

(1)
diag being the

part of H (1) having one- and two-nearest-neighbor spin terms,
while H

(1)
offd contains two-next-nearest-neighbor and three-

spin terms. Omitting constant terms, their expressions are

035104-6



XXZ SPIN- 1
2 REPRESENTATION OF A FINITE- . . . PHYSICAL REVIEW B 87, 035104 (2013)

given by

H
(1)
diag = −4(n̄ + 1)t2

U

∑
i

sz
i − t2

U
(3n̄2 + 6n̄ + 4)

∑
i

sz
i s

z
i+1,

(38)

H
(1)
offd = − t2(n̄ + 1)2

U

∑
i

(s+
i+1s

−
i−1 + s−

i+1s
+
i−1)

− 2t2(n̄ + 1)

U

∑
i

(s+
i+1s

−
i−1 + s−

i+1s
+
i−1)sz

i . (39)

As we shall see in the next section, using a Luttinger-liquid
representation, H (1) may be recast in the XXZ form with
coupling and anisotropy coefficients depending on U .

IV. EFFECTIVE XXZ PARAMETERS VIA A
LUTTINGER-LIQUID REPRESENTATION

The effective spin Hamiltonian in Eq. (34) is not in the XXZ
form: in this section, we show how the contribution coming
from H (1) may be accounted for by a pertinent redefinition of
the parameters of the spin- 1

2 XXZ Hamiltonian H
(0)
XXZ.

The first contribution to H
(1)
diag in the right-hand side

of Eq. (38) describes an effective magnetic field in the z

direction,85 while the second term simply shifts the value
of the XXZ anisotropy. At variance, the term H

(1)
offd in

Eq. (39) contains three-spin, as well as non-nearest-neighbor,
couplings. To show how these terms can be accounted for
via a redefinition of H

(0)
XXZ, it is most convenient to introduce

the Jordan-Wigner (JW) fermions aj ,a
†
j (Ref. 20) in terms of

which one gets

H
(0)
XXZ = −2J

∑
k

cos(k)a†
kak + J�

∑
j

: a
†
j aj : : a

†
j+1aj+1 : ,

(40)

where ak are JW fermionic operators in momentum space and
: . . . : denotes normal ordering with respect to the fermionic
ground state. In terms of JW fermions, one writes H

(1)
offd as a

sum of a bilinear (H2), plus a quartic (H4) term, that is

H
(1)
offd ≡ H2 + H4,

with

H2 = t2(n̄ + 1)

U

∑
i

(a†
i−1ai+1 + a

†
i+1ai−1), (41)

H4 = 2t2(n̄ + 1)2

U

∑
i

:a†
i ai : (a†

i−1ai+1 + a
†
i+1ai−1). (42)

Since H2 is bilinear in the JW fermions, it merely modifies
the single-fermion dispersion relation, yielding the quadratic
Hamiltonian in the JW fermions reading as

H
(0)
XXZ + H2 =

∑
k

{
−2J cos k + t2(n̄ + 1)

U
cos (2k)−B

}
a
†
kak,

(43)

with B = 4(n̄ + 1)t2/U . Setting ε(k) = −2J cos k +
t2(n̄+1)

U
cos (2k) − B, one finds that the Fermi points, defined

by ε(kF ) = 0, are given by

cos kF = U (n̄ + 1)

2J
−

√(
U (n̄ + 1)

2J

)2

+ n̄ + 2. (44)

Upon linearizing the dispersion relation around ±kF and
setting k = kF + p, one gets

ε(±kF + p) ≈ ±J sin kF

[
1 − 2J

U (n̄ + 1)
cos kF

]
p. (45)

From Eq. (45), one sees that, since cos kF �= 0, H2 implies a
nonzero effective magnetic field Beff ,85 as well as a redefinition
of the Fermi velocity vF . This yields a redefined coupling given
by Beff/Jeff = − cos kF . Since

Beff = −J cos kF

(
1 − 2J

U
cos kF

)
,

one obtains

Jeff = J

(
1 − 2J

U
cos kF

)
. (46)

The quartic term H4 can be dealt with by noticing that, in the
low-energy, long-wavelength limit, one can write

a
†
j−1aj+1 + a

†
j+1aj−1

−→ −{ρR(xj ) + ρL(xj ) − (−1)j [ψ†
R(xj )ψL(xj )

+ψ
†
L(xj )ψR(xj )]} , (47)

where the chiral fermion fields ψR(xj ), ψL(xj ) are defined
from the long-wavelength expansion of aj as

aj ≈ eikF xj ψR(xj ) + e−ikF xj ψL(xj ), (48)

with xj = aj , and the chiral fermion densities given by
ρR(xj ) = ψ

†
R(xj )ψR(xj ) and ρL(xj ) = ψ

†
L(xj )ψL(xj ). As a

result, H4 may be written as

H4 = −4t2(n̄ + 1)2

U

×
∫ L

0
dx{[ρR(x)]2 + [ρL(x)]2 + 4ρR(x)ρL(x)}. (49)

Comparing Eq. (49) to (40), one sees that H4 takes the same
form as the term J

∑
j sz

j s
z
j+1 in the spin- 1

2 XXZ Hamiltonian
in Eq. (4).

Collecting together all the above results allows us to write
an effective XXZ Hamiltonian, describing the BH model to
the order (t/U )2, as

H eff
XXZ = −Jeff

∑
j

(
sx
j sx

j+1 + s
y

j s
y

j+1 − �effs
z
j s

z
j+1

)
, (50)

with Jeff defined in Eq. (46) and

�eff = �̄

1 − 2J
U

cos(kF )
(51)

with

�̄ = V

J
− t2(3n̄2 + 6n̄ + 4)

JU
− 4t2(n̄ + 1)2

JU
. (52)

Since Jeff acts just as an effective overall scale of H eff
XXZ,

then �eff is the only parameter determining the behavior of
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J/U
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1.5

Δ ef
f
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n = 10
n = +∞

0 0.2 0.4J/U
0.25

0.5

0.75

η

FIG. 1. (Color online) �eff vs J/U for different values of V/J

and n̄. The top (bottom) dotted line corresponds to the value of �eff

for U/J → ∞ and V/J = 0.5 (V/J = 0). The other lines are for
V/J = 0.5 (top) and V/J = 0 (bottom), with n̄ = 0 (solid black
lines), n̄ = 10 (dashed red lines), and n̄ → ∞ (dotted-dashed blue
lines). Inset: same as in the main panel, but for η vs J/U .

spin-spin correlations in the XXZ model. Substituting Eq. (51)
in (9), one gets

η = 1 − 1

π
arccos �eff, (53)

which provides an explicit formula for the effective Luttinger
parameter for the BH model at half-integer filling. In Fig. 1,
we plot both �eff and η versus J/U , for different values of
V/J and n̄. One sees that n̄ = 10 and n̄ → ∞ are almost
indistinguishable, and that the limit of the quantum phase
model for Josephson junction arrays (n̄ 	 1) at offset charge
q = e is practically reached at n̄ ∼ 10. Furthermore, one sees
that the dependence of η upon n̄ is rather small.

From Fig. 1 one also sees that �eff may be tuned by varying
the ratio J/U : in particular, �eff can be different from 0 even if
V = 0 (as it is typical for alkali atoms). Figure 1 also suggests
the possibility of describing the whole phase diagram of the
XXZ spin- 1

2 chain using the BH model for a single species of
bosons with pertinently chosen parameters (see also Sec. VI).86

Finally, we notice that, since the sign of �eff may be
changed by a pertinent choice of J/U and V , the Luttinger

liquid effectively describing the XXZ Hamiltonian may be
repulsive or attractive. As noticed in the context of 1D
Josephson junction arrays,67,68 the transition between the
repulsive and the attractive side may be monitored by inserting
a weak link (i.e., a nonmagnetic impurity79): it would be then
interesting to analyze the effects of a weak link introduced in
a bosonic system described by the BH Hamiltonian.

V. CORRELATION FUNCTIONS

The mapping between HBH and H eff
XXZ derived in Sec. IV

enables us to select the ground states on which to compute
the pertinent vacuum expectation values. Indeed, if |�0〉 is
the ground state of the BH Hamiltonian given in Eq. (3), and
|�0〉 ≡ S†|�0〉 is the ground state of Heff = S†HBHS, the GW
approach requires

〈�0|OBH[{b,b†}]�0〉 = 〈�0|S†OBH[{b,b†}]S|�0〉
≡ 〈�0|OXXZ[{sa}]|�0〉, (54)

where OBH[{b,b†}] (OXXZ[{sa}]) denotes a generic BH (XXZ)
operator. Of course, Eq. (54) is exact only if S is the exact so-
lution of the GW equation:(32) by computing it perturbatively
at a given order, one recovers the correspondence between
ground-state expectation values of BH and spin- 1

2 operators at
the chosen order.

In the rest of the paper, we will be interested in correlation
functions of the following BH operators:

Mz
i,j ≡ (ni − f )

(
nj − f

)
, (55)

M⊥
i,j ≡ b

†
i bj . (56)

Using the results of Appendix B, one has S†Mz
i,j S =

Mz
i,j [1 + O( t2n̄2

U 2 )], so that

〈�0|(ni − f )(nj − f )|�0〉 = 〈�0|sz
i s

z
j |�0〉 + O

(
t2n̄2

U 2

)
.

(57)

More generally, if the operator OBH satisfies (I − P)OBHP =
POBH (I − P) = 0, then 〈�0|OBH|�0〉 ≈ 〈�0|OXXZ|�0〉,
with OXXZ obtained from OBH by substituting bi , b

†
i , and

ni − f , respectively, with s−
i , s+

i , and sz
i . At variance, forM⊥

i,j

one obtains a more involved expression (see Appendix B for
details):

〈�0|b†i bj |�0〉 ≈ (n̄ + 1)〈�0|s−
i s+

j |�0〉 + t(n̄ + 2)(n̄ + 1)

2U
〈�0|[s−

i+1 + s−
i−1]s+

j + [s+
j+1 + s+

j−1]s−
i |�0〉

+ t n̄(n̄ + 1)

2U
〈�0|s−

i [s+
j−1 + s+

j+1] + s+
j [s−

i−1 + s−
i+1]|�0〉 + δ|i−j |,1 〈�0|

(
1

2
− sz

i+1

)(
1

2
+ sz

i

)
|�0〉, (58)

where again we neglected contributions arising to O( t2n̄2

U 2 ).

VI. RESULTS

In this section, we compare the numerical results obtained
by means of DMRG for the correlation functions and the phase

diagram of the BH model with the analytical predictions for
the correlators from the effective Hamiltonian H eff

XXZ given by
Eq. (50).
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A. Correlation functions

Let us focus on the BH correlation functions. Since DMRG
simulations are performed on a finite number of sites L and
for open boundary conditions, we may use Eqs. (14) and (15)
yielding the zz and xy correlation functions of the XXZ model.
We evaluate the values of the nonuniversal constants a, b, c

defined in Eq. (18) both numerically and analytically, by using
the expressions presented in Refs. 35 and 36 and reported
in Sec. II B. As confirmed in Ref. 34, the values of a, b,
c obtained in the two ways are in excellent agreement. We
show that the analytical expressions for the XXZ correlations
are well confirmed by the numerical BH correlations also for
small L (e.g., for L = 30) and for J/U relatively large (as
large as ∼0.5). It should be stressed that, at variance, the
agreement is not very good by setting �eff = V/J , i.e., by
using the Hamiltonian H

(0)
XXZ obtained for U → ∞ neglecting

contributions arising from the GW procedure.
The correlators 〈�0|(ni − f )(nj − f )|�0〉 and

〈�0|b†i bj |�0〉 are evaluated from the corresponding XXZ
quantities using, respectively, Eqs. (57) and (58). They are
plotted in Figs. 2–9 as a function of r = |i − j |, with i and j

such that34 i = (L − r + 1)/2, j = (L + r + 1)/2 for odd r ,
and i = (L − r)/2, j = (L + r)/2 for even r (for instance,
for L = 100 sites, r = 1 corresponds to i = 50, j = 51;
r = 2 corresponds to i = 49, j = 51; r = 3 corresponds
to i = 49, j = 52, and so on). The meaning of the various
symbols is summarized in the following table:

Filled squares (black) Numerical BH results
Filled diamonds (green) XXZ results (analytical a, b, c)
Filled triangles (red) XXZ results (numerical a, b, c)
Stars (blue) Infinite-U results
Open circles (magenta) Nonrotated operators

In Fig. 2, we plot our results for the density-density
correlations 〈(ni − f )(nj − f )〉 for a typical set of values, i.e.,
for U = 10t , V = 0.5t , f = 0.5, corresponding to J/U =
0.2. Black squares (joint by a black line as a guide for eye) are
the density-density correlations evaluated in the BH model,
red triangles (line) are the correlation functions 〈sz

i s
z
j 〉 in the

ground state of the XXZ chain with effective anisotropy given
by Eq. (51), and the a, b, c constants numerically determined
from DMRG simulations of the XXZ chain, while the green
diamonds (line) correspond to a, b, c analytically determined
from Eqs. (10)–(12) and (18). We found that, up to numerical
accuracy � 10−5, results obtained analytically for the XXZ
effective model are in excellent agreement with results of the
density-density BH model even at small distance. Blue stars
(line) display the XXZ Hamiltonian results in the U → ∞
limit, with anisotropy � = V/J ; in that case the relative error
is noticeably larger.

In Fig. 3 we plot the off-diagonal correlations 〈b†i bj 〉 for
the same set of values of the BH parameters as in Fig. 2. Also,
here one sees that the results obtained from the GW effective
Hamiltonian H eff

XXZ are in much better agreement than those
obtained using HXXZ with � = V/J , this happens even though
J/U is as low as 0.2.

0 50 100 150r
10-6

10-4

10-2

|〈
(n

i - 
f)(

n j - 
f)〉

 |

infinite-U  limit

FIG. 2. (Color online) Density-density correlations |〈(ni −
f )(nj − f )〉| vs r = |i − j | for U = 10t , V = 0.5t , and f = 0.5,
with number of sites L = 150. Black squares: numerical BH results;
green diamonds: XXZ result with a, b, c analytically determined;
blue stars: U → ∞ XXZ result [indicated by the label “infinite-U
limit” (see text fur further details)]. Lines are guide for eye. On
the scale of the figure, results obtained for the XXZ model with a,
b, c numerically determined (not shown here) are indistinguishable
from those obtained with the corresponding analytical values. Notice
also the excellent agreement between numerical BH findings and
analytical XXZ results.

To quantify the agreement between BH and XXZ results,
we consider the absolute value of the relative error done in
evaluating a correlator C(r) as the ground-state average of the
corresponding operators in the BH model [CBH(r)], and in the
XXZ model [CXXZ(r)]. More precisely, we define

δC(r) =
∣∣∣∣CBH(r) − CXXZ(r)

CBH(r)

∣∣∣∣ (59)

focusing on Czz(r) ≡ |〈(ni − f )(nj − f )〉| and Cxy(r) ≡
Re[〈b†i bj 〉]. To summarize the information on the relative error,
we compute the average value δavC and the standard deviation
of the relative error (59) for a distance r = |i − j | between

0 50 100 150r

10-2

10-1

Re
〈b

i+ b j〉

infinite-U  limit

non-rotated operators

FIG. 3. (Color online) Real part of 〈b†
i bj 〉 vs r = |i − j | for

U = 10t , V = 0.5t , f = 0.5, L = 150. Magenta circles denote
XXZ results with “nonrotated operators.” The notation for the other
symbols is the same as in Fig. 2.
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0 30 60 90r
0

1

2

3

4

5

δ 
| 〈

(n
i - 

f)(
n j - 

f)〉
 |

infinite-U  limit

FIG. 4. (Color online) Relative error of the correlation function
|〈(ni − f )(nj − f )〉| vs r = |i − j | for the same parameters (and the
same conventions for symbols and lines) of Fig. 2. We also plot
the results obtained from the XXZ model with a, b, c numerically
determined as red triangles: numerical and analytical estimates for
finite U practically coincide. The average value, with rmax = 3L/5,
is 0.06 ± 0.04 for the finite-U XXZ model and 2.9 ± 1.2 for the
infinite-U XXZ model.

a minimum value rmin = 1 (2) for zz (xy) correlations, and a
maximum value rmax ∼ 3L/5.

The relative errors for the zz and xy correlation functions
are plotted in Figs. 4 and 5: the error made using the GW
H eff

XXZ is of the order of a few percent [in agreement with
(J/U )2 = 0.04]. At variance, the relative error made by using
the XXZ model in the infinite-U limit without applying the GW
procedure is much larger, although the value of J/U is not so
large. Indeed, the error δav is ∼300% for the zz correlations
and ∼40% for the xy correlations (to be compared with ∼6%
and ∼3% obtained from H eff

XXZ). We checked that these results
do not depend on the particular choice of rmax: of course,

0 30 60 90r
0.0

0.1

0.2

0.3

0.4

0.5

δ 
Re

 〈b
i+ b j〉

infinite-U  limit

non-rotated operators

FIG. 5. (Color online) Relative error of the real part of 〈b†
i bj 〉 vs

r = |i − j | for the same parameters (and the same conventions for
symbols and lines) of Fig. 3. The average values, with rmax = 3L/5,
are 0.025 ± 0.004 (green diamonds: analytical XXZ results), 0.38 ±
0.08 (blue stars: XXZ result in the infinite-U limit), 0.26 ± 0.03
(magenta circles: finite-U result with nonrotated operators).

030 r10-6
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FIG. 6. (Color online) In each panel, we plot |〈(ni − f )(nj − f )〉|
vs r = |i − j | for different sizes: L = 30,50,80,100 (U = 10t , V =
0.5t , f = 0.5). Black squares denote the BH results, red triangles the
XXZ results with a, b, c numerically determined, and blue stars the
infinite-U XXZ results (we do not report the XXZ results with a, b,
c analytically determined since they practically coincide with the red
triangles).

when rmax is closer to L, the error is larger (especially for the
density-density correlations) due to boundary effects. From
the data of Figs. 4 and 5, one also sees that, at short distance, it
is larger than that at intermediate distances (with r being few
units it is � 10%). As expected, it decreases at the center of
the chain r ∼ L/2, while, close to the end of the chain r ∼ L,
it increases. We also observe that finite-size effects are less
visible for xy correlations.

The agreement between numerical and analytical results
turns out to be stable also if one takes chains with smaller
sizes, as it is apparent from Figs. 6 and 7, where we plot the zz

and xy correlation functions for different L. The corresponding
errors are given in the following table:

L δ(U )
av Czz δ(∞)

av Czz δ(U )
av Cxy δ(∞)

av Cxy

30 0.12 ± 0.08 1.7 ± 0.9 0.04 ± 0.01 0.26 ± 0.07
50 0.10 ± 0.06 2.0 ± 1.0 0.04 ± 0.01 0.29 ± 0.08
80 0.09 ± 0.05 2.4 ± 1.0 0.04 ± 0.01 0.33 ± 0.08
100 0.08 ± 0.05 2.5 ± 1.1 0.04 ± 0.01 0.35 ± 0.08
150 0.07 ± 0.04 2.9 ± 1.2 0.04 ± 0.01 0.38 ± 0.08

where for simplicity δ(U )
av (δ(∞)

av ) denotes the average error
for the XXZ correlators at finite-U (infinite-U limit) with
(without) the GW procedure. We see that, for the density-
density zz correlations, the average error increases when the
size L decreases.

In Figs. 3 and 5, we also plotted (magenta circles and lines)
the results obtained according to Eq. (54), where we took
OXXZ = OBH and not OXXZ = S†OBHS. Indeed, as stressed in
Ref. 87, solving the equation for S amounts to perturbatively
find a transformation enabling us to block-diagonalize HBH.
The ground state of HBH changes accordingly: if one wants
to compute expectation values of certain operators in the
BH model, one has to rotate the chosen operator according
the S transformation; in other words, physical quantities
in the effective theory are not simply the expectation values
of the operators in the projected subspace: this guarantees the
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FIG. 7. (Color online) Real part of 〈b̂†
i b̂j 〉 vs r = |i − j | for the

sizes and the parameters of Fig. 6.

unitarity of the procedure. An example is already provided in
Ref. 43 for the computation of the staggered magnetization
in the 2D Fermi-Hubbard model with large-U effective spin
models. In Appendix B, we give details on the the explicit
computation of the GW rotation for the operators b

†
i bj and

(ni − f )(nj − f ). We remark that, while for density-density
correlation functions (zz correlations in the XXZ model)
magenta circles coincide with black squares, this is not the
case for 〈b†i bj 〉 (xy planar correlations in the XXZ model).

In Figs. 8 and 9, we plot the zz and xy correlation functions
for different values of U : in these plots, the ratio J/U ranges
from 0.1 to 0.6. As expected, one sees that for J/U = 0.1 the
relative error made by the infinite-U results is not very large
(∼10% for 〈b†i bj 〉 correlations), but, as soon as J/U � 0.2, it
is already well visible. The relative error made by using the
effective H eff

XXZ turns out to be rather small even for J/U = 0.6,
where the relative error on density-density correlations is only
≈7%, while for 〈b†i bj 〉 correlations it is ≈15%.88

B. Antiferromagnet and domain ferromagnet
in the 1D Bose-Hubbard model

The XXZ model is gapless and critical for −1 � � � 1,
antiferromagnetic for � > 1, and ferromagnetic for � < −1:
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FIG. 8. (Color online) Density-density correlations |〈(ni −
f )(nj − f )〉| vs r = |i − j | for different values of U/t =
20,10,5,3.3, corresponding, respectively, to J/U = 0.1,0.2,0.4,0.6
(with V = 0.5t , f = 0.5, L = 150).
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FIG. 9. (Color online) Real part of 〈b̂†
i b̂j 〉 vs r = |i − j | for the

U values and the parameters of Fig. 8.

in the latter ferromagnetic phase, all the spins are aligned.
However, the BH at half-integer filling maps into the effective
XXZ chain (50) supplemented by the condition that the total
spin is vanishing; therefore, we expect that, in the BH model
at �eff < −1, domain walls form separating regions with
“up” spins (i.e, with f + 1

2 particles per site) and regions
with “down” spins (i.e., with f − 1

2 particles per site). At
variance, at �eff > 1 the staggered magnetization becomes
nonvanishing: in the bosonic BH language, the antiferromag-
netic state corresponds to the “charge-checkerboard ordered
state” |f + 1

2 ,f − 1
2 ,f + 1

2 ,f − 1
2 , . . .〉.

This shows that, consistently with the XXZ representation
of the BH model at half-integer filling, at finite U one can
realize the transition between the spin-liquid and the Néel-
Ising antiferromagnetic phases of the XXZ model (superfluid
to charge-density-wave phase transition of the BH model), as
well as the transition between the spin-liquid and the domain
ferromagnetic Ising phases of the XXZ model (superfluid to
domain Mott-insulating phase transition of the BH model).86

Since the former transition sets in at �eff = 1 and the latter one
at �eff = −1, using Eq. (51) for �eff allows us to determine
the corresponding phase boundaries in terms of the parameters
of the BH Hamiltonian.

A complete discussion of the phase diagram of the BH
chain in presence of nearest-neighbor interactions is provided
in Ref. 58; here, we just focus on the half-integer BH chain
with parameters chosen so as to lie close to �eff = ±1, in
order to show that the effective XXZ representation given in
this paper also provides a good description of these transitions.

For the spin-liquid/ferromagnetic transition, we studied the
BH chain with open boundary conditions varying V (similar
results are obtained varying t) and we plot in Fig. 10 the
expectation value of (ni − f ) as a function of the position
i along the chain. We observe that, as a consequence of the
open boundary conditions, a magnetic field proportional to V

on the two boundaries (i.e., at i = 1 and L) appears, whose
effect close to the boundaries is clearly visible in the figure.
Computing the quantity N = ∑

r (−1)i−j 〈(ni − f )(nj − f )〉,
one sees that it significantly increases around a critical value
�AF

eff . From the numerical data for the BH model shown in
Fig. 10, one may estimate �AF

eff ∼ 1.05, in good agreement
with the analytical value �AF

eff = 1.89 We notice that a better
estimate of �AF

eff could be performed by adding a magnetic
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FIG. 10. (Color online) Plot of (−1)i+1〈ni − f 〉 vs i numerically
computed in the BH chain for U = 10t , f = 0.5, and L = 150
for different values of V : from top to bottom V/t = 3.3 (black
circles), V/t = 3.1 (red squares), V/t = 2.9 (green diamonds),
and V/t = 2 (blue stars) corresponding, respectively, to �eff =
1.09,1.00,0.91,0.52.

field in the boundaries to compensate the boundary magnetic
fields arising from the open boundary conditions.

Regarding the domain ferromagnet/superfluid transition,
we performed numerical simulations on the BH model with
parameters chosen such that �eff is close to −1 (see Figs. 11
and 12). In Fig. 11, we plot 〈ni − f 〉 as a function of the
position i: one sees that the expectation value of the spin is
constant and it changes sign close to the edges of the chain in
order to satisfy the constraint on the number conservation.
For this reason, we then plot the modulus of the same
quantity in Fig. 12; since the average of the sz

i expectation
values is of course zero, to determine the transition point
from BH numerical data we consider the averaged quantity∑L

i=1 |〈ni − f 〉| (e.g., for the different values of V shown in
Fig. 12, such quantity is reported in the caption). From these
data, one can estimate that the domain ferromagnet is occurring
at �F

eff ∼ −1.02, with an error of few percent with respect to
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FIG. 11. Plot of 〈ni − f 〉 vs i numerically computed in the
BH chain for U = 10t , f = 0.5, and L = 150 for different values
of V : V/t = −1.3,−1.5,−1.6,−1.7, corresponding, respectively, to
�eff = −0.91,−1.00,−1.04,−1.08.

0 50 100 150i
0

0.1

0.2

0.3

0.4

0.5

|〈
 n

i - 
f 〉

 |

0 50 100 150i
0

0.1

0.2

0.3

0.4

0.5

0 50 100 150i
0

0.1

0.2

0.3

0.4

0.5

0 50 100 150i
0

0.1

0.2

0.3

0.4

0.5

V = -1.6 t

V = -1.3 t V = -1.5 t

V = -1.7 t

FIG. 12. Plot of the modulus of 〈ni − f 〉 vs i computed in the
BH chain for the same parameters of Fig. 11: V/t = −1.3,−1.5,

−1.6,−1.7. The corresponding averages are ≈0.02,0.04,0.06,0.21.

the analytical result �F
eff = −1.89 Notice that the error made

by using HXXZ with � = V/J in the infinite-U limit is ≈20%:
as expected, the errors made in using the infinite-U results are
generally smaller when one deals with global quantities.

VII. CONCLUDING REMARKS

In this paper, we studied an XXZ representation of the Bose-
Hubbard chain at half-integer filling for finite onsite interaction
energy U . The effective XXZ model is obtained in two steps:
first, we used a similarity renormalization group procedure
amounting to solve perturbatively up to the order (t/U )2 the
exact equation for the operator block-diagonalizing the Bose-
Hubbard model. The resulting spin- 1

2 effective Hamiltonian
is then recast as a XXZ spin- 1

2 Hamiltonian with pertinently
redefined coupling and anisotropy parameters.

We use this mapping to provide analytical estimates of
the correlation functions of the Bose-Hubbard model at half-
integer filling and finite U . We then compared these analytical
results with the outcomes of the numerical DMRG evaluation
of the Bose-Hubbard correlation functions. We found that the
agreement is very good, also for J/U rather large (∼0.5) and
for small number of sizes (L ∼ 30). Such a good agreement
is not achieved, even for J/U relatively small (∼0.1), if one
uses the XXZ Hamiltonian H

(0)
XXZ with J = 2t(f + 1

2 ) and
� = V/J corresponding to the infinite-coupling limit of the
Bose-Hubbard model. The transitions predicted at �eff = ±1
for the XXZ chain are as well compared with Bose-Hubbard
results, and a good agreement is found.

Since the BH model at half-integer filing is not integrable
or exactly solvable, it is quite valuable to have analytical
estimates for its correlation functions. Aside from its math-
ematical interest, we stress that our results can be viewed from
a twofold point of view: on one side, we use known results from
the (integrable) XXZ model to construct with high-accuracy
correlation functions of the Bose-Hubbard model. On the other
side, the Bose-Hubbard chain at half-filling and at finite U may
be seen as a quantum simulator of the XXZ chain. Finally, our
results could be relevant towards extending to the BH model
the analysis of nonequilibrium steady state in the XXZ chain
performed in Ref. 90.
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In our approach, the effect of an harmonic trap results
in a locally varying magnetic field: we feel that it would
be interesting to compare the results stemming from an
XXZ-based approach with the ones known in literature for
hard- and soft-core bosons in harmonic traps in the scaling
limit.91 In this paper, we focused on the half-integer filling
Bose-Hubbard model, but deviations from such filling could
be easily accounted with the introduction of a magnetic field.
We stress that the similarity Hamiltonian renormalization
procedure could also be applied to bosonic ladders92 and at
integer filling, where a spin-1 model is found in the infinite-U
limit.

The large-V effects of edge magnetic field could also be
studied, following the results known for the XXZ chain:93 we
observe that, for open boundary conditions and finite V , two

boundary magnetic field terms −Bb(sz
1 + sz

L), with Bb ∝ V ,
emerge in the XXZ effective Hamiltonian.94 Since a magnetic
field at the edge induces corrections to the average value
of sz

i decreasing as a power law,93 these corrections are not
only expected, but could be also worth the effort of future
investigation.
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APPENDIX A: PERTURBATIVE SOLUTION OF THE GW EQUATION

In this Appendix, we show how we use Eq. (31) to determine a to first order in HI , that is a1. To this order, one gets

P {HI + [H0,a1]} (I − P) = 0, (A1)

which may be solved by setting

Pa1(I − P) = PHI (I − P){−PH0P + (I − P)H0(I − P)}−1 + [PH0P,Pa1(I − P)]

×{−PH0P + (I − P)H0(I − P)}−1. (A2)

Up to terms that are second order in t n̄/U , we may make the approximationPH0P ≈ E0[n̄]I, with E0[n̄] = L{U
2 n̄(n̄ − 1) + V n̄2},

which implies [PH0P,Pa(I − P)] = 0. As a result, we get

Pa1(I − P) = PHI (I − P){−PH0P + (I − P)H0(I − P)}−1. (A3)

Using the fact that a is anti-Hermitian, from Eq. (A3) one obtains

a1 = PHI (I − P){−PH0P + (I − P)H0(I − P)}−1 − {−PH0P + (I − P)H0(I − P)}−1(I − P)HIP. (A4)

APPENDIX B: GW TRANSFORMATION OF OPERATORS

An advantage of the GW procedure is that it may be easily applied to single-boson operators: in particular, we are interested in the
average values of the operatorsM⊥

i,j andMz
i,j defined in Eqs. (55) and (56). Since a1 is fully off-diagonal andPMz

i,j (I − P) = 0,
if one approximates T with a1, one obtains S†Mz

i,j S = Mz
i,j . Instead, acting onto M⊥

i,j gives raise to a more complicated

expression: expressing the final result in terms of spin- 1
2 variables, one obtains

PS†M⊥
i,j SP ≈ δ|i−j |,1

t n̄(n̄ + 2)

U

(
1

2
− sz

i+1

) (
1

2
+ sz

i

)
+ t(n̄ + 2)(n̄ + 1)

U

{
s−
i+1s

+
j

(
1

2
+ sz

i

)
+ s−

i−1s
+
j

(
1

2
+ sz

i

)

+ s−
i s+

j+1

(
1

2
+ sz

j

)
+ s−

i s+
j−1

(
1

2
+ sz

j

)}
+ t(n̄ + 2)(n̄ + 1)

2U

{
s−
i s+

j−1

(
1

2
− sz

i

)
+ s−

i s+
j+1

(
1

2
− sz

i

)
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i−1s

+
j

(
1

2
− sz

j

)
+ s−

i+1s
+
j

(
1

2
− sz

j

)}
. (B1)

We observe that due to the constraint on the fixed total particle number N , the total magnetization in any of the physical
states of Heff = H

(0)
XXZ + H

(1)
diag + H

(1)
offd is zero: since Heff contains no terms breaking the parity symmetry (sα

i → −sα
i ), its ground

state |�0〉 is nondegenerate and, thus, it must be parity invariant. As a consequence, the average of any product of three spin- 1
2

operators must necessarily give 0, greatly simplifying the calculation of the ground-state average of the operator.
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Using this result, one can obtain a simplified expression for 〈�0|M⊥
i,j |�0〉 at O( t2n̄2

U 2 ):

〈�0|M⊥
i,j |�0〉 ≈ δ|i−j |,1 〈�0|

(
1

2
− sz

i+1

) (
1

2
+ sz

i

)
|�0〉 + t(n̄ + 2)(n̄ + 1)

U
〈�0|

{
s−
i+1s

+
j

(
1

2
+ sz

i

)
+ s−

i−1s
+
j

(
1

2
+ sz

i

)

+ s−
i s+

j+1

(
1

2
+ sz

j

)
+ s−

i s+
j−1

(
1

2
+ sz

j

)}
P|�0〉 + t n̄(n̄ + 1)

U
〈�0|P

{
s−
i s+

j−1

(
1

2
− sz

i

)
+ s−

i s+
j+1

(
1

2
− sz

i

)

+ s−
i−1s

+
j

(
1

2
− sz

j

)
+ s−

i+1s
+
j

(
1

2
− sz

j

)}
P|�0〉. (B2)

Since any product of three spin- 1
2 operators must necessarily give 0, then Eq. (B2) gives Eq. (58) reported in the main text.
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