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Spin injection from a normal metal into a mesoscopic superconductor
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We report on nonlocal transport in superconductor hybrid structures, with ferromagnetic as well as normal-metal
tunnel junctions attached to the superconductor. In the presence of a strong Zeeman splitting of the density of states,
both charge and spin imbalance is injected into the superconductor. While previous experiments demonstrated spin
injection from ferromagnetic electrodes, we show that spin imbalance is also created for normal-metal injector
contacts. Using the combination of ferromagnetic and normal-metal detectors allows us to directly discriminate
between charge and spin injection, and demonstrate a complete separation of charge and spin imbalance. The
relaxation length of the spin imbalance is of the order of several μm and is found to increase with a magnetic
field, but is independent of temperature. We further discuss possible relaxation mechanisms for the explanation
of the spin relaxation length.
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I. INTRODUCTION

When a spin-polarized current is injected from a ferromag-
net into a spin-degenerate metal, it creates a nonequilibrium
spin accumulation, which is described by a difference in
the occupation probabilities of states for spin up and down.
Spin injection from ferromagnets has been demonstrated both
for normal metals1 and spin-degenerate superconductors.2

Recently, spin injection from ferromagnets into supercon-
ductors in the presence of a strong Zeeman splitting has
been observed.3,4 In this case, spin accumulation mainly
originates from the spin-dependent density of states in the
superconductor,5 rather than a difference in occupation prob-
abilities. In this article, we extend our previous work and
demonstrate efficient spin injection from a normal metal into
a superconductor with a large Zeeman splitting. These results
clearly demonstrate that it is the superconductor rather than
the ferromagnetic injector which works as a spin filter. Using
both ferromagnetic and normal-metal contacts, we also show
the separation of spin and charge imbalance in a single sample.

II. SAMPLES AND EXPERIMENT

Samples were fabricated by e-beam lithography and shadow
evaporation techniques. In a fist step, a superconducting
(S) aluminum wire of thickness tAl ≈ 15 nm is created.
The aluminum wire is oxidized in situ to form a thin but
pinhole-free tunnel barrier by exposing it to 0.5 Pa of pure
oxygen for five minutes. After the oxidation, counterelectrodes
of ferromagnetic (F) iron and nonmagnetic (N) copper are
deposited under a second and third angle respectively. Care
was taken to have no overlaps between the N and F electrodes
in the proximity of the tunnel contacts.

We investigated samples with a different number of N and F
electrodes and variations in the contact distances, but otherwise
similar parameters. An overview of the sample parameters is
given in Table I. Sample C, which has only ferromagnetic
junctions, is the same as the sample labeled FISIF in Ref. 3, and
is included here mostly for comparison with the new results on

samples with mixed junction types. Figure 1 shows a scanning
electron microscopy image of a part of sample A as well as
a scheme of the measurement setup. The results presented in
this paper stem from sample A unless explicitly stated.

All measurements were performed in a dilution refrigerator
at temperatures down to T = 50 mK with the magnetic field
in the plane of the contacts parallel to the iron leads, as
indicated in Fig. 1. A voltage Vinj consisting of a dc bias and a
low-frequency ac excitation was applied to one tunnel contact,
called injector, and the ac part of the resulting current Iinj was
measured by standard lock-in techniques to obtain the local
conductance gloc = dIinj/dVinj. Simultaneously, the ac current
Idet through a second contact, called detector, was measured
to determine the nonlocal conductance gnl = dIdet/dVinj. For
details of the setup see Ref. 6. To account for the slight
variation in the conductance from contact to contact, we
plot the normalized nonlocal conductance ĝnl = gnl/GinjGdet

throughout the paper, were Ginj and Gdet are the normal-state
conductances of the two junctions.

The nonlocal conductance was measured for different
contact configurations, where both injector and detector could
be either normal (N) or ferromagnetic (F). These configu-
rations will be labeled by AISIB, where A and B denote
the injector and detector contacts, respectively. Two possible
configurations with a normal-metal injector and normal-metal
(NISIN) or ferromagnetic (NISIF) detector are shown as
examples in Fig. 1. The distance between injector and detector
contact is denoted by d.

III. MODEL

Before showing the experimental results, we would like to
briefly describe the model we have used to analyze our data.

In order to describe the local conductance of the injector
junctions, we use the theory of tunneling in superconductors
in high magnetic field.7,8 The contribution of a single spin
projection σ = ±1 to the tunnel conductance is given by

gσ = Ginj

2
(1 − σPinj)

∫
nσ (E)f ′dE, (1)
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TABLE I. Overview of sample properties. Junction properties: number of normal metal (N) and ferromagnetic (F) tunnel junctions, range of
normal-state tunnel conductances GN/F, and range of contact distances d . Aluminum film properties: film thickness tAl, resistivity ρAl, critical
temperature Tc, critical magnetic field Bc, coherence length ξ , diffusion constant D.

Sample junctions GF (μS) GN (μS) d (μm) tAl (nm) ρAl (μ�cm) Tc (K) Bc (T) ξ (nm) D (cm2/s)

A 2F, 4N 300–330 340–360 0.5–7.0 12 13.5 1.6 2.1 63 14.4
B 1F, 5N 400 170–310 0.3–10.3 16.5 9.8 1.5 1.5 76 19.9
C 5F 510–550 0.5–8.0 14 8.4 1.6 2.1 79 23.1

where Pinj is the spin polarization of the tunnel conductance,
nσ (E) is the normalized quasiparticle density of states in the
superconductor for a single spin, and

f ′ = ∂[−f0(E + eVinj)]

∂eVinj
(2)

is the derivative of the Fermi function. The density of states
nσ (E) is calculated by standard methods, including the pair-
breaking parameter �, the spin-orbit scattering strength bso,
and the Zeeman effect.7,8 The injector conductance is given by
the sum of the two spin contributions,

gloc = g↓ + g↑, (3)

whereas the differential spin current is proportional to their
difference

g↓ − g↑ ∝
∫

[Pinj(n↓ + n↑) + (n↓ − n↑)]f ′dE. (4)

As mentioned in the introduction, two terms contribute
to spin injection. The the first term is responsible for
spin injection from a ferromagnet into a spin-degenerate
superconductor.2,9,10 The second term is due to the spin
dependence of the density of states. It appears only in
the presence of a Zeeman splitting, but does not require a
ferromagnet for spin injection. In previous experiments on high
field spin injection into superconductors using ferromagnetic
junctions,3,4 both terms contributed to spin injection, while in
the present experiment we probe exclusively the second term.

The injected quasiparticles create both charge and spin
imbalance in the superconductor. We describe both on an equal
footing by a straightforward extension of the simple models
discussed in Refs. 3 and 11. The densities of nonequilibrium
charge and spin for each spin band are denoted by Q∗

σ

and Sσ , respectively. Nonequilibrium charge and spin relax

FIG. 1. (Color online) Scanning electron microscopy image of a
section of sample A. An iron (F) and two copper (N) electrodes form
tunnel contacts with a superconducting aluminum (S) wire. Examples
of two measurement configurations for nonlocal measurements using
a normal-metal injector and either a normal-metal (NISIN) or
ferromagnetic (NISIF) detector are indicated.

over time scales τQ∗ and τS , respectively, leading to an
exponential decay over the two relaxation lengths λQ∗ =√

DτQ∗ and λS = √
DτS , where D is the diffusion constant

of the superconductor. For one-dimensional diffusion along
the superconducting wire in the geometry of our experiment,
their injection rates are given by

dQ̇∗
σ

dVinj
= f ∗

σ gσ

2eAλQ∗
and

dṠσ

dVinj
= gσ

2eAλS

, (5)

where f ∗
σ accounts for the fractional quasiparticle charge,11

and A is the cross section of the superconducting wire. The
current flowing out of the detector is given by3,12

Idet = Gdet

N0e
[(Q∗

↓ + Q∗
↑) + Pdet(S↓ − S↑)]. (6)

Combining injection, relaxation and detection in the same way
as in Ref. 11, we obtain

ĝnl = 1

GinjGdet

dIdet

dVinj
= ĝ

Q∗
nl + ĝS

nl, (7)

where the contribution due to charge imbalance is

ĝ
Q∗
nl = f ∗

↓ g↓ + f ∗
↑ g↑

Ginj

ρNλQ∗

2A exp(−d/λQ∗ ) (8)

and the contribution due to spin imbalance is

ĝS
nl = g↓ − g↑

Ginj
Pdet

ρNλS

2A exp(−d/λS). (9)

Here d is the distance between the contacts, and ρN is the
normal-state resistivity of the superconductor. These two
equations form the basis of our data analysis. We note that
the charge-imbalance signal is always positive, whereas the
spin-imbalance signal can have either sign. Also, detection of
the spin signal requires a finite Pdet. Therefore, a normal-metal
detector will measure only the charge signal, whereas a ferro-
magnetic detector measures the sum of the charge and spin sig-
nals. Comparing the signals of ferromagnetic and nonmagnetic
junctions we can therefore discriminate the two contributions.

IV. RESULTS

Figure 2(a) shows the differential conductance of an NIS
tunnel junction for different applied magnetic fields B. At
zero field, gloc is negligible for injector bias in the subgap
region, |V | � 200μV, demonstrating the high quality of the
pinhole-free tunnel barrier. Above the gap, sharp singularities
are seen before the conductance drops back to its normal-state
value at high bias. In an applied magnetic field, the density of
states broadens due to pair breaking, and the Zeeman splitting
is clearly seen for large fields.13 The data for B = 1.0 T are
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FIG. 2. (Color online) (a) Differential conductance gloc of an NIS
junction as a function of the bias voltage Vinj for different magnetic
fields B. (b) Data for B = 1.0 T together with a fit to Eq. (3) and the
contributions of the individual spin orientations. (c) Calculated spin
injection g↓ − g↑.

given in Fig. 2(b) together with a fit to Eq. (3). Details of the
fitting procedure are given in Refs. 6 and 14. From the fit, the
individual contributions g↑ and g↓ to the tunnel conductance
are extracted and indicated in Fig. 2(b) as dotted and dashed
curves, respectively. The difference g↓ − g↑ is plotted in
Fig. 2(c). In the bias window of the Zeeman splitting around
Vinj ≈ ±180 μV, a single spin band dominates conductance,
and consequently the spin injection has a maximum. g↓ − g↑
is the only bias-dependent quantity, which enters Eq. (9), thus
the nonlocal signal due to spin imbalance is expected to have
the same shape as depicted here.

Figures 3(a) and 3(b) shows the nonlocal conductance for
the combination of a ferromagnetic and a normal-metal contact
(the two rightmost contacts in Fig. 1). In Fig. 3(a), the normal-
metal contact was used as injector, and the ferromagnetic
contact was used as detector (NISIF), whereas in Fig. 3(b)
their roles are reversed (FISIN). For B = 0, the nonlocal signal
shown in Fig. 3(a) is zero for bias values below the energy gap
of the superconductor and increases steeply as soon as the
injector bias exceeds the energy gap. In an applied magnetic
field, additional asymmetric peaks appear at voltages near the
gap, which first grow in height until B ≈ 0.5 T. For higher
fields, they start to decline, broaden and move inwards. If
one swaps the role of injector and detector, Fig. 3(b), only
the symmetric part of the signal is found, which quickly
decreases with applied magnetic field. This signal is due to
charge imbalance, as has been shown in previous experiments
on NISIN structures.3,11 Using Eq. (7) we can extract the spin
signal alone by subtracting the charge signal seen in Fig. 3(b)
from the charge+spin signal in Fig. 3(a). This is highlighted by
Fig. 3(c) for the data at B = 1.0 T. The difference signal shows
the asymmetric peak structure as well as slight side extrema
of different sign than the peaks.

A direct comparison of the charge and spin signals for
large contact separations d ≈ 6 μm is given in Fig. 3(d). Here,
the two rightmost contacts in Fig. 1 were used as detectors, and
the same normal-metal contact was used for injection. There-
fore, the nonequilibrium quasiparticle populations probed by
the two detectors are essentially the same. For these contact
distances d, the charge imbalance has relaxed and the NISIN
signal has thus vanished. In contrast, the asymmetric peak
structure of the NISIF signal is still visible. This directly probes
the spatial separation of charge and spin imbalance.

FIG. 3. (Color online) Normalized nonlocal differential conduc-
tance ĝnl for different contact configurations. All data are taken at
T = 50 mK. (a) ĝnl for the closest pair of electrodes with N as injector,
F as detector (NISIF) and for several magnetic fields. (b) ĝnl for the
same contacts and magnetic fields, but now with F as injector and N
as detector (FISIN). (c) Difference of the signals from (a) and (b) at
B = 1.0 T. (d) Comparison of NISIF and NISIN data at B = 1.0 T
for large contact separation d . The lines in (c) and (d) are model
predictions (see discussion). (e) Comparison of data for opposite
field polarity for a pair of contacts of sample C. (f) Hysteresis loop at
small magnetic field and fixed injector bias for a pair of contacts of
sample C. Arrows indicate the sweep direction.

The solid curves in Figs. 3(c) and 3(d) are calculations of
the nonlocal signal according to Eq. (9) and will be discussed
below.

Figures 3(e) and 3(f) show the nonlocal conductance for
different signs of the applied field. Data are taken from
sample C. For high fields, the magnetization of the detector
contact is parallel to the applied field. Since the sign of
the injected spin polarization is determined by the Zeeman
splitting, and therefore by the sign of the applied field, the
nonlocal conductance is the same for both positive and negative
field polarity. This can be seen in Fig. 3(e). Figure 3(f)
shows a hysteresis loop at small field for fixed injector bias
Vinj = 210 μV, i.e., near the center of the negative peak.
At |B| � 0.05 T, the traces for positive and negative sweep
direction coincide. For |B| � 0.05 T, hysteresis is observed.
In this field range, below the coercive field of the detector
contact, the magnetization of the detector can be either parallel
or antiparallel to the applied field. Therefore, the sign of the
signal can be positive (antiparallel) or negative (parallel). A
single jump is observed for either sweep direction, since only
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FIG. 4. (Color online) (a) Nonlocal conductance ĝnl for several
contact distances d at fixed magnetic field B = 1.0 T. (b) Semilog-
arithmic plot of the peak area A as a function of contact distance d

for different magnetic fields B. The lines are fits to an exponential
decay. (c) Nonlocal conductance ĝnl for different temperatures at
fixed magnetic field and contact distance. (d) Normalized peak area
A(T )/A(T = 50 mK) for small contact distances d as a function of
temperature T , shown for all three samples. The line is a guide to
the eye.

the magnetization reversal of the detector contact is relevant
for the spin signal.

In Fig. 4(a) the nonlocal conductance ĝnl is shown for
different contact distances d at a fixed magnetic field B =
1.0 T. The symmetric high-bias signal due to charge imbalance
is visible only for the shortest injector-detector distance of
d = 0.5 μm whereas the asymmetric peaks are present at the
same injector bias value for all distances and are visible even
for the largest distance of d = 6.4 μm.

To further analyze the dependence of the signal on contact
distance, we extracted the charge signal by calculating the
symmetric part ĝs = [ĝnl(Vinj) + ĝnl(−Vinj)]/2, and the spin
signal by calculating the antisymmetric part ĝa = [ĝnl(Vinj) −
ĝnl(−Vinj)]/2. For the spin signal, we then calculated the peak
area A by integrating ĝa numerically from Vinj = −290 μV to
Vinj = 0 μV.

Figure 4(b) shows the peak area A as a function of contact
distance d for different magnetic fields B on a semilogarithmic
scale. For better visibility, the data sets have been offset
vertically. The data can be fit to an exponential decay, shown
by the lines in Fig. 4(b), except for the closest contact distance,
which was therefore excluded from the fit. From these fits the
spin-imbalance relaxation length λS is extracted. To extract
the charge-imbalance relaxation length λQ∗ , we also fit ĝs

at Vinj = 520 μV to an exponential decay (not shown). The
results of these fits are shown in Fig. 5.

In Fig. 4(c) we show the nonlocal conductance ĝnl for a fixed
magnetic field of B = 1.0 T and different temperatures T . The

FIG. 5. (Color online) (a) Spin (open symbols) and charge
imbalance (closed symbols) relaxation lengths λQ∗ and λS as a
function of the magnetic field B. (b) Spin relaxation length λS as
a function of temperature T at fixed magnetic field B. (c) Charge
imbalance relaxation time τQ∗ as a function of the magnetic field B,
together with fits (see text). (d) Spin relaxation time τS as a function
of the magnetic field B, with an attempt to fit with exp(2μBB/kBT )
(dotted line).

influence of temperature on the spin signal is to decrease the
peak height and broaden the peaks. However, the influence
is not just a thermal broadening, as the peak area decreases
significantly when the temperature is increased. To analyze
the decrease in greater detail, we normalized the peak area A

to the value at T = 50 mK and found a similar decrease with
temperature for all three samples as can be seen in Fig. 4(d).

The relaxation lengths λS and λQ∗ obtained from the
exponential fits described above are shown in Fig. 5(a) as a
function of magnetic field B for all three samples. λS increases
monotonously with B, but one observes for all three samples
a change in slope at B ≈ 0.5 T, which is most pronounced
for sample B. For the highest fields close to Bc, the behavior
gets less systematic. Since the absolute values of the peak
areas decrease significantly when approaching Bc, the reduced
signal-to-noise ratio serves as a plausible explanation. λQ∗ ,
in contrast, is largest for B = 0 and reduces quickly in a
magnetic field. While λS show a pronounced dependence on
the magnetic field B, no significant change with temperature
T can be found, as it is shown for all three samples in Fig. 5(b).

Figures 5(c) and 5(d) present the charge-imbalance and
spin-imbalance relaxation times τQ∗ and τS . These were
determined from the relaxation lengths shown in Fig. 5(a)
using the relations τQ∗ = λ2

Q∗/D and τS = λ2
S/D and the

known diffusion coefficients D given in Table I.
At zero magnetic field, the charge imbalance relaxation

rate τ−1
Q∗ is determined by the combined effect of inelastic

scattering and elastic impurity scattering in conjunction with
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the gap anisotropy of aluminum.15 In addition, magnetic
pair-breaking perturbations increase the relaxation rate.16

Previous experiments on charge imbalance have shown that
these two contributions are additive at low temperature, i.e.,
τ−1
Q∗ = τ−1

0 + β�, where τ−1
0 denotes the relaxation rate at zero

field, � is the pair-breaking parameter, and β is a coherence
factor.11 Using � = (B/Bc)2/2 for a thin film in parallel
magnetic field, we obtain τQ∗ = (τ−1

0 + bB2)−1. Fits to this
dependence are shown in Fig. 5(c). As can be seen, τQ∗ is a
few nanoseconds at zero field, and then rapidly drops at higher
fields.

Figures 5(d) shows the spin relaxation time τS as a function
of magnetic field B, where we also show the ratio of Zeeman
splitting and temperature, 2μBB/kBT , at the top of the panel.
τS is a few nanoseconds at small fields, similar to τQ∗ . At higher
fields, it increases to 10–20 ns, and exceeds τQ∗ by at least
two orders of magnitude. When the Zeeman splitting is not
much larger than the thermal broadening, we expect S↓/S↑ ∝
exp(2μBB/kBT ). Therefore, the relaxation time might show
a similar dependence on magnetic field. This was assumed in
Ref. 4. To check this assumption, we have plotted an attempt
to fit τS ∝ exp(2μBB/kBT ) in Fig. 5(d). As can be seen, the
fit is not possible even at small fields.

V. DISCUSSION

In our previous work,3 we reported on spin injection from
ferromagnetic contacts into a superconductor in the presence of
a Zeeman splitting. In that case, both the finite spin polarization
of the injector, Pinj, and the spin dependence of the density of
states, n↓ − n↑, contribute to spin injection, as inferred from
Eq. (4). The different roles played by Pinj and the Zeeman
splitting can be observed directly by comparing the data
in Figs. 3(a) and 3(e). Both exhibit the asymmetric peaks
characteristic for the Zeeman splitting. The role of Pinj is only
to increase the amplitude of the positive peak, and to decrease
the amplitude of the negative peak (in other words, there is
an overall upward shift of the signal). This can be seen in
Fig. 3(e), where a ferromagnet was used as injector. As can be
seen in Fig. 3(a), the amplitudes of the peaks at positive and
negative bias are the same for spin injection from a normal
metal with Pinj = 0.

For a quantitative comparison with the model, the nonlocal
signals calculated from Eq. (9) for a spin-degenerate injector
are plotted as solid lines in Figs. 3(c) and 3(d). The factors
(g↓ − g↑)/Ginj and Pdet are obtained from the fits of the
local conductance of the injector and detector junctions, as
shown, for example, in Fig. 2(b). The relaxation length λS is
obtained from the exponential fits in Fig. 4(b). The normal-
state resistance per length of the aluminum wire is known
from measurements at T = 4.2 K, so that we can calculate the
factor ρNλS/2A. Thus the nonlocal signal ĝS

nl predicted by our
simple model can be calculated without free fitting parameters.
The shapes of the calculated and measured signals agree
qualitatively, whereas the amplitude of the calculated signal
is too small. Since the spin injection and detection factors as
well as the normal-state properties are known quite accurately,
we suspect that the assumption of a single exponential decay
length λS independent of energy and bias conditions is the most
likely culprit for the disagreement. To elucidate this further,

we would like to discuss some possible relaxation mechanisms
of the spin signal.

Nonequilibrium quasiparticles in superconductors are sub-
ject to several different scattering processes. Electron-phonon
scattering leads to energy relaxation, charge-imbalance relax-
ation, as well as recombination of quasiparticles to Cooper
pairs.17 Spin-orbit scattering leads to elastic spin flips, and is
therefore expected to relax spin imbalance.18 It also modifies
the density of states in the presence of Zeeman splitting.7 Mag-
netic pair-breaking perturbations lead to additional charge-
imbalance relaxation,16 and may affect all other scattering
mechanism by changing the density of states and coherence
factors. Magnetic impurities in particular also lead to spin
flips.18 The spin accumulation in a single spin band, Sσ , is
proportional to the product of the density of states nσ and
the occupation probability fσ . Therefore, for the net spin
accumulation we have S↓ − S↑ ∝ n↓f↓ − n↑f↑.

Without Zeeman splitting, we have n↓ = n↑, and spin
accumulation is due to the difference in occupation probability
f↓ − f↑. Several experiments have probed spin injection from
ferromagnets into spin-degenerate superconductors.2,9,10 In
this regime, spin relaxation is due elastic spin flips by spin-orbit
scattering or magnetic-impurity scattering,18 as sketched in
Fig. 6(a). The spin-relaxation length in the superconducting
state is expected to be either the same (spin-orbit scattering)
or shorter (magnetic-impurity scattering) than in the normal-
state. We have determined the spin-relaxation length in the
normal state, λN, by nonlocal spin-valve experiments for
sample C, and found λN = 370 nm.3 For samples A and B,
we could not determine λN, since these samples have only one
or two ferromagnetic junctions. However, the aluminum film
parameters are similar, and we can assume λN ∼ 400 nm for
all three samples.

For spin injection from a normal metal in the presence of a
Zeeman splitting, we expect f↓ = f↑, and spin accumulation is
solely caused by the difference in density of states, n↓ − n↑. By
detailed balance, the net spin-flip rate due to either spin-orbit
scattering or magnetic impurity scattering should therefore be
zero, and not lead to any spin relaxation at all. Neither energy
nor charge relaxation have any effect on spin accumulation.
Recombination reduces the overall number of quasiparticles,
but does not lead to spin relaxation, as it removes one
quasiparticle from each spin band. In the energy window of
the Zeeman splitting, however, recombination will deplete the
spin-up band much faster than the spin-down band due to the
different density of states. Therefore, it will indirectly enable
spin flips. One possible spin relaxation mechanism in our
experiment is therefore a two-stage process of recombination
and spin-flip scattering, as shown schematically in Fig. 6(b).
Since the normal-state spin-diffusion length λN is much shorter
than the observed λS , we can assume that recombination is
the bottleneck for this mechanism. The impact of spin-orbit
scattering on recombination in high fields was considered
theoretically for SIS tunnel junctions.19

The two-stage relaxation mechanism can explain why λS

is very large, since recombination is expected to be very slow
at low temperatures. However, once μBB 
 kBT , a further
increase of the field will essentially no longer change the
density of states in the energy range E < −eVinj occupied
by quasiparticles. Therefore, it is not clear why λS should
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FIG. 6. (Color online) Schematic view of the spin-resolved
density of states, including Zeeman splitting and spin-orbit scattering,
and various possible relaxation mechanisms. States are partially
occupied up to E = −eVinj (see discussion for details). (a) Spin-flip
scattering in a spin-degenerate superconductor. (b) Proposed two-
stage relaxation mechanism involving spin flips and recombination
for bias voltages in the range of the Zeeman splitting. (c) Inelastic spin
flips to the upper Zeeman band. (d) Two-stage spin-flip and energy
relaxation process at high bias.

continue to increase at high magnetic fields. One possible
explanation would be inelastic spin flips20 to the upper Zeeman
band, as shown in Fig. 6(c). The inelastic spin-flip rate should
decrease upon increasing field, since larger energy transfer
is needed. As second possible explanation is the phonon
bottleneck of recombination:21 For higher fields, the overall
number of nonequilibrium quasiparticles in the energy window
of the Zeeman splitting increases, and within the two-stage
relaxation mechanism sketched above, more recombination
phonons would be created. These would in turn reduce the net
recombination rate.

Also, as can be seen in Fig. 3(d), the measured spin signal
extends to higher bias than expected from the spin-injection
factor g↓ − g↑ obtained from fitting the injector conductance
spectra. For bias beyond the energy window of the Zeeman
splitting, an almost equal number of quasiparticles with both
spins is injected. Cooling due to inelastic scattering will then be
more efficient for the spin-down quasiparticles, since a larger
density of states is available at low energy. This will free
spin-down states at high energy, and might therefore lead to a

net spin-flip scattering rate from the spin-up to the spin-down
band. This would have the counterintuitive effect that spin-flip
scattering can lead to an increase of spin accumulation, as
sketched in Fig. 6(d), and therefore explain that the spin signal
extends to higher bias than expected.

Finally, we would like to address the temperature depen-
dence. As shown in Fig. 5(b), the relaxation length λS is
almost independent of temperature from 50 mK to 500 mK.
In our experiment, we have both eVinj 
 kBT and � 

kBT . Therefore, the nonequilibrium quasiparticle distribution
is determined mostly by bias, and is almost independent
of temperature. In addition � is almost constant in this
temperature interval, so that also the density of states and
coherence factors are almost constant. This may explain the
temperature independence of λS . A similar behavior was found
for λQ∗ .11 In contrast to λS , the peak area of the spin signal
shown in Fig. 4(d) decreases by about 30% upon increasing the
temperature from 50 mK to 500 mK. This can not be accounted
for by a change in the injection factor g↓ − g↑, since thermal
broadening will not lead to a change in peak area.

It is obvious from this discussion that spin relaxation in
superconductors in high magnetic fields is a complex process,
and a detailed quantitative model is beyond the scope of this
article.

VI. CONCLUSION

We have shown spin injection and transport in mesoscopic
superconductors in the regime of large Zeeman splitting,
and investigated in detail the role of spin-polarized and
spin-degenerate injector and detector junctions. We have
found that spin injection is possible from a normal metal,
demonstrating that the superconductor itself acts as a spin
filter. Only a single ferromagnetic contact is needed as detector
to observe spin accumulation, in contrast to conventional
spin-injection and detection schemes, where two ferromagnet
contacts are used. Comparing the nonlocal conductance probed
by spin-degenerate and spin-polarized detectors, we were able
to directly discriminate charge and spin imbalance. The spin
relaxation length increases strongly in a magnetic field, but
is found to be almost independent of temperature. A detailed
explanation of the relaxation mechanisms remains an open
question to theory.
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