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We extend Gor’kov theory to address superconducting pairing at high magnetic fields and general temperatures
with arbitrary attractive interaction strength. This analysis begins with an interpretation of the high-field Gor’kov
gap equation which we associate with an instability in a generalized particle-particle ladder series. Importantly,
this interpretation of the nonlinear gap equation enables a treatment of pairing which is distinct from condensation.
We also show how to consolidate two distinct fermionic pairing schemes in real and momentum space, both
corresponding to an Abrikosov lattice. Numerical results for the fermionic local density of states demonstrate that
gapless structure in a field is robust and presumably relevant to quantum oscillation experiments. We find that
despite their differences, both pairing schemes contain very similar physics. Our formalism is designed to explore
a variety of magnetic field effects in the so-called pseudogap phase and throughout the BCS-BEC crossover.
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I. INTRODUCTION

High magnetic field superconductivity is a difficult theo-
retical problem with important implications for experiment.
Observations of quantum oscillations in the superconduct-
ing phase of conventional superconductors were initially
unexpected,1 and further unusual oscillations have been ob-
served in underdoped cuprates.2 At the same time, theoretical
treatments reached surprising conclusions, with some investi-
gations finding reentrant superconductivity at extremely high
magnetic fields.3 Adding to the complexity is the observation
that the introduction of Landau levels into a pairing scheme
appears to cause a three-dimensional superconductor to behave
like a one-dimensional system. This greatly enhances fluctua-
tion effects4 and may even destabilize superfluid condensation.

The goal of the present paper is to set up a foundation
for addressing these issues by extending the standard Gor’kov
(BCS-based) approach to apply to general temperatures T ,
away from the instability regime, and to stronger-than-BCS
attractive interactions. Although the immediate focus of this
paper is on the ordered phase, we use the Gor’kov theory
extension to arrive at a compatible description of the normal
phase as well. Importantly, this normal phase may possess a
rich structure associated with precursor pairing in the presence
of magnetic fields.

In a related paper5 we focus on this disordered phase and
explore the notion that some degree of pairing at the onset of
condensation may be necessary to avoid a strict dimensional
reduction that prohibits condensation into a superconducting
state altogether. Furthermore, these excited pair states may be
present in systems such as high-temperature superconductors
or in fermionic gases in the BCS-BEC crossover regime,
where the noncondensed pairs are associated with a pseudogap
state. It should be stressed that the noncondensed pairs we
consider are distinct from conventional fluctuations. These
pairs arise from strong attractive interactions, not from
low-dimensionality (and/or disorder) effects, which give rise
to conventional fluctuations. Our BCS-BEC-based approach

is similarly distinct from the so-called “phase fluctuation”
scenario which is based on soft phase fluctuations presumably
arising from low plasma frequencies. Indeed, since we are
contemplating both charged and uncharged superfluids, the
issue of soft plasma frequencies is not particularly generic.

Gor’kov theory addresses the fermionic degrees of freedom.
Two proposals6,7 have been put forth to describe the nature
of those fermionic pairs which form the condensate in
the presence of high magnetic fields. These are associated
with orbit-center-based and magnetic-lattice-based pairing
schemes. Here we show how the physical implications of each
are similar and that both lead to gapless fermionic states which
are thought to be the basis for observed quantum oscillations.1

A central contribution of the present paper is to demonstrate
that the (analytically tractable) theoretical structure of these
different pairing approaches can be consolidated into a more
general formulation which addresses the nonlinear structure of
the Gor’kov theory. This is in contrast to a substantial fraction
of the literature on high magnetic field superconductivity
which deals with the linear regime where the gap is small. We
thus arrive at an interpretation of the Gor’kov gap equation
which allows us to extract a set of particle-particle ladder
diagrams which properly characterize the pairing fluctuations
or noncondensed pairs in the presence of high magnetic fields.

We note here that in the presence of magnetic fields there
is some debate about the importance of intra- versus inter-
Landau-level pairing schemes. In conventional BCS theory and
at moderate fields, inter-Landau-level pairing is appropriate
when � is small or the detailed vortex structure of � can
be neglected.8–10 However, for the problems of interest in
the present paper it is critical to recognize that � is not
small and that its vortex structure must be included. In this
regime the inter-Landau-level approach becomes intractable.
An alternative scheme developed and analyzed by a number
of groups1,6,7,11 is to consider only intra-Landau-level pairing
at high fields, which incorporates the nonlinear effects of
large � and, importantly, the Abrikosov vortex lattice. This
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intra-Landau-level approximation has also been shown to
produce excellent quantitative agreement with de Haas–van
Alphen oscillations in extreme type II superconductors.12,13

Moreover, in this approach one can include some degree
of inter-Landau pairing perturbatively.14 This alternative6,7,11

machinery forms the basis for the work in the present paper.
We begin in Sec. II by deriving the Landau level repre-

sentation of the Gor’kov equations. In Sec. III we discuss a
“diagonal” approximation made to these equations which is
thought14 to be suitable for high magnetic fields. Following
this, in Sec. IV we focus on the gap equation and discuss
its relationship to a divergent particle-particle ladder series.
In Sec. V we show that this divergent series captures the
contribution of noncondensed pairs to the theory.

The second half of the paper is less general and more
concrete. Here we focus on implementing and comparing
different state-space representations of this pairing theory. In
Sec. VI we discuss the two different existing implementations.
In Sec. VII we show how to use a “tight-binding” approxima-
tion to orbit-center pairing to make the theory analytically
tractable, facilitating comparison of the two implementations.
Finally, in Sec. VIII we show how gaplessness is robust among
these pairing theories by comparing local density of states
calculations. Our conclusions are presented in Sec. IX.

II. DERIVATION OF GOR’KOV’S EQUATIONS
IN A LANDAU LEVEL BASIS

We begin with the Gor’kov equations formulated in real
space in terms of the gap �(r) and Green’s functions in integral
form:

G(r,r ′; iω) = G0(r,r ′; iω) −
∫

d r ′′d r ′′′G0(r,r ′′; iω)

×�(r ′′)G0(r ′′′,r ′′; −iω)�†(r ′′′)G(r ′′′,r ′; iω),

(1)

�†(r) = − g

β

∑
iω

∫
d r ′G(r ′,r; iω)G0(r ′,r; −iω)�†(r ′),

(2)

where g is the interaction strength, and iω (i�) denote
fermionic (bosonic) Matsubara frequencies with the traditional
subscripts omitted for clarity. These equations allow the
identification of the self-energy �,

�(r,r ′; iω) = −�(r)�†(r ′)G0(r ′,r; −iω), (3)

and we now rewrite Eqs. (1)–(3) in terms of the Landau level
representation that diagonalizes the noninteracting Hamilto-
nian H0.15 The bare Green’s function G0 is then given by

G0(r,r ′; iω) =
∑

n

G0
n(iω)ψn(r)ψ†

n(r ′)

=
∑

n

ψn(r)ψ†
n(r ′)

iω − ξn

, (4)

where n = (N,p,kz) is the Landau level state, with N the Lan-
dau level, p the degenerate Landau level index, kz the momen-
tum in the z direction (parallel to a magnetic field B), and ξn

the energy of a particle in state n. G, however, is not in general

diagonal in the Landau level representation, and is given by

G(r,r ′; iω) =
∑
mm′

Gmm′(iω)ψm(r)ψ†
m′ (r ′). (5)

In this representation, Eq. (1) is multiplied by ψ
†
m(r)ψm′(r ′)

and integrated over both r and r ′ to give

Gmm′ (iω) = G0
m(iω)δmm′ −

∑
ln

∫
d r ′′d r ′′′G0

m(iω)

×ψ†
m(r ′′)�(r ′′)G0

l (−iω)ψl(r ′′′)ψ†
l (r ′′)�†(r ′′′)

×Gnm′ (iω)ψn(r ′′′).

We then define a “state-space gap”

�mn ≡
∫

d r�(r)ψ†
m(r)ψ†

n(r) (6)

and obtain

Gmm′ (iω) = G0
m(iω)δmm′ −

∑
ln

G0
m(iω)�ml

×G0
l (−iω)�†

lnGnm′ (iω). (7)

We multiply the gap equation, Eq. (2), by �(r), and express
the right-hand side in the Landau level representation to find∫

d r |�(r)|2 = − g

β

∑
mm′n

∑
iω

∫
d r ′d rGmm′ (iω)G0

n(−iω)

×�†(r ′)�(r)ψm(r ′)ψ†
m′ (r)ψn(r ′)ψ†

n(r).

Using the above identity for �mn, the gap equation becomes

1 = − g

β

∑
mm′n

∑
iω

�m′n�
†
mn∫

d r |�(r)|2 Gmm′ (iω)G0
n(−iω). (8)

The self-energy is similarly expressed in the Landau level
representation,

�(r,r ′; iω) =
∑
mm′

�mm′(iω)ψm(r)ψ†
m′(r ′). (9)

Using Eq. (3) for �, we find

�mm′(iω) = −
∑

n

G0
n(−iω)�mn�

†
nm′ . (10)

In summary, the Gor’kov equations in the Landau level
representation for a constant magnetic field are

Gmm′ (iω) = G0
m(iω)δmm′ −

∑
ln

G0
m(iω)�ml

×G0
l (−iω)�†

lnGnm′ (iω), (7)

1 = − g

β

∑
mm′n

∑
iω

�m′n�
†
mn∫

d r |�(r)|2 Gmm′ (iω)G0
n(−iω), (8)

�mm′(iω) = −
∑

n

G0
n(−iω)�mn�

†
nm′ . (10)

III. INTRA-EIGENSTATE PAIRING

To make further analytical progress, we must simplify
Eqs. (7), (8), and (10). Thus, as in the literature6,11,15 we
assume that the pairing involves degenerate eigenstates (as
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described in the introduction). This assumption is justified if
we are in a regime where |�| is much less than the splitting
between the Landau levels h̄ωc, where ωc = eH/(cm) is the
cyclotron frequency. This will be a good approximation at very
high fields where the splitting between Landau levels is large,
the regime we explore in this paper. This approach has been
analyzed carefully in Ref. 14 which showed that in this regime
inter-Landau-level effects that we neglect are perturbative.

We also simplify by defining

�0
mn(ζ ) ≡ �mn(ζ )√∫

d r |�(r,ζ )|2
≡ �mn(ζ )

�
. (11)

Note that we have introduced an important parameter ζ which
labels different functional forms of �(r). Throughout this
paper we will associate the particular value ζ0 with the con-
densate configuration �sc(r,ζ0), which may be distinct from
configurations occupied by noncondensed pairs, discussed
below. It is convenient to define

φ2
mm′(ζ ) ≡

∑
n

�0
mn(ζ )�0†

nm′(ζ ). (12)

In order that all the potential pairing partners n of a state
m are energy degenerate, the index n is in the same Landau
level as m, and pairing occurs between states with z momenta
kz and −kz. This allows us to write the fermionic self-energy
Eq. (10) as

�mm′(iω) = −G0
N (−kz; −iω) |�|2 φ2

mm′(ζ0), (13)

where we write G0 in terms of only the Landau level N and
the z momentum kz of m, with Nm = Nm′ and kzm

= kzm′ . This
simplification of the gap equation, Eq. (8), leads to

1 = − g

β

∑
mm′

∑
iω

φ2
mm′(ζ0)Gmm′ (iω)G0

N (−kz; −iω). (14)

IV. THE GAP EQUATION AS DIVERGENT
PARTICLE-PARTICLE LADDER SERIES

The above formulation enables a consolidation of stan-
dard approaches in the literature.6,7,11,15 In this context we
reinterpret the gap equation of Eq. (14) as a generalized
Thouless condition, which applies to all temperatures below
the transition. In the process we show that this gap equation
serves to identify a particular particle-particle ladder series.
The divergence of this series is a prerequisite for, and an
indicator of, the superconducting state. Importantly this ladder
series also leads us to a characterization of the associated
noncondensed pairs, which may form above the critical
temperature for stronger-than-BCS interactions.

It is essential first to characterize the degrees of freedom
available to these noncondensed pairs. In the z direction
parallel to the magnetic field, the system behaves as in zero
field, where condensed pairs are constructed of fermions with
momenta kz and −kz. Thus, excited pairs must have nonzero
total momentum, and we can describe the general pairing
of noncondensed pairs as being between momenta kz and
−kz + qz.16

In the plane perpendicular to the magnetic field, the
condensed electrons are those which pair to form the real-space
superconducting gap. Here and throughout we distinguish
the order parameter �sc(r,ζ0) from the excitation gap. In
a mean-field scheme, such as ours, where individual vortex
fluctuations are not included, we assume that ζ0 corresponds
to an Abrikosov lattice with functional form �0(r,ζ0) =
�sc(r,ζ0)/�. We take the noncondensed pairs to be those
that form other real-space gaps �0(r,ζ ) for ζ �= ζ0. Finally,
we also allow the Matsubara frequencies to appear with total
frequency i�.

We next introduce the pair susceptibility,

χ (ζ,qz; i�) ≡ 1

β

∑
mm′

∑
iω

φ2
mm′ (ζ )Gmm′(iω)

×G0
N (qz − kz; i� − iω). (15)

With this important definition, and the introduction of noncon-
densed pairs, we return to the gap equation, Eq. (14), which
can be rewritten as

1 + gχ (ζ = ζ0,qz = 0; i� = 0) = 0. (16)

One can interpret this equation as reflecting a divergence of a
particle-particle ladder summation, shown in Fig. 1. We argue
below that the gap equation is to be associated with a t matrix
formed from the ladder diagrams in Fig. 1, given here in an
abbreviated form by

tpg(ζ,qz; i�) = g

1 + gχ (ζ,qz,i�)
(17)

(see Sec. V for details). For the condensate configuration, ζ =
ζ0, qz = � = 0, the t matrix thus diverges for all temperatures
below the instability, as in a Bose-Einstein condensation
condition, where the pairs have vanishing chemical potential.
This ladder diagram set is to be distinguished from a series
which was previously identified to correspond to the specific
instability point, Ref. 17. Here, the condition is stronger, as
the incorporation of one dressed G and one bare G0 makes
this summation valid throughout the superconducting regime.
Furthermore, as we explain in Sec. V, it can be extended to
the entire strong attraction (BCS-BEC) regime where there is
a finite excitation gap at the instability, and in which pairing
and condensation must be distinguished.5,16

t

m

n

m

n

=

m

n

m

n

+

n

t

m

n

m

n

mm

FIG. 1. The particle-particle ladder summation corresponding to a t matrix tpg, the divergence of which gives the general gap equation for
the superconducting state.
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V. CHARACTERIZING THE NONCONDENSED PAIRS
IN THE GOR’KOV EQUATIONS

BCS theory represents a very special case of superfluidity
in which pairing and condensation take place at the same
temperature. We have just argued that the Gor’kov gap
equation of Eq. (16) and the closely related t matrix of Eq. (17)
effectively constrain the nature of noncondensed pairs which
below the transition condense into a state with gap structure
�0(r,ζ0).

For the moment, we consider Eq. (17) as an appropriate
characterization of the t matrix (or effective propagator)
associated with the noncondensed pairs. We next characterize
their feedback into the Gor’kov equations, by including t in
the self-energy. In a strict Gor’kov theory

�sc
mm′(iω) =

∑
ζ,qz,i�

φ2
mm′(ζ )t sc

mm′(ζ,qz; i�)

×G0
N (qz − kz; i� − iω), (18)

where

t sc(ζ,qz; i�) ≡ −δ(ζ − ζ0)δ(qz)δ(i�)|�sc|2, (19)

with �sc corresponding to the gap � in Eq. (11).
We now include in the self-energy the noncondensed pair

propagator tpg given by Eq. (17), and in this way go beyond
strict Gor’kov theory. This contribution is

�
pg
mm′(iω) =

∑
ζ,qz,i�

φ2
mm′(ζ )tpg(ζ,qz; i�)

×G0
N (qz − kz; i� − iω). (20)

Furthermore, since 1 + gχ (ζ0,0; 0) diverges below the critical
temperature, tpg will be strongly peaked for parameters
(ζ,qz; i�) ≈ (ζ0,0; 0). Since i� and qz will be small for the
primary contributions to tpg, we approximate the right-hand
side using G0

N (qz − kz; i� − iω) ≈ G0
N (−kz; −iω).

Then the total self-energy is now

�mm′(iω) = �sc
mm′(iω) + �

pg
mm′(iω)

= G0
N (−kz; −iω)

∑
ζ,qz,i�

φ2
mm′ (ζ )

× (t sc(ζ,qz; i�) + tpg(ζ,qz; i�)), (21)

where �sc
mm′ is the original self-energy from Gor’kov theory

defined in Eq. (10), and �
pg
mm′ is defined in Eq. (20).

We can further simplify by defining a total |�|2,

|�|2 ≡ |�sc|2 + |�pg|2 (22)

with

|�pg|2 ≡ −
∑

ζ,qz;i�

g

1 + gχ (ζ,qz; i�)
(23)

and

〈
φ2

mm′(ζ )
〉
ζ

≡
∑

ζ,qz,i�
φ2

mm′ (ζ )(t sc(ζ,qz; i�) + tpg(ζ,qz; i�))∑
ζ,qz,i�

(t sc(ζ,qz; i�) + tpg(ζ,qz; i�))
.

(24)

This leads to an expression for the self-energy which can be
written compactly as

�mm′(iω) = −G0
N (−kz; −iω)

〈
φ2

mm′(ζ )
〉
ζ
|�|2. (25)

Together with the number equation N = 2
β

∑
m,iω Gmm(iω)

and Eqs. (7) and (8), this forms a system of equations which
can be solved self-consistently.16 In this way we have modified
the Gor’kov theory to extend BCS theory into the more general
regime where pairing and condensation are treated differently.

Finally, we turn to a more detailed interpretation of
the ladder diagrams and the related pair susceptibility. In
Fig. 1, particles forming a pair may interact to create
a new noncondensed pair in the same excited pair state.
That is, we consider a pairing propagator t

m′n′,pg
mn (ζ,qz; i�)

between states m,n and m′,n′, where m = (N,p,kz,iω) and
n = (N ′,p′,qz − kz,i� − iω) are pairing partners for a given
real-space configuration ζ , total z momentum qz, and total
Matsubara frequency i�, and m′ = (N ′′,p′′,k′

z,iω
′) and n′ =

(N ′′′,p′′′,qz − k′
z,i� − iω′) are pairing partners sharing the

same ζ , qz, and i�. Note that m now includes frequency,
and intra-eigenstate pairing is not enforced here. The bare
interaction between the two pairs, as an extension of the
BCS mean-field Hamiltonian, is in a separable form gV m′n′

mn =
g�

0†
mn(ζ )�0

m′n′(ζ ). Then the infinite particle-particle ladder
summation is

tm
′n′,pg

mn (ζ,qz; i�)

= gV m′n′
mn − gV m′′n′′

mn G0
n′′Gm′′m′′′ t

m′n′,pg
m′′′n′′ (ζ,qz; i�). (26)

As V is separable between m,n and m′,n′, this infinite
summation has the solution

tm
′n′,pg

mn (ζ,qz; i�) = gV m′n′
mn

1 + g
∑

m′′,m′′′,n′′ V
m′′n′′
m′′′n′′ G

0
n′′Gm′′m′′′

. (27)

Using the expression for V , and applying the intra-eigenstate
pairing approximation, this further simplifies to

tm
′n′,pg

mn (ζ,qz; i�)

= g�
0†
mn(ζ )�0

m′n′(ζ )

1 + g
∑

m′′,m′′′ φ
2
m′′m′′′ (ζ )Gm′′m′′′G0

N (kz − qz; i� − iω)
.

This in turn gives the t matrix appearing in the self-energy as

∑
n

tm
′n,pg

mn (ζ,qz; i�) = φ2
mm′ (ζ )tpg(ζ,qz; i�) (28)

with tpg(ζ,qz; i�) defined in Eq. (17). Note this also justifies
our definition of χ in Eq. (15).

In summary, beyond the weak attraction limit, pairs can
form above the superconducting transition temperature. These
pairs of electrons form in excited states rather than the quantum
ground state. Interpreting the Gor’kov gap equation as a Bose
Einstein condensation condition allows us to specify a precise
ladder series structure for these noncondensed pairs. Because
it will take us too far afield, elsewhere, we discuss a pre-
cise treatment of the parameter ζ , in more microscopic detail.5
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VI. SPECIFYING THE PAIRING BASIS

We now turn to the specific pairing choices that can be made
to solve the system, and explore their physical effects. We now
consider only a single ζ , and for notational simplicity we now
omit this parameter. Ensembles of ζ are discussed elsewhere.5

In order to make further progress, we must specify �(r) as
well as the Landau level state basis we use. This requires that
one determine the pairing partners of each fermionic Landau
level state. Based on previous work6,11,15 here we analyze
and compare two complementary choices for the case of
an Abrikosov lattice. Throughout we use the Landau gauge
A = (0,B x̂,0) in which the energy gap of an Abrikosov lattice,
�(r) is given by

�(r) = C
∑
m

exp

(
iπ

by

a
m2

)
ψcm

0,mbx ,0(r)

= �

√ √
2bx

LxLyLz

√
πlH

∑
m

exp

[
iπ

by

a
m2

+ 2imbxy

l2
H

− (x − mbx)2

l2
H

]
, (29)

where ψcm
N,X,kz

is the orbit-center Landau level state for a
charge-2e particle with Landau level N , orbit center X, and z

momentum kz. The normalization of �(r) is chosen such that∫
d r|�(r)|2 = |�|2, with Lx, Ly, and Lz the sample lengths

and lH = √
h̄c/eH the Hall length. Finally, the Abrikosov

lattice is characterized by unit vectors a = (0,a,0) and b =
(bx,by,0). lH is related to the unit vectors by abx = πl2

H .
For a square lattice b = (a,0,0) while for a triangular lattice
b = (

√
3a/2,a/2,0), and in general we capture all Abrikosov

lattices using the method in Ref. 18, ζ = by/a + ibx/a.
Throughout the rest of this paper, we implicitly take bx, by,

and a to be functions of ζ through the above formula and the
restriction that abx = πl2

H .
The two natural choices are to use either orbit-center wave

functions, in which case orbit centers positioned symmetrically
about a lattice site pair together, or to use magnetic translation
group wave functions, in which case wave functions with
opposite reciprocal lattice vectors are paired. We describe
those pairs in terms of the notation of �0

mn(ζ ) and φ2
mm′(ζ )

defined above.

A. Orbit-center pairing

One choice of pairing, originally presented by Ryan
and Rajagopal and derived based on gauge and translation
symmetries, is to have fermions pair about lattice site positions
in the orbit-center basis.6,19–21 Because the bosonic wave
functions forming the Abrikosov lattice are positioned at orbit
centers X = mbx , fermions which are equally spaced apart
from these positions can pair, so that the pair wave function
can be represented as

�
pair
N1,N2,mbx,Y,kz

(r) = ψ fermion
N1,mbx+Y,kz,↑(r)ψ fermion

N2,mbx−Y,−kz,↓(r).

Here

ψ fermion
N,X,kz

(r) =
√

1

LyLz2NN !

(
1

πl2
H

)1/4

exp

(
ikzz + iXy

l2
H

− (x − X)2

2l2
H

)
HN

(
x − X

lH

)
, (30)

where HN is the N th-order Hermite polynomial. The �0
mn(ζ ) and associated factors are calculated in the Appendix. Quite

generally (presuming inter-eigenstate pairs), the result is

�0
m=(N1,X+Y,kz),n=(N2,X−Y,−kz)(ζ ) =

{√
bx

LxL2
yL

2
zπl2

H

1
2N1+N2

√
N1!N2!

eiπ(by/a)(X/bx )2
e−Y 2/l2

H HN1+N2

(
−√

2Y
lH

)
if X = mbx,m ∈ Z,

0 otherwise.
(31)

B. Magnetic translation group pairing

The other choice of pairing, originally presented by Dukan,
Andreev, and Tesanovic7,11 and in parallel work by Akera,
MacDonald, Norman, and Girvin22–24 and Nicopoulos and
Kumar,25 is to use the magnetic translation group (MTG)
for the fermions, with an index k.26 Following Ref. 11 we
choose a unit lattice site for the magnetic translation group,
which must be twice the size of the Abrikosov lattice site,
with unit vectors 2a and b. Then the reciprocal unit vectors
are a∗ = (−by/ l2

H ,bx/ l2
H ) and b∗ = (2a/l2

H ,0) so that ai a∗
j =

2πδij where ai are the unit vectors and a∗
j are the reciprocal

unit vectors. Restricting k = (kx,ky) to be within the limits of
the cell (a∗,b∗) gives a complete set of functions.27 We also
note that ψ is now dependent on ζ , the configuration of the
Abrikosov lattice.

This pairing occurs between opposite k (see Fig. 2(b)). To
conform with our assumption of diagonal pairing, we need to

specify that N1 = N2, and then

�
pair
N,k(r) = ψ fermion

N,k,kz,↑(r)ψ fermion
N,−k,−kz,↓(r)

with

ψ fermion
N,k,kz

=
√

1

2NN !

(
1

πl2
H

)1/4
√

bx

LxLyLz

exp (ikzz)

×
∑
m

exp

(
i
πby

2a
m2 + imkxbx

)

× exp

{
i

(
ky + πm

a

)
y −

[
x − (ky + πm

a

)
l2
H

]2
2l2

H

}

×Hn

{[
x −

(
ky + πm

a

)
l2
H

]/
lH

}
. (32)
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SCHERPELZ, WULIN, ŠOPÍK, LEVIN, AND RAJAGOPAL PHYSICAL REVIEW B 87, 024516 (2013)

x

Lattice widthbx

(a)

kx

ky(b)

FIG. 2. (Color online) Schematic version of the two pairing models. (a) The restricted “tight-binding” pairing for case (i), in the case of
a square lattice (see Sec. VII). The fermionic states (small open red and filled green circles) can pair with each other only via the solid blue
(closest pairing partner) and dashed purple (next closest pairing partner) lines. These pairs in turn connect “nearest neighbor” states via an
off-diagonal Green’s function matrix element (dotted green lines; equivalent lines for the red states are omitted). Furthermore, the pairs can be
interpreted as forming bosons at lattice sites (large blue circles). (b) The case (ii) version of pairing, in which states (filled green and open red
circles) are in a reciprocal lattice of the magnetic translation group, and pair with states of opposite momentum index (blue lines).

The �0
mn(ζ ) and associated factors are calculated in Refs. 11,

15, with the result that for the lowest Landau level

�0
m=(0,k,kz),n=(0,−k,−kz)(ζ )

=
√

bx

LxLyLz

√
2πlH

exp (−(kylH )2)

× θ3

(
[−kx + iky]bx

∣∣∣∣−by

a
+ iπl2

H

a2

)
, (33)

where θ3(u|τ ) =∑∞
n=−∞ exp(2inu + iπn2τ ) is the third el-

liptic theta or Jacobi theta function. Further �0
mn(ζ ) for higher

Landau levels can be iteratively calculated from this.11

VII. NEAREST NEIGHBOR PAIRING APPROXIMATION
FOR REAL-SPACE PAIRING

While the MTG method for pairing results in each fermion
pairing with exactly one other degenerate eigenstate, that is
not the case for orbit center pairing. If X is a lattice site, then
a fermion at X + Y can pair not only with X − Y , but also
with X − Y + 2nbx with n ∈ Z. A very complicated matrix
thus results for the Green’s function, but here we demonstrate
that this matrix can be substantially simplified such that it is
analytically tractable yet incorporates the important physics.

We begin by noting that �0
mn is proportional to

exp(−Y 2/l2
H ) for large Y , where Y is half of the distance

between the two states that pair. Thus, pairing between states
that are well separated will be exponentially suppressed.
Using only a single pairing partner is inadequate, however,

because it fails to capture interference effects between two
pairing partners, as will be demonstrated below. Using two
pairing partners does capture these effects and reproduces
the correct local density of states for the lattice. This is
reminiscent of a hierarchical “tight-binding” scheme, in that
the nearest pairing partner can be considered an “on-site”
interaction, and the second-nearest pairing partner allows for
interactions between lattice sites (see Fig. 2(a)).

To implement this approach, we begin with Eq. (7),

Gmm′ (iω) = G0
m(iω)δmm′ − G0

m(iω)
∑
ln

�ml

×G0
l (−iω)�†

lnGnm′(iω). (7)

This can be further simplified by separately including the
Green’s functions of pairing partners, resulting in a new
equation for the Green’s functions

Gmm′ (iω) = G0
m(iω)δmm′ + G0

m(iω)
∑

n

�mm′[−G̃nm′ (iω)].

(34)

Here by G̃ we mean (a) flipping the sign of iω and (b)
conjugating the � appearing within G. By this definition, we
also have that

G̃mm′(iω) = G0
m(−iω)δmm′

+G0
m(−iω)

∑
n

�†
mnGnm′ (iω). (35)

This correctly reproduces the original Green’s function above,
and by inverting Eq. (34), we have that

G−1(iω) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . . �

†
X−Y,X+Y 0 0 0

�X−Y,X+Y [G0
X+Y (iω)]−1 �X+2bx−Y,X+Y 0 0

0 �
†
X+2bX−Y,X+Y −[G0

X+2bx−Y (−iω)]−1 �
†
X+2bx−Y,X+2bx+Y 0

0 0 �X+2bx−Y,X+2bx+Y [G0
X+2bx+Y (iω)]−1 �X+4bx−Y,X+2bx+Y

0 0 0 �
†
X+4bx−Y,X+2bx+Y

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(36)
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Here we use only the index corresponding to the orbit center,
which is the only one which varies throughout this matrix.
We also take Y > 0; if Y < 0 positions in the matrix will flip
but it will be otherwise unchanged. Also note that the values
of G−1

0 are actually independent of orbit center; the indices
remain for clarity.

This Green’s function matrix is computationally simplified
as compared to the full orbit-center pairing scheme. Further-
more, in the case of a square or triangular lattice, its eigenvalues
can be found analytically. For both a square lattice (ζ = i) and
a triangular lattice (ζ = 1/2 + √

3i/2), we have the property
that �0

X−Y+2bx ,X+Y+2bx
= �0

X−Y,X+Y , implying that the entries
in G−1 repeat with period two along the diagonal. We can then
posit a plane-wave solution for the eigenvectors, with a and b

constants:

v =
∑

q

eiqkj (a|Xm̄ + 2qbx〉 + b|Xm + 2qbx〉) , (37)

where for compactness we set m̄ = X − Y , m = X + Y , and
n̄ = X − Y + 2bx , using the symmetry properties of �0

mn. We
obtain

G−1v =

⎛
⎜⎜⎜⎜⎝

...
�m̄mb + (ω − ξ )a + �n̄meikj b

�
†
n̄ma + (ω + ξ )eikj b + �

†
m̄meikj a

...

⎞
⎟⎟⎟⎟⎠. (38)

The energy eigenvalues of this system will be zero
eigenvalues of G−1. For a nontrivial solution, we ob-
tain −�

†
n̄m(�m̄me−ikj + �n̄m) + (−ω2 − ξ 2) − �

†
m̄m(�m̄m +

�n̄meikj ) = 0. We thus have

−ω2 = ξ 2 + |�m̄m|2 + |�n̄m|2 + e−ikj �m̄m�
†
n̄m

+ eikj �
†
m̄m�n̄m. (39)

Here �m̄m = Cm̄meiπ(by/a)(X/bx )2
, where Cm̄m is a real

number, and �n̄m = Cn̄meiπ(by/a)(X/bx+1)2
. We further simplify

e−ikj �m̄m�
†
n̄m+eikj �

†
m̄m�n̄m = 2Re(e−ikj �m̄m�

†
n̄m)

= 2Cm̄mCn̄mRe(e−ikj e±iπ(by/a)),

where we have used the bx and by specific to a square or
triangular lattice, and the + is for X/bx an odd integer, − for
X/bx an even integer. We then have

−ω2 = ξ 2 + |�m̄m|2 + |�n̄m|2
+ 2Cm̄mCn̄mRe(e−ikj e±iπ(by/a)). (40)

We also note that for a system of Lx = 2Nxbx , we must have
Nxkj = 2πj to enforce periodic boundary conditions, giving
kj = 2πj/Nx with j ranging from 0 to Nx − 1. With this
approximation in place, we may turn to the results of these
pairing theories.

VIII. RESULTS AND DISCUSSION

This paper has been rather extensively devoted to the-
oretical formalism which characterizes the fermionic de-
grees of freedom. Among the most direct experimentally
relevant consequences is the behavior of the local den-
sity of states (LDOS) N (r; ω) vs ω. Here we address

this density of states in the very low temperature regime.
This is experimentally accessible using scanning tunnel-
ing microscopy.28 The local density of states N (r; ω) is
calculated via N (r; ω) = 2 Im Gret(r,r; ω). We determine
Gret(r,r ′; ω) =∑mm′ Gmm′ (ω + iδ)ψm(r)ψ†

m′(r ′) in the limit
δ → 0+, and for simplicity we address the square lattice at the
lowest temperature where there is only a condensate. Also for
simplicity our illustrative calculations are for the limiting case
of the lowest Landau level, an s-wave gap, Nx = 2 for orbit
center pairing, and normalized to set the mass m = 1.

It has been argued quite generally that N (r; ω) exhibits
a gapless behavior, in contrast to superconductivity without
a magnetic field. This gaplessness is due1 to the fact that
all fermions are delocalized, unlike in the vortex cores of
the low field limit. This observation has direct application to
magnetic oscillation measurements, as a gapped state would
dampen these oscillations significantly.1 More specifically
in the MTG pairing scheme, systematic studies in Ref. 11
show that the energy eigenvalues satisfy EN,k,kz

= ξ 2
N,kz

+
|�m=(N,k,kz),n=(N,−k,−kz)|2. Because �mn always features a zero
for the Abrikosov lattice, E will as well.

The situation for orbit-center pairing is more complex, but
with the nearest neighbor pairing scheme above, we are able to
analytically demonstrate gaplessness in this case as well as for
the square and triangular Abrikosov lattices. Such gaplessness
will occur when Y = 0.5bx , which means the magnitudes of
|�m̄m|2 + |�n̄m|2 and 2|�n̄m�

†
m̄m| are equal (using the notation

from the previous section). Thus, for gaplessness to occur, we
must also have that

arg (e−ikj e±iπ(by/a)) = π, (41)

or jgapless = Nx

2 (1 ± by

a
). For a square lattice, any Nx =

2m, m ∈ N will thus feature a gapless state, while for a tri-
angular lattice, any Nx = 4m will feature a gapless state. This
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FIG. 3. (Color online) Plots of the local density of states N (r; ω)
vs ω on a square lattice, for �sc = 2 and δ = 0.01, and normalized
to a maximum LDOS of 1.0. Main figure: Case (i), using the nearest
neighbor approach for calculations with Lx = 4bx . Inset: Case (ii).
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FIG. 4. (Color online) Plots of the local density of states N (r; ω)
for (a) case (i) and (b) case (ii), normalized to the local density of
states at the vortex cores [located at (x,y) = (±0.5, ± 0.5)] and as
a function of position on a square lattice, for ω = 0.4, �sc = 2, and
δ = 0.05 (slightly higher than Fig. 3 to permit faster computation
without a substantial change in accuracy).

also shows the importance of including “nearest neighbor”
pairs; neglecting them cannot produce gapless states.

Beyond this analytical assessment, we observe additional
similarities and differences between the pairing schemes, and
gain intuition about experiment. Figure 3 presents a plot of the
local density of states as a function of energy for orbit center
(case (i)) and MTG (case (ii)) pairing, and for two different
positions of the probe: one at the vortex center (dashed) and
the other at the point of maximum |�| (solid curve). Again
prominent in the features of these LDOS plots is that both
cases show gapless behavior. In both cases, there is only one
“nodal” state m per lattice site at which its total excitation
E = 0. This produces the distinctive parabola-like shape in
Fig. 3, which still touches N (r; 0) = 0 but does not exhibit
a complete gap away from ω = 0. The variation between the
solid and dashed curves is rather small, also reflecting this
point.

Figure 4 presents a contour plot of N (r; ω) as a function
of r . This figure nicely illustrates that the real-space and
reciprocal lattice space pairing schemes are rather similar
here. Both reflect the symmetry of the Abrikosov lattice.
However the former shows slightly more contrast than the
latter. 29

IX. CONCLUSIONS

It is anticipated that the formalism in this paper will be rele-
vant to both ultracold gases in the BCS-BEC crossover regime
and possibly to the pseudogap phase in high-temperature
superconductors. Magnetic field effects in the latter have
revealed a number of mysteries, which appear to be associated
with a normal-state pairing gap. For the cold Fermi gases there
is considerable interest in effects arising from artificial gauge
fields or rapid rotation. Previous work on these Fermi gases30

has presumed, rather improbably, that even in the BEC regime,
pairing and condensation appear at the same temperature. Also
important is a better understanding of the normal state and
of how condensation can take place if the superconductor or
superfluid is effectively one dimensional.

This paper has focused on the nonlinear gap region in
the presence of a magnetic field. A next step is to address
calculations of the onset of superfluid coherence at temperature
Tc(H ), which is taken to be less than the onset of pairing,
T ∗(H ), in contrast to previous work.3,6,7,11,19,30,31 To this
end, our work has established that the Gor’kov equations
lend themselves to the nonlinear, analytic approach required,
provided only degenerate energy states are paired. It has also
shown that unique pairing partners are not required for a
tractable theory. A robust result of this theory is that gapless
states are present for both real- and momentum-space pairing
theories in a very high field. In summary, it is hoped that
this formalism lays the foundation to explore a variety of
magnetic field effects in the pseudogap phase and throughout
the BCS-BEC crossover.
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APPENDIX: DETAILS OF THE ORBIT-CENTER
PAIRING CALCULATIONS

Since �pair is independent of kz, that subscript will be
dropped in pair terms that follow. Reference 6 provides an
identity,

ψN1,X+Y (r1)ψN2,X−Y (r2) =
N1+N2∑
P=0

CP
N1N2

ψcm
P,X(rcm)ψ rel

N1+N2−P,2Y (r rel), (A1)

where N1,N2, and P are Landau levels, rcm = (r1 + r2)/2, r rel = r1 − r2, ψcm is an orbital function with l → 2−1/2l (appropriate
for a charge-2e particle), ψ rel has l → 21/2l, and CP

N1N2
is a complicated combinatorial prefactor which is equal to 1 if N1 =

N2 = 0. Thus, we know that

�
pair
N1,N2,X,Y (r) =

N1+N2∑
P=0

CP
N1N2

ψcm
P,X(r)ψ rel

N1+N2−P,2Y (0)

=
N1+N2∑
P=0

CP
N1N2

√
1

LyLz2N1+N2−P (N1 + N2 − P )!

(
1

2πl2
H

)1/4

e−Y 2/l2
H HN1+N2−P

(
−√

2Y

lH

)
ψcm

P,X(r).
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We can now proceed to calculate the �mn elements for all possible pairs, with the result that

�m=(N1,X+Y ),n=(N2,X−Y )

=
∫

d r�(r)ψ fermion†
N1,X+Y,kz

(r)ψ fermion†
N2,X−Y,−kz

(r)

= �

√ √
2bx

LxLyLz

√
πlH

∫
d r
∑
m

exp

(
iπ

by

a
m2

)
ψcm

0,mbx
(r)

×
N1+N2∑
P=0

CP
N1N2

√
1

LyLz2N1+N2−P (N1 + N2 − P )!

(
1

2πl2
H

)1/4

e−Y 2/l2
H HN1+N2−P

(
−√

2Y

lH

)
ψ

cm†
P,X(r)

=
{

�

√ √
2bx

LxLyLz

√
πlH

eiπ(by/a)(X/bx )2
C0

N1N2

√
1

LyLz2N1+N2 (N1+N2)!

(
1

2πl2
H

)1/4
e−Y 2/l2

H HN1+N2

(
−√

2Y
lH

)
if X = mbx,m ∈ Z,

0 otherwise.

Here C0
N1N2

=
√

(N1+N2)!
N1!N2!

(−1)N2

2(N1+N2)/2 to give

�m=(N1,X+Y ),n=(N2,X−Y ) =
{

�
√

bx

LxL2
yL

2
zπl2

H

1
2N1+N2

√
N1!N2!

eiπ(by/a)(X/bx )2
e−Y 2/l2

H HN1+N2

(
−√

2Y
lH

)
if X = mbx,m ∈ Z,

0 otherwise.
(A2)
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