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Towards a realistic transport modeling in a superconducting nanowire with Majorana fermions
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Motivated by recent experiments searching for Majorana fermions (MFs) in hybrid semiconducting-
superconducting nanostructures, we consider a realistic tight-binding model and analyze its transport behavior
numerically. In particular, we take into account the presence of a superconducting contact, used in real experiments
to extract the current, which is usually not included in theoretical calculations. We show that important features
emerge that are absent in simpler models, such as the shift in energy of the proximity gap signal, and the enhanced
visibility of the topological gap for increased spin-orbit interaction. We find oscillations of the zero bias peak as
a function of the magnetic field and study them analytically. We argue that many of the experimentally observed
features hint at an actual spin-orbit interaction larger than the one typically assumed. However, even taking into
account all the known ingredients of the experiments and exploring many parameter regimes for MFs, we are not
able to reach full agreement with the reported data. Thus, a different physical origin for the observed zero-bias
peak cannot be excluded.
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I. INTRODUCTION

The experimental search1–3 of Majorana fermions (MFs)
predicted to occur in condensed matter systems4–10 is challeng-
ing due to the fact that MFs are characterized by zero coupling
to electromagnetic fields. Only an indirect identification is
possible, in particular via a zero-bias conductance peak
(ZBP).11,12 However, such features are not an unambiguous
demonstration of MFs. The same ZBPs can be induced
by different mechanisms, including the Kondo effect,13 An-
dreev bound states,14 weak antilocalization, and reflectionless
tunneling.15

A typical experimental setup1–3 (see Fig. 1) consists of a
semiconducting nanowire with Rashba spin-orbit interaction
(SOI) deposited on or coated with a bulk s-wave superconduc-
tor (S) on one end and contacted through a tunnel barrier by
a normal lead on the other end. Part of the nanowire is in a
superconducting state induced by proximity effect.

The transition to the topological phase controlled by a
magnetic field B is accompanied by a closing and reopening
of the excitation gap.5–10 The topological phase persists for
all B fields above a critical Bc in a one-band model, while it
could have a finite upper critical field in a multiband model,
where bands cross at large fields and hybridization of MFs
takes place. However, in experiments one typically explores
regimes where only one band undergoes a transition.1–3 For a
topological section of finite length L�, the MFs at each end with
localization length ξM depending on B can overlap, leading to
splitting of the ZBP at strong B fields.

The experiments1–3 show features which are partially
consistent with the existence of MFs. However, quantitative
agreement with the theory is still missing, and in particular the
following points have to be clarified:

(i) The most evident discrepancy between experiment and
theory is the absence of any experimental signature of the
excitation gap in the nanowire. Recently, this fact has been
ascribed to the spatial distribution of the wave functions for
low chemical potential μ.16,17

(ii) The ZBP in the experiments appears above a cer-
tain magnetic field, persists over a finite range of B,

and then disappears, rather than splitting as expected for
MFs.

(iii) The ZBP conductance is not quantized, with values
being much smaller than 2e2/h,1–3 whereas MFs are predicted
to give 2e2/h.11,18,19

(iv) The proximity-induced gap �� depends only weakly
on B in the dI/dV curves, and the corresponding conductance
decreases significantly for large B.1,3 Such a sudden reduction
is not predicted, and the gap should close much faster for
increasing B. This issue has not been pointed out in previous
theoretical studies.

To address the above issues, we perform numerical cal-
culations of the two-terminal conductance G in a hybrid
structure, referred to as NSS′ setup, shown in Fig. 1, which
closely models the experiment. Here, G is calculated within
the standard scattering theory,20 with the help of the recursive
Green’s function techniques.21 This allows us to model a
complex structure close to experiment that is not amenable
to analytical approaches.22

To be specific, we focus on InSb nanowires1,2 and we use as
a primary reference the experiment of Ref. 1, with exceptions
described below. Nonidealities such as multiple occupied
subbands, disorder, finite width of electrostatic barriers, finite
coherence lengths, and nonzero temperature are taken into
account.

Our study reveals important features not emphasized so
far. For this, the presence of the bulk superconductor turns
out to be decisive. We summarize here our main findings. In
our NSS′ setup, the gap-edge conductance peak decreases in
intensity for increasing B, a feature that is also not captured
by simpler models. Further, in some regimes the closing of the
gap becomes visible in the conductance, while it does not in
an NS setup. We find oscillations of the ZBP as a function of
B and explain their origin. We argue that disorder is unlikely
to be the explanation of the observed ZBPs. Further, we show
that the tunnel barrier plays an important role for the visibility
of peaks. Finally, according to our results the experimental
dI/dV behavior seems to point to a SOI strength larger than
the one reported.
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II. MODEL

We consider a two-dimensional rectangular nanowire of
length L along the x̂ direction and lateral extension W in the
ŷ direction. All the plots presented in this manuscript refer
to 4-subband wires (W = 4), but we have conducted similar
simulations for W = 1,2,8 as well, noting only quantitative
changes in the relative strength of the different dI/dV features
(besides the known peculiarity of the one-band case, where
some features are absent).

The tight-binding Hamiltonian (lattice constant a) describ-
ing the different sections of the setup has the form

H =
∑
m,d

c
†
m+d,α

[−tδαβ − iᾱm(x̂ · d)σy

αβ

]
cm,β

+
∑

m

c†m,α

[
(εm − μ0)δαβ − gm

2
μBBxσ

x
αβ

]
cm,β

+
∑

m

�m(c†m,↑c
†
m,↓ + H.c.), (1)

where t = h̄2/(2ma2) is the hopping amplitude (set to 1
and taken as an energy unit) and ᾱ is the spin-flip hopping
amplitude, related to the physical SOI parameter by ᾱ = α/2a

and to the SOI energy by Eso = ᾱ2/t . Here and in the
remainder of the paper we are neglecting transverse spin-orbit
coupling, but we have checked that the introduction of a small
finite transverse SOI is not affecting qualitatively our results.
We made the assignment t = 10 meV, which corresponds to
taking a � 15 nm, and realistic sizes (∼μm) are then amenable
to reasonable computations. The sums run over all lattice
sites m and nearest neighbors (m + d). Implicit summation
over repeated spin indices is assumed. The constant μ0 is
chosen to set the common chemical potential to the zero-field
bottom of the topmost band and depends on the number
of subbands (i.e., on W ). Further, εm = −μm + Um + wm

accounts for local variations of the chemical potential, for
the tunnel-barrier potential Um, and includes an onsite random
potential wm which models Anderson disorder. The tunnel
barrier has a Gaussian profile with height U0 and width λ.
The external magnetic field B points along the nanowire axis
(x̂) and induces a Zeeman splitting 2VZ = gmμBB. Finally,
� is the pairing amplitude and can either account for the
native superconductivity in the bulk s-wave superconducting
lead (�0) or for the proximity-induced pairing in the nanowire
(��), as exemplified in Fig. 1. All the above quantities are
taken to be site-dependent along the x̂ direction (except wm,
which is taken to be completely random), so that we can model
different parts of the setup. The normal lead is characterized by

ᾱ = 0, μ � −μ0 (i.e., metallic regime),

g = 2, wm = 0, �m = 0. (2)

The nanowire is characterized by finite ᾱ = ᾱR, chemical
potential μ � 0 close to the bottom of the topmost band,
g = 50 appropriate for InSb nanowires, and �m varying
from 0 in the normal section to �� in the proximized
section. The nanowire is adiabatically connected to a metallic
superconducting lead with

ᾱ = 0, μ � −μ0,

g = 2, wm = 0, �m = �0 � ��. (3)

FIG. 1. (Color online) The schematics of the NSS′ geometry setup
we consider in this work (top panel). The nanowire (gray) is connected
on the left to a semi-infinite normal lead (N, blue) and on the right
to a semi-infinite bulk s-wave superconducting lead (S, green). It
consists of a normal section (NW, gray), where a potential barrier
U (x) (black) is created, and a proximity-induced superconducting
nanowire section (SW, gray). We allow for static disorder w(x,y) (red
crosses) in the nanowire. The spatial dependence of the parameters
entering the Hamiltonian in Eq. (1) is qualitatively depicted in the
bottom panel.

In a simpler model the nanowire is semi-infinite, without
external superconductor, referred to as NS geometry. This
corresponds to taking the superconducting lead to be identical
to the nanowire, with a single pairing amplitude ��. In such
a configuration, the second MF is always moved to infinity,
and the ZBP is locked to zero for all B > Bc, whereby
the topological transition occurs at the “bulk” critical field
(gμB/2)Bc = √

�2
� + μ2.5–10 We will sometimes switch to

this NS configuration in order to connect with previous
studies16,17,23–28 and to understand the effect of the bulk
superconductor.

In the actual experiments, and in a fully microscopic theo-
retical simulation, the nanowire has zero pairing everywhere,
and the effective gap �� is generated by the coupling to
the bulk superconductor. Usually one can forget about the
superconductor and work with a wire with given ��. However,
in the considered setup the bulk S is still playing a role, since
current is extracted through it, and it is therefore substantially
modifying the dI/dV behavior (not simply by singling out
the Andreev reflection contribution of an NS calculation). It
would be different in the case of transport across a proximity
wire placed on a superconductor that is not used as a contact
(NSN geometry).

Our setup aims exactly at taking this fact into account:
The proximity effect is included in an effective fashion
(not microscopically), but we do have two different pairing
regions that electrons have to cross. Still, with the sequential
geometry of Fig. 1 we are slightly simplifying here the
experimental setup,1–3 where the nanowire is side-contacted,
or top-contacted, and the current does not follow a straight
path.

First we note that the value of the SOI α in the experiments
is not known, as also noticed in Ref. 29, since the only available
measurements have been performed in a different setup, where
the SOI was likely modified. Similarly, the proximity pairing
amplitude is not directly accessible, and one can only deduce
it from the dI/dV behavior. Thus, it becomes interesting
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and even necessary to consider regimes with different SOI
strengths, or different proximity pairing amplitudes.

III. DISCUSSION

The first important point we want to make is that by
assuming that the actual SOI is larger than the reported one
(e.g., α = 0.2 eV Å, or Eso = 50 μeV in Ref. 1), one can get
a substantial improvement in the calculated dI/dV behavior,
with features more similar to experiments.1–3 In other words,
the measured data suggest a stronger SOI. In particular, we
observe the following facts.

(1) Under the assumption that the measured ZBP1–3 arises
from MFs, we conclude that μ � 0 in the topological section,
since the ZBP emerges already at small B, 1

2gμBB � �� for
g = 50.

However, such a small μ, together with the reported SOI
values,1 would generate a rapid closing of the kF-gap �kF as
a function of B. This is indeed what we find in our transport
calculations for μ � 0, α = 0.2 eV Å, both in the NS and NSS′
setup, see Figs. 2(a) and 2(c), respectively. Note that in the NS
case the ZBP stays at zero for all fields, whereas in the NSS′
case the ZBP exhibits an oscillating splitting (see below). In the
same figure we show that a stronger SOI gives a better agree-
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FIG. 2. (Color online) Effect of larger SOI strength, clean case.
We plot here the differential conductance dI/dV evaluated as a
function of bias voltage V and Zeeman energy VZ. Panels (a) and
(b) refer to the NS configuration, while (c) and (d) refer to the NSS′

setup. The parameters used here correspond to: �� = 250 μeV,
�0 = 2.1 meV (only NSS′), μ0 = −3.8 meV, U0 = 45 meV, λ =
1 nm (narrow barrier), LN = 0, L� = 3 μm (only NSS′) and μ = 0,
which corresponds to a bulk critical V c

Z = ��. For the case of
InSb, the plotted range VZ = 0 − 6�� corresponds to B = 0 − 1 T.
Temperature is set to T = 75 mK. α = 0.2 eV Å(left column).
α = 0.8 eV Å(right column). Larger SOI yields a slower closing
of the kF-gap �kF (B), in both configurations, where kF is the Fermi
momentum. Notice that in the NSS′ case the kF-gap signal decreases
in intensity as the magnetic field is increased.

ment with the measured �kF (B), both in the NS setup,24 see
panel (b), and in the NSS′ setup, shown in panel (d). Note that
this latter SOI effect, which answers the issue raised in point
(iv) above, is independent of the nature of the observed ZBP.

As already observed elsewhere,16 the considered regime of
μ � 0 is characterized by an invisible gap closing, probably
due to pretransition wave functions which are delocalized
throughout the wire, with little weight close to the probed
edges. At finite temperature we observe this behavior both in
the NS and in the NSS′ setups. On can thus state that issue (i)
has been settled.

(2) When realistic Anderson disorder is included in the
model, the closing of the gap becomes visible again even
in the μ � 0 regime,17,26,29 reintroducing a discrepancy with
experiments.1–3 Disorder in a nanowire with weak SOI causes
a number of subgap states to appear, some of which cluster
around zero energy and possibly give rise to a nontopological
ZBP, more markedly for finite μ.29 Such states are coming from
other subbands, for which the effective minigap gets reduced
in the presence of disorder. This is substantiated by the fact
that the ZBP in Fig. 3(a) has a conductance peak larger than
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FIG. 3. (Color online) Effect of larger SOI strength on disorder,
NSS′ case. The parameter values are the same as in Fig. 2. In addition,
a realistic disorder wm ∈ [−3,3] meV [corresponding to a mean free
path �mfp � 150 nm (Ref. 29)] is included over the entire nanowire
length L � 2.5 μm. We do not average over disorder configurations.
(a) α = 0.2 eV Å. (b) α = 0.8 eV Å. In the weak SOI regime,
the disorder lowers or destroys the gap relative to lower subbands,
bringing many supra-gap states down, close to the Fermi level, where
they cluster in some cases into a finite-extension ZBP, like in panel
(a). Such clustering is, however, removed for stronger SOI (Ref. 29),
see panel (b).
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FIG. 4. (Color online) Same parameters as in Fig. 2, without
disorder and at T = 0. Only the wire length is slightly smaller,
L� = 2.2 μm. (a) α = 0.2 eV Å. Note the oscillations of the ZBP,
for explanations see text. (b) α = 0.8 eV Å. For larger SOI, the
oscillations become visible at higher magnetic field (B∗∗

c increases),
and with large enough SOI strength the gap closing becomes partially
visible, even for the considered case of μ � 0, while it is not visible
in an NS setup with the same parameters. The dI/dV peaks coming
from the gap closing have, however, very small width and they get
washed out by realistic temperatures.

2e2/h, implying that it cannot come from the Andreev signal
of a single band. For stronger SOI, the effect of disorder gets
suppressed, and fewer subgap states are observed (see Fig. 3),
more compatibly with the experimental evidence.1–3 Due to
the same mechanism, also the strong ZBP feature of Fig. 3(a)
disappears, though. Thus, disorder is unlikely to explain the
ZBP structure observed in experiments.

(3) As a consequence of the finite length of the topological
section (L�) and of the B dependence of kF, we observe that
the ZBP splitting exhibits oscillations of increasing amplitude
as B is swept, see Fig. 4(a).30 To explain this, we recall
that in the weak-SOI limit the MF wave function has an
exponentially decaying envelope with localization length ξM

and a fast-oscillating part ∼ sin(kFx).31 If the magnetic field
exceeds a critical value B∗∗

c = B∗∗
c (α,L�) (see Fig. 5), the two

end MFs overlap and split away from zero energy. Since ξM

increases with B,5–10,31 so does the splitting. However, if kFL�

becomes an integer multiple of π as a function of B, the ZBP
splitting returns to zero, leading to oscillations with a period
given by

δ(VZ/��) = πh̄

L���

√
2VZ

m
= πa

L�

√
tVZ

��

, (4)

FIG. 5. (Color online) Schematic dependence of the MF local-
ization length ξM on magnetic field B. According to the theory for a
one-band semi-infinite nanowire (Refs. 9 and 10), a MF emerges when
the magnetic field exceeds a critical value Bc = 2

√
�2

� + μ2/gμB,
and the system goes from the nontopological (gray) to the topological
(yellow) regime. However, for a nanowire of finite length L�, due
to overlap of the MFs from each end, the additional approximate
condition for the observation of a MF is ξM < L�/2. Considering
typical dependences of ξM on magnetic field (Ref. 31), we predict
that the MF should be observed for B∗

c < B < B∗∗
c , where the critical

fields B∗
c and B∗∗

c are defined through ξM(B∗
c ) ≈ ξM(B∗∗

c ) ≈ L�/2 (cf.
Fig. 4).

where m is the band mass and a the lattice constant. Using
parameter values corresponding to Fig. 4, t/�� = 40, L�/a =
200, we obtain quantitative agreement with the simulated ZBP
oscillations. Since the critical field B∗∗

c increases with SOI,31

the ZBP splitting and related oscillations occur at larger fields.
In other words, the presence or absence of the oscillations
in a given range of magnetic field values is determined by
the strength α of the SOI and by the ratio ξM(α)/L�. The
former fixes the form of the MF wave function, the latter
determines whether the two MF bound states are overlapping
in a significant way or not. This explains why in Fig. 4(b),
where strong SOI has been adopted, oscillations are starting at
higher B (barely visible).

Note that these oscillations are quite robust against temper-
ature effects, see Fig. 2(c). Such behavior of the ZBP is quite
remarkable and provides an additional possible signature to
identify MFs experimentally. To make contact with issue (ii)
raised in Sec. I, one can argue at this point that the absence of
oscillations in the experimentally observed ZBPs1,3 represents
an additional hint for strong SOI.

We note in passing that in the NSS′ setup the SOI affects
the visibility of the gap closing, see Fig. 4. Again, one can
explain this behavior by invoking the changing spatial profile
of the wave functions close to the wire edge for different SOI
values, together with the finite length of the wire. The same
effect is not manifested in the case of the NS setup (infinite
wire length). Next we address further issues that have received
less attention in the literature so far.

(4) The position of the proximity gap �kF (B = 0) as
observed in the dI/dV curves is in general different from
�� inserted in the Hamiltonian, Eq. (1). This observation is
important, since it means that deducing the proximity gap
from the conductance curves is not a correct procedure.1,3

Such an energy shift can be due to the presence of a normal
section of finite length LN between tunnel barrier and NS
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FIG. 6. (Color online) Dependence of the conductance behavior
on the normal-region length LN. Panels (a)–(d) correspond to LN =
0,0.3,0.6,1.5 μm, respectively. The other parameters are chosen as
in Fig. 2, apart from: λ = 20 nm, L� = 3 μm, α = 0.4 eV Å, wm ∈
[−1.2,1.2] meV (�mfp � 1 μm). Temperature is set to T = 75 mK,
as before. Note the evolution of the proximity peak towards lower
energies and the appearance of a second peak at the largest values of
LN [panel d)].
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FIG. 7. Role of the tunnel barrier U (x). The parameters are
chosen as in the previous figures, different curves refer to different
magnetic field values, ranging from 0 to 6�� = 1.5 meV (=1 T for
g = 50), in steps of 0.2 ��. Here we kept T = 0 in order to show the
effect of the barrier smoothness alone. (a) Gaussian tunnel barrier with
width λ = 1 nm (essentially, a δ-function). The Majorana-induced
ZBP is fully visible, with maximal weight dI/dV = 2e2/h at the
largest magnetic fields. The closing of the gap is, however, nearly
absent. (b) Same system, but with λ = 50 nm, a value closer to the
experimental situation. Gap-closing and ZBP are completely absent
(the adopted energy resolution δE is much smaller than the realistic
kBT ).

interface. More precisely, the observed peak moves to lower
bias voltages for larger LN. By increasing LN, one can move
the conductance peak deeper inside the gap and eventually
even introduce additional peaks when LN � ξ = h̄vF/(π��),
similar to the case of McMillan-Rowell resonances.32 This
behavior is summarized in Fig. 6. Alternatively, in the NSS′
configuration the peak corresponding to �� itself can be
viewed as a subgap resonance of the larger gap �0, and its
position can be changed by varying the distance L� of the N-S
interface from the S-S′ interface. In this case, the peak moves
to larger energies for decreasing L�, see, e.g., Figs. 2(c) and
2(d), and Fig. 4, where the dI/dV peak is above �� due to the
finite wire length [compare with Figs. 2(a) and 2(b)].

(5) In both NS and NSS′ configurations, the tunnel barrier
plays an important role—it determines the transmission of
each transport channel, which in turn sets the width of
the subgap resonances32 (without changing their height).
Introduction of temperature smears the resonances while
preserving their weight, which implies a reduction of the
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height in correspondence to the barrier-induced reduction of
the width. This explains the very small value of the ZBP
in experiments, and answers to issue (iii). If the resonance
width becomes smaller than the temperature, the resonance is
essentially invisible.29 Consequently, if the barrier is wide
enough, no subgap features are present in the dI/dV curve.
If the tunnel barrier is chosen to be sharp (like in many
analytical and numerical calculations), all the states present
in the nanowire could become visible. However, that is not a
realistic choice, since a typical barrier in experiments has a
characteristic width of ∼50 nm. For such values we already
observe a momentum filtering,24 leading in some cases to a
complete disappearance of MF signatures, see Fig. 7. Again,
introducing disorder can make the aforementioned subgap
features reappear. Therefore, it is the combined effect of barrier
shape, SOI, and disorder strength that determines the final
visibility of MFs.

IV. CONCLUSIONS

In summary, by numerically simulating a more realistic
setup than before, we have obtained new features in the

transport that are similar to the ones observed in experiments.
However, even after considerable effort, we do not reproduce
all such features in a single configuration, and we still lack
a satisfactory agreement with experiments. In particular, the
exact shape of the measured ZBP is not very compatible with
the picture of MFs that form and then split as a function
of magnetic field. Thus, either the theoretical model is still
incomplete, or a different physical origin for the observed
ZBP1–3 is to be considered. More precisely, from our findings
it seems possible that in the experiments the MF features are
essentially invisible and the observed ZBP is coming from
some different coexisting phenomenon, like Kondo effect,
which seems indeed to yield a similar behavior in some
situations.33
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