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Stationary Josephson effect in a short multiterminal junction
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We study the dc Josephson effect and the density of states in a multiterminal structure of cross-type geometry
that consists of four superconducting electrodes connected by one-dimensional normal or ferromagnetic wires.
We find that the Josephson current IJz has a sinusoidal dependence on the phase difference φz between the
superconductors in the horizontal wire with a critical current Ic that can be varied by changing the phase
difference φy between the superconductors in the vertical wire. The period of the function IJz(φz) depends on
the ratio of the interface resistances RSn,z/RSn,y being equal to 2π if this ratio is small and equal to 4π in the
opposite limit. We also calculate the amplitudes of both the singlet and the odd-frequency triplet components in
the system under consideration. The triplet component amplitude may be significantly larger than the amplitude
of the singlet component.
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I. INTRODUCTION

In the recent years, there has been an increasing interest
in studies of Josephson junctions (JJs) with controllable
parameters. The value and sign of the Josephson critical current
Ic can be changed by variation of temperature and external or
internal parameters. To some extent, this interest is caused by
the possibility of technological applications of such JJs, for
example in Q bits (for a review see, e.g., Ref. 1).

A remarkable example of a JJ with properties that depend
on internal parameters in a crucial way is a superconduc-
tor/ferromagnet/superconductor (S/F/S) junction. A specific
action of the exchange field on the spins of Cooper pairs
leads, in a certain range of temperatures and thicknesses of
the ferromagnetic films, to a sign change of the critical current
Ic in S/F/S JJs.2 This effect predicted long time ago3,4 has
been observed by many experimental groups.5–14 In S/F/S JJs
consisting of ordinary singlet s-wave superconductors and a
ferromagnet with a nonhomogeneous magnetization, not only
a singlet component arises in the F due to proximity effect,
but also a nontrivial, so-called odd triplet component that
penetrates the ferromagnetic layer over a long distance (for
a review, see Refs. 15–17). This component observed in many
experiments18–24 may also lead to an unusual and controllable
behavior of JJs.

The latter property has been demonstrated in recent
experiments24 on a multilayered S/F′FFF′/S Josephson junc-
tion in which the F′ and F layers are a weak (F′ → Ni or
Pd0.88Ni0.12) and a strong (F → Co) ferromagnet, respectively.
Since the singlet component leaking from the superconductor
S (S → Nb) cannot penetrate the rather thick Co layer (dCo =
20nm), the Josephson coupling is provided by the odd triplet
component arising due to noncollinearity of magnetization
vectors M in the F′ and F layers. The maximum amplitude of
this triplet component occurs at perpendicular orientation.25–27

Applying an external magnetic field, the authors of Ref. 24
changed the mutual orientation of the magnetization vectors
in the F′ and F layers and could increase the critical current Ic

more than by an order of magnitude.
In S/FF/S JJs where the magnetization vectors M in the F

layers are parallel or antiparallel with respect to each other, the

critical current Ic depends on the mutual orientations of the M
vectors (see theoretical papers Refs. 28–30). This dependence
was measured by Robinson et al.31 In accordance with the
theoretical predictions, they found that the current Ic is larger
for the antiparallel orientation than for the parallel one.

The change of sign of the critical Josephson current may
be realized not only in S/F/S JJs, but also in superconduc-
tor/normal metal/superconductor (S/N/S) JJs (see theoretical
papers Refs. 32–34) if the quasiparticle distribution function
in the normal metal is not in equilibrium with the supercon-
ducting reservoirs. This disequilibrium may be achieved, e.g.,
in a four terminal JJ by passing a dissipative current trough the
lateral N reservoirs. Then, the critical current Ic(V ) decreases
as a function of the voltage V applied between the N reservoirs
and may become negative. This effect has been established in
experiments by Baselmans et al.35

The critical current Ic in multiterminal JJs may not only
decrease under nonequilibrium conditions, but may also
increase.36 A weak increase of the Josephson current has
been observed in Josephson weak links under microwave
radiation several decades ago.37–41 The observed increase of
Ic is probably related to the stimulation of superconductivity
by microwave irradiation predicted by Eliashberg.42

Multiterminal S/N/S JJs were studied in several
papers.35,43,44 These junctions contain a dissipative element,
a normal conductor or leads through which a dissipative
current was passed. For example, in experiments by Petrashov
et al.,43–45 the modulation of the conductance between the
N reservoirs due to a variation of the phase difference
ϕ between two superconductors in four-terminal structures
(such structures are called Andreev interferometers) has been
measured.

The possibilities to change the critical Josephson current
in nondissipative four-terminal structures by passing current
through lateral electrodes were studied theoretically in Refs. 46
and 47 (ballistic limit) and in a recent Ref. 48 (dirty case).
The authors of Ref. 48 assumed a weak proximity effect.
Physically, this means that the interface resistance is much
larger than the resistance of the normal two-dimensional region
between four superconducting leads. In this limit, the Usadel
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FIG. 1. (Color online) Schematic setup of a four-terminal Joseph-
son junction of cross-type geometry consisting of four superconduct-
ing reservoirs connected by one-dimensional normal metal wires.
The junction is assumed to be located in the zy plane with interfaces
at ν = ζLν , where ν = z,y and ζ = ±. The superconductors are
supposed to be identical but with different phases ϕνζ of the order
parameter.

equation can be linearized. Solving this linearized equation
for a rectangular geometry, Alidoust et al.48 have found the
dependence of the critical current Ic between the left and right
superconductors on the phase difference between the two other
electrodes (upper and down).

In this paper, we consider a four-terminal Josephson
junction of cross-type geometry as shown in Fig. 1. It consists
of a normal metal (n) wire or film, which connects four
superconducting reservoirs. In our analysis, the connecting
wires of the system are considered as one dimensional. The
normal metal wires have the total lengthes 2Lν (ν = z,y) along
the corresponding axis ν. Unlike Ref. 48, we analyze the case
of arbitrary strength of proximity effect. Using the Usadel
equation and assuming that the Thouless energy ETh = D/L2

is large enough [ETh � max(T ,�)], we find an exact solution
for the quasiclassical Green’s functions. Here, D = vF l/3
is the diffusion coefficient, vF is the Fermi velocity, l is
the electronic mean free path, T denotes temperature, � is
the superconducting gap parameter, L = Lz + Ly , and we
choose units such that h̄ = kB ≡ 1. Note that the case of a
high Thouless energy compared to the exchange field was
analysed in Refs. 49 and 50 for another SF system. We
consider temperatures T far below the critical temperature
Tc of the superconducting electrodes so that the temperature
dependence of the gap function �(T ) can be neglected, i.e.,
� represents the T = 0 value of �(T ). With the help of
these functions we calculate the density of states (DOS) at
the crossing point and find the dependence of the critical
Josephson current in the vertical JJ on the phase difference
in the horizontal JJ. In the considered “zero-dimensional”
limit, expressions for the quasiclassical Green’s functions are
more compact and describe the considered JJ for any ratio
of the interface resistance to the resistance of the n wires. In
particular, they describe gapped states of the n wires and the
dependence of the induced gap on the phase difference.

We also study the case of ferromagnetic wires connecting
the superconductors (see Sec. V). It is assumed that the
magnetization M in the wires is oriented along the wires and
that the ferromagnets are not strong so that the condensate
penetrates into the ferromagnets and the condition ETh � Vex

is fulfilled, where Vex denotes the exchange energy. We show

that not only the singlet component arises in the ferromagnetic
cross, but also the odd-frequency s-wave triplet component
with nonzero projection of the total spin S on the M vectors.
The amplitude of this triplet component may be significantly
larger than the amplitude of the singlet component. In the
concluding section, we discuss the obtained results.

II. MODEL AND BASIC EQUATIONS

We consider an S/S structure of cross-type geometry as
shown in Fig. 1. In the horizontal and vertical directions,
we have a S(−Lz) − n/n − S(Lz) and S(−Ly) − n/n − S(Ly)
structure, respectively. We will employ the method of qua-
siclassical Green’s functions, which is well developed and
can be used in problems where quantum effects on the scale
of the Fermi wave length are unimportant.51–53 In particular,
this theory was applied to the study of multiterminal S/S and
S/N circuits in many papers (see, e.g., Refs. 32,48,54–57 and
references therein).

We study the case of dirty superconductors that corresponds
to most experimental situations, i.e., we assume that the
electronic mean free path l is much shorter than the super-
conducting coherence length ξS = √

D/� and the lengthes of
the n wires, Lν . In the considered equilibrium case, one needs
to find only the retarded (advanced) Green’s function in order
to obtain thermodynamical quantities as the density of states or
the Josephson current. For singlet superconductors as assumed
here, these functions have a 2 × 2 matrix structure in the
particle-hole space. We denote the quasiclassical temperature
Green’s function by ĝ(ω) where ω = (2n + 1)πT is the
Matsubara frequency. In the n wires, the matrix function ĝ

obeys the Usadel equation58

− ∂ν(ĝ · ∂νĝ) + κ2
ω[τ̂3,ĝ] = 0 (1)

and the normalization condition

ĝ · ĝ = 1̂, (2)

where κ2
ω = ω/D, τ̂3 is the third Pauli matrix, and 1̂ is the

2 × 2 unity matrix in the particle-hole space. The boundary
conditions have the form59

ĝ · ∂νĝ
∣∣
ν=ζLν

= ζκν[ĝ,ĝS]
∣∣
ν=ζLν

, (3)

where ζ = ±, κν = ρ/2RnS,ν , ρ is the specific resistance of
the n wire, RnS,ν is the nS interface resistance at ν = ζLν per
unit area, and we assume that RnS,ν(Lν) = RnS,ν(−Lν).

As was noted above, the condition

L2
ν � min{D/T,D/�} (4)

is supposed to be fulfilled. Therefore one can integrate Eq. (1)
over ν from −Lν to 0 and from 0 to Lν regarding the Green’s
function ĝ as nearly constant. Taking into account the boundary
condition (3), we obtain the equations

ζ ĝ · ∂νĝ|ν=ζ0 − κν[ĝ,ĝS(ζLν)] = −κ2
ωLν[τ̂3,ĝ]. (5)

Then, we sum up all these equations and take into account the
law of “current” conservation,

Ĵz(+0) + Ĵy(+0) = Ĵz(−0) + Ĵy(−0), (6)
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where Ĵz(z) = Dĝ · ∂zĝ|y=0 and Ĵy(y) = Dĝ · ∂yĝ|z=0. We
arrive at the equation

κ2
ωL2[τ̂3,ĝ] + [(rzĜz + ryĜy),ĝ] = 0 (7)

with rν = κνL, Ĝν = [ĝS(Lν) + ĝS(−Lν)]/2. Equation (7)
can be written in the form

[M̂,ĝ] = 0, (8)

where M̂ = κ2
ωL2τ̂3 + (rzĜz + ryĜy). The Green’s functions

in the S reservoirs have the form

ĝS(ζLν) = gSτ̂3 + fS[τ̂2 cos(ϕνζ ) + τ̂1 sin(ϕνζ )], (9)

where ϕνζ = ϕν(ζLν) is the phase of the order parameter
in the superconductor at z = ζLz and y = ζLy , respec-
tively. For simplicity, we assume that the superconductors
are made of identical materials, i.e., their superconducting
gap parameters � have equal magnitudes and therefore the
functions

gS = ω

ξω

, fS = �

ξω

, ξω =
√

ω2 + �2 (10)

are identical for all superconductors. Using Eqs. (9) and (10),
the matrix M̂ can be represented in the form

M̂ = τ̂3M3N + fS(τ̂2m2 + τ̂1m1), (11)

where m1 = rz sin(�z) cos(φz/2) + ry sin(�y) cos(φy/2),
m2 = rz cos(�z) cos(φz/2) + ry cos(�y) cos(φy/2), M3N =
[κ2

ωL2 + (rz + ry)gS], �ν = (ϕν+ + ϕν−)/2, and φν =
ϕν+ − ϕν−. The solution of this equation is sought
in the form ĝ = aM̂ , where the coefficient a can be
determined from the normalization condition (2). We obtain
a−2 = [M2

3N + f 2
S (m2

1 + m2
2)], where the sign of a is chosen

in such a way that the density of states is a positive quantity.
Thus, in the limit of a short Josephson junction, the solution
of the Usadel equation is given by

ĝ = M̂√
M2

3N + f 2
S

(
m2

1 + m2
2

) = M̂

DN

(12)

with DN =
√

M2
3N + f 2

S (m2
1 + m2

2).
Having determined the Green’s function ĝ, we can now

calculate physical observable quantities such as the density of
states N (ε) and the Josephson current IJ .

III. DENSITY OF STATES

With help of the solution for the Green’s function ĝ,
Eq. (12), we can find the density of states N (ε) in the
n wire,

N (ε) = Re

[
M3N

DN

∣∣∣∣
ω→−i(ε+i0)

]
. (13)

One can consider the following limiting cases of Eq. (13).
For very high interface resistances RnS,ν � RL (i.e.,

rν � 1), where RL = Lρ/2, one can neglect the term
containing fS in the definition of DN so that N (ε) ≈
1. For very low interface resistances RnS,ν � RL (i.e.,
rν � 1) we set for simplicity κz = κy = κ , i.e., rz =
ry = r . Then, M3N ≈ 2rgS and DN ≈ 2r[g2

S + (fS/2)2(μ2
1 +

μ2
2)]1/2 with μ1 = sin(�z) cos(φz/2) + sin(�y) cos(φy/2) and

FIG. 2. (Color online) Density of states N (ε) in the n wire as a
function of normalized energy ε/� for φy = 2π/3 and different phase
differences φz. The plots are presented for the parameters γ /� =
0.03, rz = ry = 1, and L/ξS = 0.1.

μ2 = cos(�z) cos(φz/2) + cos(�y) cos(φy/2). This results in
N (ε) ≈ Re[ε/

√
ε2 − �2(μ2

1 + μ2
2)/4], i.e., we obtain a gap

induced in the n wire equal to � in the absence of super-
conducting phases (�ν = φν = 0) and turning to zero for
μ1 = μ2 = 0.

In the limit of small energies (ε/� � 1) and small values of
r , we obtain N (ε) ≈ Re[ε/

√
ε2 − E2

thr
2(μ2

1 + μ2
2)]. At �ν =

φν = 0, i.e., at μ1 = 0 and μ2 = 2, this expression coincides
with McMillan’s formula.60

In Fig. 2, we show the dependence of the density of
states N (ε) on the normalized energy ε/� for different
phase differences φz keeping φy fixed at 2π/3. Here, we
have set ϕν+ = −ϕν− = φν/2 so that �ν = 0 and m1 =
0. Moreover, since the DOS is calculated from N (ε) =
Re[τ̂3 · ĝR], i.e., from the retarded Green’s function, we
replace in Eq. (13) ε/� → (ε + iγ )/� and choose a damping
γ /� = 0.03 according to analyticity of ĝR in the upper half
plane.

As already mentioned above, we find a gap induced in the
n wire. The position of the gap with respect to normalized
energy ε/� can be tuned by variation of the parameters rν and
the superconducting phase differences φν . In particular, it can
be seen that for fixed phase difference φν one can always find
a phase difference φν̄ = 2 arccos[−rν̄ cos(φν̄/2)/rν] such that
the density of states becomes unity for all energies, i.e., the
gap turns to zero. Here, ν̄ = y,z denotes the axis perpendicular
to ν = z,y, i.e., if, for instance, ν = z, then ν̄ = y. Since
N (ε) is only dependent on cos(φz/2) due to symmetry, it
is sufficient to consider phase differences φz ∈ [0,2π ] for
constant φy .

The dependence of the DOS on the phase difference
between the superconducting leads in S/N/S systems has
been studied in many papers (see, e.g., Ref. 61 as well
as Ref. 62 and references therein). Indeed, the proximity
induced gap in the n wire has also been obtained in Ref. 62
for a three-terminal diffusive S/N/S junction with normal
metal wires. In agreement with our results, the authors of
Ref. 62 report a proximity induced gap in the DOS of
the n wire which depends on the superconducting phase
difference φ.
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IV. JOSEPHSON CURRENT

By means of Eq. (12), we can also calculate the Josephson
current flowing through the four terminals located at ν = ζLν

given by

IJ (ζLν) = ζ
iπT

4eRnS,ν

∑
ω

Tr {τ̂3 · [ĝ,ĝS]} ∣∣
ν=ζLν

, (14)

where Tr is the trace over particle-hole indices. Substituting
the expressions for ĝ and ĝS , Eqs. (12) and (9), into
this expression, we obtain for the normalized supercurrents
j (ζLν) ≡ IJ (ζLν)/IJ0ν [where IJ0ν = π�/(eRnS,ν)]

j (ζLν) = T

�

[ rν

2
sin(φν) + ζ rν̄ cos(φν̄/2)

× sin(ϕνζ − �ν̄)
]∑

ω

�2

ω2 + �2

1

DN

. (15)

This formula determines the Josephson current between iden-
tical superconductors (a generalization to the case of different
superconductors is straightforward) for arbitrary phases of the
order parameter and arbitrary strength of proximity effect,
i.e., the parameters rν are not restricted to particular limits.
It is obvious that, as it should be, a shift of all the phases
by a constant does not change the currents j (ζLν). In the
following, we consider two particular cases with respect to the
superconducting phases ϕνζ .

First, we assume that ϕν+ = −ϕν− = φν/2 so that �ν =
0. Then, one can easily obtain from Eq. (15) the Josephson
current in the horizontal and vertical branches,

j (ζLν) = T

�

[
rν

2
sin(φν) + rν̄ cos(φν̄/2) sin(φν/2)

]

×
∑

ω

�2

ω2 + �2

1

DN

. (16)

One can see that if RnS,ν � RnS,ν̄ , i.e., rν � rν̄ , the depen-
dence of the Josephson current j (Lν) on the phase difference
φν is close to the sinusoidal one with the period 2π (note that in
the considered particular case m1 = 0, but the function m2 
= 0
and it also depends on φν). In the opposite limit RnS,ν � RnS,ν̄ ,
i.e., rν � rν̄ , the phase dependence of the current j (Lν) is
changed drastically as it is almost sinusoidal but the period of
oscillations is equal to 4π .

The obtained phase dependence of the Josephson current
leads to an interesting phenomenon. As is well known (see, for
example, Refs. 63–65), if a Josephson junction is irradiated by
microwaves with frequency ω and if a bias voltage V is applied
between the superconducting leads the so-called Shapiro
steps appear on the current-voltage characteristics I (V ). The
positions of the Shapiro steps are determined by the relation
VSh,n = h̄ω/2en with n = 1,2, . . . . Thus the main Shapiro step
corresponds to the voltage VSh,1 = h̄ω/2e. However, given
a bias voltage V is applied between the superconducting
leads in the horizontal wire and the phases are varying
in time with frequencies much less than the characteristic
energies (� or Tc) of the problem, one can conclude from
Eq. (16) that for rz � ry the positions of the Shapiro steps are
changed: VSh,n(rz � ry) = h̄ω/en. Moreover, the positions of
the Shapiro steps depend on the phase difference φy , that is, on
the current flowing through the vertical wire. Note that the 4π

FIG. 3. (Color online) Normalized supercurrent j (Lz) in the
horizontal wire at the right interface as a function of the horizontal
phase difference φz for different values of the resistance ratio
ry = RL/RnS,y . The plots are presented for the two cases (a)
ϕν+ = −ϕν− = φν/2 [�ν = 0] with ν = z,y and (b) ϕz+ = −ϕz− =
φz/2 [�z = 0], ϕy+ = ϕy− = �y [φy = 0]. The parameters are rz =
1, T/� = 0.05, L/ξS = 0.1, (a) φy = 2π/5, and (b) �y = 2π/5.

periodic phase dependence of the Josephson current is typical
for junctions with Majorana bound states.66–69

Second, consider now the case when in the horizontal
branch ϕz+ = −ϕz− = φz/2, i.e., there is no change compared
to the previous case, but in the vertical branch ϕy+ = ϕy− =
�y (φy = 0). Then, we find

j (ζLz) = T

�

[ rz

2
sin(φz) + ry sin(φz/2 − ζ�y)

]

×
∑

ω

�2

ω2 + �2

1

DN

(17)

and

j (ζLy) = ζ
T

�
rz cos(φz/2) sin(�y)

∑
ω

�2

ω2 + �2

1

DN

. (18)

In this case the currents through the interfaces at z = ζLz

are different if ry � rz. The currents through the interfaces at
y = ζLy flow in opposite directions.

In Fig. 3, we plot the dependence of the current j (Lz) on
the horizontal phase difference φz for different values of the
vertical resistance ratio ry and fixed horizontal resistance ratio
rz = 1. The curves are presented for the cases ϕν+ = −ϕν− =
φν/2 with φy = 2π/5, Fig. 3(a), and ϕz+ = −ϕz− = φz/2,
ϕy+ = ϕy− = �y = 2π/5, Fig. 3(b).
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FIG. 4. (Color online) Normalized supercurrent j (Lz) in the horizontal wire at the right interface as a function of the horizontal phase
difference φz for different values of the vertical phase difference φy . The plots are presented for the case ϕν+ = −ϕν− = φν/2 [�ν = 0] with
ν = z,y and the parameters T/� = 0.05, L/ξS = 0.1, (a) rz = 1, ry = 10, (b) rz = ry = 1, and (c) rz = 10, ry = 1.

From Fig. 3(a), it can be nicely seen how the phase
dependence of the supercurrent j (Lz) changes from a 4π

periodicity for ry � rz (dotted curve) to a 2π periodicity
for ry � rz (solid curve). In the intermediate region where
the parameters rz and ry are of the same order of magni-
tude (dashed curve), we find two local extremes close to
φz = 2π .

From Fig. 3(b), we conclude that for rz � ry (solid curve)
there also emerges a 2π periodicity that, compared to Fig. 3(a),
is slightly shifted in the horizontal direction due to the different
dependencies of the second term in Eqs. (16) and (17) on
the phase difference φy and the phase sum �y , respectively.
Decreasing the parameter ry further results in a perfect
sinusoidal dependence on φz. Here, too, in the limit rz � ry

(dotted curve), the periodicity of the supercurrent j (Lz) is
4π but as for the case rz � ry , it is shifted in the horizontal
direction. For the intermediate region rz ≈ ry (dashed curve),
we find a different influence of the resistance ratios rν than in
Fig. 3(a). In this case, we find a double peak rather than two
local extremes.

In Fig. 4, we show the dependence of the supercurrent j (Lz)
in the horizontal wire at the right interface on the horizontal
phase difference φz for different values of the vertical phase
difference φy and the resistance ratios rν . Here, we only
analyze the case ϕν+ = −ϕν− = φν/2.

As can be seen from Fig. 4(a), where the case rz � ry

is displayed, the supercurrent j (Lz) has a perfect sinusoidal
shape with a 4π periodicity for arbitrary vertical phase
differences φy . This can be understood by means of Eq. (16)
where for rz � ry the first term in the square brackets can
be neglected compared to the second term so that the current
is proportional to cos(φy/2) sin(φz/2). Therefore, due to the
dependence on cos(φy/2), the variation of the vertical phase
difference φy from 0 to 2π leads to a sign change of j (Lz).

In the opposite limit rz � ry , which is shown in Fig. 4(c),
the first term in the square brackets of Eq. (16) dominates with
respect to the second term, i.e., in this case, the supercurrent
j (Lz) is proportional to sin(φz) and is independent of the
vertical phase difference φy . Thus, the curves collapse into
a single curve with periodicity 2π .

In the intermediate regime rz ≈ ry , the form of supercurrent
j (Lz) can be considerably changed by variation of the

vertical phase difference φy . While the dependence of the
current on the horizontal phase difference φz for φy = 0,2π

is nearly sinusoidal, we find a clearly distinct behavior
for φy = 2π/3,4π/3 where the dependence on φz is more
complicated.

Finally, we calculate numerically the normalized critical
Josephson current jc(Lz) in the horizontal wire as a function
of the horizontal phase difference φz for different values of
the resistance ratios rν . For each set of parameters rν , we
calculate for each phase difference φz ∈ [0,4π ] the maximal
supercurrent jc(Lz) as a function of φy and plot it versus
φz as shown in Fig. 5. Interestingly, we obtain for the case
ϕν+ = −ϕν− = φν/2, Fig. 5(a), two maximal values of jc(Lz)
for the case rz � ry and four maxima of jc(Lz) for the case
rz � ry . In contrast to Fig. 5(a), in the case where we have
in the vertical wire ϕy+ = ϕy− = �y , Fig. 5(b), we always
find four maximal values of jc(Lz) and there does not exist
a horizontal phase difference φz for which the critical current
vanishes.

In Fig. 5, the number of peaks of the critical current reflects
the periodicity of the Josephson current with respect to φz

which can be understood by considering Eqs. (16) and (17),
respectively. Considering the upper panel of Fig. 5, we find for
the case rz � ry (solid curve) two peaks of the critical current
because according to Eq. (16) the prefactor of the Josephson
current j (Lz) in this limit is proportional to sin(φz/2), i.e.,
it has a 4π periodicity [also see Fig. 4(a)]. On the contrary,
for rz � ry (dotted curve), we obtain j (Lz) ∝ sin(φz), i.e., the
Josephson current has a 2π periodicity resulting in four peaks
of the according critical current. Similarly, we can explain
the appearance of four peaks in Fig. 5(b). Here, in the limit
rz � ry (solid curve), the Josephson current is proportional to
sin(φz/2 − �y) and in the opposite limit (dotted curve) it is
proportional to sin(φz). Therefore, in the latter case, we expect
four peaks of jc(Lz), whereas for rz � ry the critical current
approaches a constant as a function of φz because, here, the
superconducting phase difference φz only leads to a horizontal
shift of the Josephson current and does not affect its magnitude.
According to Eq. (4), where the condition L2

ν � D/� = ξ 2
S

is supposed to be fulfilled, Figs. 3–5 are presented for a small
value of normalized junction length L/ξS , which is kept fixed
at L/ξS = 0.1.
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FIG. 5. (Color online) Normalized critical supercurrent jc(Lz) in
the horizontal wire at the right interface as a function of the phase
difference φz for different values of the resistance ratios rν where
ν = z,y. The plots are presented for the two cases (a) ϕν+ = −ϕν− =
φν/2 [�ν = 0] and (b) ϕz+ = −ϕz− = φz/2 [�z = 0], ϕy+ = ϕy− =
�y [φy = 0]. The parameters are T/� = 0.05 and L/ξS = 0.1.

V. FERROMAGNETIC WIRES WITH NON-COLLINEAR
MAGNETIZATION

In this section, we consider the case when the cross is
formed not by normal wires but by ferromagnetic wires with
noncollinear magnetization vectors M. We assume that the
vector M is aligned in the z direction in the horizontal
ferromagnetic wire and along the y direction in the vertical
ferromagnetic wire, i.e., in both cases M points along the
corresponding wire. In order to describe the condensate in
this case, the quasiclassical Green’s functions should be
generalized. They become 4 × 4 matrices ǧ in the product
space of particle-hole and spin variables (see, e.g., Ref. 15).
Equation (1) can be written as

−∂z(ǧ · ∂zǧ) + κ2
ω[τ̂3 · σ̂0,ǧ] − iκ2

F [τ̂3 · σ̂3,ǧ] = 0, (19)

−∂y(ǧ · ∂yǧ) + κ2
ω[τ̂3 · σ̂0,ǧ] − iκ2

F [τ̂0 · σ̂2,ǧ] = 0, (20)

where κ2
F = Vex/D and Vex is the exchange energy. The

matrices τ̂i and σ̂i operate in the particle-hole and spin spaces,
respectively (Pauli matrices for i = 1,2,3 and identity matrices
for i = 0). We assume that the boundary condition (3) is
valid in the generalized form (ĝ → ǧ, ĝS → ǧS) also in the
considered case, i.e., we assume that the S/F interfaces do not
affect the spins.

Following the procedure presented in Sec. II, we obtain a
generalized version of Eq. (8),

[M̌F ,ǧ] = 0 (21)

with M̌F given by

M̌F (α) = κ2
ωL2 τ̂3 · σ̂0 − ivex[sin(α)τ̂0 · σ̂2 + cos(α)τ̂3 · σ̂3]

+ ryǦy + rzǦz, (22)

where vex = κ2
F L

√
L2

z + L2
y is the normalized exchange en-

ergy, tan(α) = Ly/Lz, and Ǧν = [ǧS(Lν) + ǧS(−Lν)]/2 with

ǧS(ζLν) = gSτ̂3 · σ̂0 + fS[τ̂2 cos(ϕνζ ) + τ̂1 sin(ϕνζ )] · σ̂3.

(23)

As before, Eqs. (19) and (20) must be solved together with
the normalization condition

ǧ · ǧ = 1̌. (24)

At Vex = 0, the matrix element (ǧ)11 in the spin space
coincides with the matrix ĝ given by Eq. (12).

One can exclude the term proportional to τ̂0 · σ̂2 in the
matrix M̌F by making a transformation (see Ref. 15) that
describes a rotation in the spin space,

M̌F = Ǔ † · M̌F (α) · Ǔ , ǧ = Ǔ † · ǧ · Ǔ , (25)

where the transformation matrix depends on α via Ǔ (α) =
exp(iτ̂3 · σ̂1α/2) = cos(α/2) + i sin(α/2)τ̂3 · σ̂1. One can see
that the matrices Ǧν remain unchanged (they commute with
Ǔ ) because they describe the singlet superconductors that
serve as reservoirs and are not affected by a rotation in the
spin space. Similarly, the first term in M̌F (α) commutes with
Ǔ . Therefore, after this transformation, Eq. (21) attains the
form

[M̌F ,ǧ] = 0, (26)

where M̌F = M̌F (0) is given by

M̌F = κ2
ωL2 τ̂3 · σ̂0 − ivexτ̂3 · σ̂3 + rzǦz + ryǦy. (27)

Due to the diagonal structure of M̌F in the spin space the
equations for different spin sectors decouple, and the diagonal
elements ĝs (s = ±, ĝ+ = ĝ11, ĝ− = ĝ22) of ǧ can be obtained
as it was done in Sec. II. This yields

ĝs = M̂Fs

DFs

(28)

with

M̂Fs = τ̂3(M3N − sivex) + sfS(τ̂2m2 + τ̂1m1), (29)

DFs =
√

(M3N − sivex)2 + f 2
S

(
m2

1 + m2
2

)
(30)

satisfying DF− = D∗
F+ for real ω. The resulting matrix ǧ can

be written as

ǧ = ĝ0 · σ̂0 + ĝ3 · σ̂3, (31)

where ĝ0,3 = (ĝ+ ± ĝ−)/2. Exploiting the representation of
M̌F in terms of its diagonal blocks M̂Fs as

M̌F =
∑

s

M̂Fs · 1

2
(σ̂0 + sσ̂3), (32)
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we arrive at

ǧ = M̌F

[
Re

(
D−1

F+
)
σ̂0 + i Im

(
D−1

F+
)
σ̂3

]
. (33)

Using Eq. (25) one can obtain the matrix ǧ = Ǔ · ǧ · Ǔ †. Since
M̌F simply transforms back to M̌F it is sufficient to transform
σ̂3 and we obtain

ǧ = M̌F

{
Re

(
D−1

F+
)
σ̂0 + iIm

(
D−1

F+
)

[cos(α)τ̂0 · σ̂3

+ sin(α)τ̂3 · σ̂2]
}
. (34)

Note that the real and imaginary parts of D−1
F+ present in the

equations above must be evaluated treating ω as real before
applying analytical continuation via, e.g.,

N (ε) = Re
{

1
4 Tr[(τ̂3 · σ̂0) · ǧ]|ω→−i(ε+i0)

}
, (35)

where Tr is the trace over particle-hole and spin indices.
We are interested in the condensate function f̌ (the part

of ǧ nondiagonal in the particle-hole space) that has the form
f̌ = f̌sg + f̌tr with the singlet component

f̌sg = Re
[
D−1

F+
]
fS(τ̂2m2 + τ̂1m1) · σ̂3 (36)

and the triplet component

f̌tr = i Im
(
D−1

F+
)
fS {[τ̂2 · σ̂0 cos(α) + τ̂1 · σ̂1 sin(α)] m2

+ [τ̂1 · σ̂0 cos(α) − τ̂2 · σ̂1 sin(α)] m1} . (37)

In Eq. (37), the terms proportional to σ̂0 describe the triplet
component with zero projection of the total spin of the Cooper
pair on the z axis (f̌tr,0), whereas the terms proportional to σ̂1

describe the component with nonzero projection of the total
spin of the Cooper pair on the z axis (f̌tr,1). The appearance
of this “Sz 
= 0”-triplet component, which corresponds to
a long-range triplet component in long ferromagnets (see
Ref. 15), is easily understood from the physical point of view.
In the absence of the horizontal wire, only singlet and triplet
components with zero projection on the y axis (Sy = 0) are
induced in the vertical wire due to proximity effect. On the
other hand, this triplet component has a nonzero projection on
the z axis (Sz 
= 0).

In Fig. 6, we plot the ratio of the “Sz 
= 0”-triplet component
amplitude to that of the singlet component, i.e., btr/sg =
| sin(α)Im(D−1

F+)/Re(D−1
F+)|, as a function of normalized en-

ergy ε/� for the case ϕν− = −ϕν+ = φν/2 (�ν = 0) and for
the normalized exchange energies Vex/� = 5 [see Fig. 6(a)],
Vex/� = 20 [see Fig. 6(b)]. Moreover, the figure displays
the ratio btr/sg for different phase differences φz and fixed
phase difference φy = 2π/3. As can be seen from Fig. 6(a),
for small normalized exchange energies Vex/� the ratio btr/sg

is peaked where the peak position depends on the values of
the superconducting phase differences φν and the resistance
ratios rν . Here, the ratio btr/sg is smaller than one for the whole
energy range ε/� � 1. Interestingly, the situation changes
drastically upon increasing the normalized exchange energy
Vex/� as shown in Fig. 6(b). In this case, the ratio btr/sg may

FIG. 6. (Color online) Ratio of the “Sz 
= 0”-triplet component
amplitude to that of the singlet component as a function of normalized
energy ε/� for the case ϕν+ = −ϕν− = φν/2 (�ν = 0), φy = 2π/3,
and different phase differences φz. The plots display the function
btr/sg for γ /� = 0.03, rz = ry = 1, Lz/ξS = Ly/ξS = 0.1, and (a)
Vex/� = 5, (b) Vex/� = 20.

be significantly larger than one for small normalized energies
ε/�. This can be easily understood by considering in Eq. (30)
the limit |M3N − ivex| � fS

√
m2

2 + m2
1 , which corresponds

to the limit Vex/� � 1, so that btr/sg = |sin(α)vex/M3N | ∝
|sin(α)Vex/ε|. Thus we obtain in the limit ε/� → 0 for large
normalized exchange energies a ratio btr/sg that may be larger
than one.

In Fig. 6(b), where we have chosen Vex/� = 20, the ratio
btr/sg turns to zero for small normalized energies ε/� and the
phase differences φz = 0 (solid line) and φz = π/2 (dashed
line) because in this case the normalized exchange energy
Vex/� is still too small to shift the ratio btr/sg in this energy
range to values significantly larger than one. Effectively, we
observe that the curves in Fig. 6(b) approximately converge to
a single one with the energy dependence btr/sg ∝ |sin(α)Vex/ε|
for really large normalized exchange energies Vex/� � 1.
Moreover, for large enough values of Vex/�, the function btr/sg

is always larger than one for the relevant normalized energies
ε/� < 1, i.e., for large normalized exchange energies, the
triplet component always dominates the singlet component.

Note that the DOS and the Josephson current are de-
termined by the τ̂3σ̂0 component ǧ30 = [Re(D−1

F+)M3N +
Im(D−1

F+)vex]τ̂3 · σ̂0 and the singlet component f̌sg of ǧ,
respectively. The latter is the case because in the commutator at
the right-hand side of Eq. (3) no contributions proportional to
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τ̂3 · σ̂0 emerge from [f̌tr,ǧS(ζLν)]. In particular, the Josephson
current is determined by Eq. (15) in which the factor D−1

N

should be replaced by Re(D−1
F+).

It is important to emphasize the difference between the
considered case of short F wires (one can speak of a
“zero”-dimensional cross) and the case of long F wires. In
the latter case, the charge near the SF interface is carried
by singlet and triplet Cooper pairs but at distances from
the SF interface larger than ξF ∼ √

DF /Vex the singlet and
short-range triplet components vanish and the charge current
is only due to the so-called long-range triplet component
(LRTC). Thus a conversion of the singlet and short range
triplet components into the LRTC takes place. In the case
of short F wires considered in this paper, such a conversion
does not occur and all the current components are constant in
space.

Note that in cross geometry with long F wires (Ly,z �
ξF ) and space-independent exchange energy in each single
wire, the LRTC can not arise because the singlet and short
range triplet components vanish near each SF interface on the
distances of the order of ξF .

In the considered “zero”-dimensional model, it is possible
to calculate the singlet and triplet current components at the
interfaces defined by

jsng/tr ∼
∑

ω

Tr[τ̂3 · σ̂0 · (f̌sng/tr · ∂νf̌sng/tr)]
∣∣
ζLν

. (38)

The functions f̌sng/tr are given by Eqs. (36) and (37). The
derivatives ∂νf̌sng/tr|ζLν

are easily obtained from the boundary
conditions (3), which can be rewritten in the form

∂νǧ
∣∣
ν=ζLν

= ζκν(ǧS − ǧ · ǧS · ǧ)
∣∣
ν=ζLν

(39)

by extracting terms proportional to τ̂1 · σ̂3 and τ̂2 · σ̂3 (singlet
component) and all the other terms nondiagonal in the particle-
hole space (triplet component). The expressions for ǧ and
ǧS(ζLν) are presented in Eqs. (34) and (23). The calculations
can be shortened by choosing a rotated basis [cf. Eq. (25)],
i.e., using ǧ instead of ǧ, since the current contributions
as well as the matrices ǧS(ζLν) are invariant under such a
rotation.

The singlet current jsng obtained in this way coincides
with the total current obtained directly from the right-hand
side of the boundary condition, whereas the triplet current jtr

vanishes. This shows that the current through the interfaces in
the considered problem only consists of a singlet component.
In Fig. 7, we show the DOS in the n wire as a function
of normalized energy ε/� for the case ϕν+ = −ϕν− = φν/2
(�ν = 0) with φz = 2π , φy = 2π/3 and for different exchange
energies Vex/�.

We observe that the effect of the normalized exchange
energy Vex/� on the DOS is a splitting of the peak for
vanishing Vex/�, i.e., the gap induced in the n wire is shifted
to lower normalized energies. Increasing the normalized
exchange energy Vex/�, the two peaks initially move further
apart from each other and their amplitudes decrease. If the
peak located at lower normalized energy approaches the origin
by increasing Vex/� furthermore, it bounces back from the
vertical axis and also moves to higher energies together with
the other peak. Thus, once the peak at lower normalized energy

FIG. 7. (Color online) Density of states N (ε) in the n wire as
a function of normalized energy ε/� for the case ϕν+ = −ϕν− =
φν/2 (�ν = 0), φz = 2π , φy = 2π/3, and different exchange energies
Vex/�. The plots are presented for the parameters γ /� = 0.03, rz =
ry = 1, and Lz/ξS = Ly/ξS = 0.1.

has bounced back from the vertical axis, the induced gap in
the n wire vanishes and the DOS approaches 1/2 between
the two peaks and 1 at the tails. Finally, as the normalized
exchange energy is increased further the region where the
DOS approaches 1/2 becomes narrower and the two peaks
move to higher energies.

This feature has also been obtained in Ref. 70 where
a diffusive ferromagnet attached to a normal metal and a
superconducting reservoir was considered. It is reported that
for certain values of exchange field a peak at zero energy
appears in the DOS which corresponds to the generation of the
triplet pairing amplitude at low energy. The authors elaborated
that the form of the DOS in the ferromagnet for low energies
can be used to find the pairing symmetry in the ferromagnet,
i.e., whether the peak is generated by the singlet or triplet
pairing states. From this analysis, we can conclude that since in
Fig. 6(b) for φz = 2π (dash-dotted line) the triplet component
dominates the singlet component the peak at zero energy in
Fig. 7 for Vex/� = 20 (dotted line) is generated by the triplet
component at low energies.

Note that the influence of the triplet component on the DOS
was also analyzed in Refs. 50,71, and 72 for other systems.
Also, the splitting of the main peak in the DOS due to the
exchange field was studied earlier in Refs. 73–76.

In order to figure out the influence of the normalized
exchange energy Vex/� on the supercurrent, in Fig. 8, we
plot the normalized Josephson current at the right horizontal
interface, i.e., at z = Lz, for the case ϕν+ = −ϕν− = φν/2
(�ν = 0) as a function of the phase difference φz with the
parameters φy = 2π/5 Lz/ξS = Ly/ξS = 0.1, rz = 1, ry =
0.1 [see Fig. 8(a)], ry = 1 [see Fig. 8(b)], and for different
values of the exchange energy Vex/�.

Here, we find that the effect of the normalized exchange
energy Vex/� on the supercurrent is a distortion of the
sinusoidal shape while the 2π periodicity for rz = 1, ry = 0.1
is conserved [see Fig. 8(a)]. With increasing normalized
exchange energy the supercurrent is more and more distorted
leftwards together with a decrease in amplitude, i.e., the
exchange energy can significantly reduce the magnitude of
the supercurrent. For the case rz = ry = 1, Fig. 8(b), the effect
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FIG. 8. (Color online) Normalized supercurrent j (Lz) in the
horizontal wire at the right interface as a function of the horizontal
phase difference φz for different values of the normalized exchange
energy Vex/�. The plots are presented for the case ϕν+ = −ϕν− =
φν/2 (�ν = 0) with ν = z,y and the parameters T/� = 0.05, rz = 1,
φy = 2π/5, Lz/ξS = Ly/ξS = 0.1, (a) ry = 0.1, and (b) ry = 1.

of the normalized exchange energy is weaker compared to
the case rz = 1, ry = 0.1, Fig. 8(a). Here, much higher values
of Vex/� are necessary in order to reduce the magnitude of
j (Lz) considerably but the local extremes close to φz = 2π are
smoothened more easily. For the case rz � ry , the form of the
supercurrent is nearly unchanged by the normalized exchange

energy Vex/� and retains its sinusoidal behavior with a 4π

periodicity [see Fig. 3(a)].
Comparing the critical Josephson current jc(Lz) at the

right horizontal interface with respect to the normal metal
wire and the ferromagnetic wire, we find that the magnitude
of jc(Lz) decreases with increasing normalized exchange
energy Vex/�, while the form of the critical Josephson current
remains unchanged (see Fig. 5). For a ferromagnetic wire the
decreasing effect of the exchange energy is barely visible for
rz � ry and rz � ry while it is slightly stronger for rz = ry .

VI. CONCLUSION

We have calculated the Josephson dc current in a multiter-
minal structure of cross-type geometry, which consists of four
superconductors and one-dimensional normal or ferromag-
netic wires connecting the superconducting electrodes. The
length of the wires is assumed to be short, i.e., the Thouless
energy exceeds any characteristic energy of the system (�,
T , or Vex). In this case, one can easily obtain a solution
of the Usadel equation for the quasiclassical matrix Green’s
functions ǧ in a compact form. With the help of the matrix
ǧ we find the DOS and the dc Josephson current IJ . It turns
out that both the DOS and IJ strongly depend on the phase
differences between opposite superconductors. The sinusoidal
dependence of IJ on the phase difference φz has different
period which is determined by the ratio of the interface
resistances RSn,z/RSn,y . If this ratio is small, the period is
equal to 2π , in the opposite limit the period equals 4π . It is
found that the DOS in the wire has a minigap that depends on
the phase difference φν and can turn to zero.

We have obtained also simple formulas for the singlet
and triplet components induced in the ferromagnetic wires.
The odd-frequency s-wave triplet component has nonzero
projections of the total spin S on the directions on the
wires and can be larger than the amplitude of the singlet
component. However, the Josephson current is caused only
by the singlet component. The obtained results may be useful
in superconducting electronics and spintronics (see Ref. 48
and references therein).
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