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We combine the fully anisotropic Migdal-Eliashberg theory with electron-phonon interpolation based
on maximally localized Wannier functions, in order to perform reliable and highly accurate calculations
of the anisotropic temperature-dependent superconducting gap and critical temperature of conventional
superconductors. Compared with the widely used McMillan approximation, our methodology yields a more
comprehensive and detailed description of superconducting properties, and is especially relevant for the study
of layered or low-dimensional systems as well as systems with complex Fermi surfaces. In order to validate our
method we perform calculations on two prototypical superconductors, Pb and MgB2, and obtain good agreement
with previous studies.
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I. INTRODUCTION

The prediction of superconducting properties such as
the critical temperature or the superconducting energy gap
remains one of the outstanding challenges in modern electronic
structure theory.1–7 Owing to the complex nature of the
superconducting state, a quantitative understanding of the
pairing mechanism in conventional superconductors requires
a very detailed knowledge of the electronic structure, the
phonon dispersions, and the interaction between electrons and
phonons. In conventional superconductors below the critical
temperature electron pairing results from a subtle interplay
between the repulsive Coulomb interaction and the attractive
electron-phonon interaction. Starting from the seminal work of
Bardeen, Cooper, and Schrieffer (BCS),8 several approaches
to the calculation of the superconducting properties have been
proposed, ranging from semiempirical methods such as the
McMillan formula9 to first-principles Green’s-function meth-
ods such as the Migdal-Eliashberg (ME) formalism,10,11 and
more recently also methods based on the density-functional
theory concept, such as the density-functional theory for
superconductors (SCDFT).6,7

The vast majority of current investigations rely on the
semiempirical McMillan’s approach.9 In this approach the
entire physics of the electron-phonon interaction is condensed
into a single parameter called the electron-phonon coupling
strength λ. The McMillan’s method works reasonably well
for conventional bulk metals and for anisotropic supercon-
ductors where the Fermi surface anisotropy is smeared out
by impurities.2,3 However, for layered systems, systems of
reduced dimensionality, and those with complex multisheet
Fermi surfaces, a careful description of the pairing interac-
tions is crucial and a proper treatment of the anisotropic
electron-phonon interaction is required. The necessity of an
anisotropic theory has clearly been demonstrated in two
important cases such as magnesium diboride, MgB2, and the
graphite intercalation compound CaC6, using either the ME
formalism or the SCDFT.12–18

Unfortunately, the lack of adequate computational tools pre-
vents the research community from systematically exploring
the importance of anisotropy in existing and well characterized
superconductors, and for validating computational predictions
based on the semiempirical McMillan equation.19–22 This latter

aspect is particularly relevant in view of the increasingly im-
portant role that high-throughput materials design approaches
are acquiring in the community.23,24

The momentum-resolved superconducting gap and the
quasiparticle density of states near the Fermi surface can
now be measured with unprecedented accuracy using high-
resolution angle-resolved photoemission spectroscopy25 and
scanning tunneling spectroscopy26 experiments. In this con-
text, the anisotropic Migdal-Eliashberg formalism promises
to be particularly useful for performing direct comparisons
between theory and experiment, and for helping establish
unambiguously the symmetry of the order parameter.

One critical point which arises when attempting to solve
the Eliashberg equations of the ME theory or the Bogoliubov–
de Gennes equations of the SCDFT is that both sets of
equations suffer from a strong sensitivity to the sampling
of the electron-phonon scattering processes in the vicinity
of the Fermi surface.27 The practical consequence of this
sensitivity is that, in order to achieve numerical convergence,
the electron-phonon matrix elements must be evaluated for
extremely dense electron and phonon meshes in the Brillouin
zone. This long-standing difficulty was overcome in Ref. 27
by developing an efficient first-principles interpolation tech-
nique based on maximally localized Wannier functions
(MLWF).28 In this method one takes advantage of the spatial
localization of both electron and phonon Wannier functions
in order to evaluate only a small number of electron-phonon
matrix elements in the Wannier representation. These matrix
elements are subsequently interpolated to arbitrary electron
and phonon wave vectors in the Bloch representation using a
generalized Fourier transform.27 This method carries general
validity and has been demonstrated in several other areas,
from Fermi-surface calculations,29 to the anomalous Hall
effect,30 and more recently for GW calculations.31 A detailed
introduction on Wannier-based interpolation methods can be
found in Ref. 28. The scheme of Ref. 27 is adopted in the
present work since it provides a robust and efficient framework
for developing an algorithm to solve the anisotropic Eliashberg
equations. Our current implementation enables the calculation
of the momentum- and band-resolved superconducting gap us-
ing a very fine Brillouin zone sampling. Without our Wannier-
based electron-phonon interpolation this operation would not
be possible owing to the prohibitive computational cost.
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This paper is organized as follows. In Sec. II we review the
Migdal-Eliashberg theory of superconductivity. A description
of the computational techniques underpinning the electron-
phonon interpolation implemented in the EPW code32 is given
in Sec. III. In Sec. IV we report the numerical solutions of the
Eliashberg equations for two prototypical superconductors, Pb
and MgB2. Finally we present our conclusions and outlook in
Sec. V.

II. MIGDAL-ELIASHBERG FORMALISM

A. General theory

A quantitative theory of the superconducting energy gap
can conveniently be formulated within the framework of
the Nambu-Gor’kov formalism.33,34 In this formalism one
introduces a two-component field operator:

�k =
(

ck↑

c
†
−k↓

)
. (1)

The component ck↑ (c†−k↓) of the operator destroys (creates)
an electron in a Bloch state of combined band and momentum
index k (−k) and spin up (down). A generalized 2 × 2
matrix Green’s function Ĝ is then introduced in order to
describe electron quasiparticles and Cooper’s pairs on an equal
footing:2,4

Ĝ(k,τ ) = −〈Tτ�k(τ )�†
k(0)〉, (2)

where Tτ is the Wick’s time-ordering operator for the imag-
inary time τ and �k(τ ) is obtained from Eq. (1) using the
Heisenberg picture. The braces indicate a grand-canonical
thermodynamic average. By replacing Eq. (1) inside Eq. (2)
we find

Ĝ(k,τ ) = −
[ 〈Tτ ck↑(τ )c†k↑(0)〉 〈Tτ ck↑(τ )c−k↓(0)〉

〈Tτ c
†
−k↓(τ )c†k↑(0)〉 〈Tτ c

†
−k↓(τ )c−k↓(0)〉

]
.

(3)

Here the diagonal elements correspond to the standard Green’s
functions for electron quasiparticles and describe the dynamics
of single-particle electronic excitations in the material. On
the other hand, the off-diagonal elements represent Gor’kov’s
anomalous Green’s functions F (k,τ ) and F ∗(k,τ ). These
functions describe the dynamics of Cooper’s pairs and are re-
lated to the superconducting energy gap.2,4,5 The off-diagonal
elements of the generalized Green’s function in Eq. (3) become
nonzero only below the critical temperature Tc, marking the
transition to the superconducting state.

The generalized Green’s function Ĝ(k,τ ) is periodic in
imaginary time, therefore it can be expanded using a Fourier
series as follows:

Ĝ(k,τ ) = T
∑
iωn

e−iωnτ Ĝ(k,iωn), (4)

where iωn = i(2n + 1)πT (n integer) stands for the fermion
Matsubara frequencies, and T is the absolute temperature.
We use atomic units throughout the paper, therefore we set
h̄ = kB = 1. Following Eq. (4) the matrix elements of the

generalized Green’s function read

Ĝ(k,iωn) =
[

G(k,iωn) F (k,iωn)

F ∗(k,iωn) −G(−k,−iωn)

]
. (5)

The study of the superconducting state involves the determi-
nation of the matrix Green’s function in Eq. (5). This can be
achieved using Dyson’s equation:

Ĝ−1(k,iωn) = Ĝ−1
0 (k,iωn) − �̂(k,iωn), (6)

where Ĝ0(k,iωn) is the electron Green’s function for the
normal state and �̂(k,iωn) is the self-energy associated with
the pairing interaction. The normal-state Green’s function
is calculated by using the Kohn-Sham states from density-
functional theory to represent single-particle excitations. If
we denote by εk the Kohn-Sham eigenvalues measured with
respect to the chemical potential, and we introduce the Pauli
matrices:

τ̂0 =
(

1 0
0 1

)
, τ̂1 =

(
0 1
1 0

)
,

τ̂2 =
(

0 −i

i 0

)
, τ̂3 =

(
1 0
0 −1

)
,

(7)

then the normal-state matrix Green’s function acquires the
familiar form

Ĝ−1
0 (k,iωn) = iωnτ̂0 − εkτ̂3. (8)

Within the Migdal-Eliashberg approximation the electron
self-energy leading to the superconducting pairing consists
of two terms, an electron-phonon contribution �̂ep(k,iωn) and
a Coulomb contribution �̂c(k,iωn):2

�̂(k,iωn) = �̂ep(k,iωn) + �̂c(k,iωn), (9)

with

�̂ep(k,iωn) = −T
∑
k′n′

τ̂3Ĝ(k′,iωn′ )τ̂3

×
∑

λ

|gkk′ν |2Dν(k − k′,iωn − iωn′ ), (10)

and

�̂c(k,iωn) = −T
∑
k′n′

τ̂3Ĝ
od(k′,iωn′ )τ̂3V (k − k′). (11)

In Eq. (10) Dν(q,iωn) = 2ωqν/[(iωn)2 − ω2
qν] is the dressed

propagator for phonons with momentum q and branch index ν,
and gkk′ν is the screened electron-phonon matrix element for
the scattering between the electronic states k and k′ through
a phonon with wave vector q = k′ − k, frequency ωqν , and
branch index ν. In Eq. (11) the V (k − k′)’s represent the matrix
elements of the static screened Coulomb interaction between
the electronic states k and k′, and Ĝod is the off-diagonal
component of the Green’s function.

In writing the electron self-energy of Eqs. (9)–(11) the
following approximations are made: (i) only the first term in the
Feynman’s expansion of the self-energy in terms of electron-
phonon diagrams is included. This approximation corresponds
to Migdal’s theorem10 and is based on the observation that the
neglected terms are of the order (me/M)1/2 ∝ ωD/εF , where
me/M is the electron-ion mass ratio, and ωD/εF is the ratio
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of the Debye frequency and the Fermi energy. For systems in
which the energies of phonons and electrons are comparable,
the adiabatic approximation underlying Migdal’s theorem does
not hold and it is necessary to include higher-order terms
in the electron self-energy. In such situations the Eliashberg
equations need to be generalized to include nonadiabatic
corrections,35,36 or alternative approaches such as the one
of Ref. 37 based on dielectric response functions ought to
be considered. (ii) By using Ĝod instead of Ĝ in Eq. (11)
only the off-diagonal contributions of the Coulomb self-energy
are retained. This is done in order to avoid double counting
the Coulomb effects that are already included in Ĝ0(k,iωn).2

(iii) The self-energy is assumed to be diagonal in the electron
band index.38 This should constitute a reasonable approxima-
tion for nondegenerate bands since the energy involved in the
superconducting pairing is very small, therefore band mixing
is not expected.

In the literature on the theory of superconductivity it
is common practice to decompose the matrix self-energy
�̂(k,iωn) in a linear combination of Pauli matrices with
three scalar functions as coefficients. The scalar functions
are the mass renormalization function Z(k,iωn), the energy
shift χ (k,iωn), and the order parameter φ(k,iωn), and the
decomposition reads

�̂(k,iωn) = iωn[1 − Z(k,iωn)]τ̂0 + χ (k,iωn)τ̂3

+φ(k,iωn)τ̂1 + φ(k,iωn)τ̂2. (12)

In the following we choose the gauge where the order
parameter φ is set to zero.2 By replacing Eqs. (8) and (12)
inside Eq. (6) and solving for the matrix Green’s function we
obtain

Ĝ(k,iωn) = −{iωnZ(k,iωn)τ̂0 + [εk + χ (k,iωn)]τ̂3

+φ(k,iωn)τ̂1}/�(k,iωn), (13)

where the denominator is defined as

�(k,iωn) = [ωnZ(k,iωn)]2 + [εk + χ (k,iωn)]2

+ [φ(k,iωn)]2 . (14)

At this point the strategy is to impose self-consistency by
replacing the explicit expression for the Green’s function in
Eq. (13) inside the self-energy expressions Eqs. (9)–(11).
After equating the scalar coefficients of the Pauli matrices
this replacement leads finally to the anisotropic Eliashberg
equations:

Z(k,iωn) = 1 + T

ωnNF

∑
k′n′

ωn′Z(k′,iωn′ )

�(k′,iωn′ )
λ(k,k′,n − n′),

(15)

χ (k,iωn) = − T

NF

∑
k′n′

εk′ + χ (k′,iωn′ )

�(k′,iωn′ )
λ(k,k′,n − n′), (16)

φ(k,iωn) = T

NF

∑
k′n′

φ(k′,iωn′ )

�(k′,iωn′ )

× [λ(k,k′,n − n′) − NFV (k − k′)]. (17)

In Eqs. (15)–(17) NF represents the density of states per
spin at the Fermi level, and λ(k,k′,n − n′) is an auxiliary

function describing the anisotropic electron-phonon coupling
and defined as follows:

λ(k,k′,n − n′) =
∫ ∞

0
dω

2ω

(ωn − ωn′ )2 + ω2
α2F (k,k′,ω),

(18)

with α2F (k,k′,ω) the Eliashberg electron-phonon spectral
function:

α2F (k,k′,ω) = NF

∑
ν

|gkk′ν |2δ(ω − ωk−k′,ν). (19)

The superconducting gap is defined in terms of the renormal-
ization function and the order parameter as

�(k,iωn) = φ(k,iωn)

Z(k,iωn)
. (20)

From Eqs. (17) and (20) we see that the Eliashberg equations
admit the trivial solution �(k,iωn) = 0 at all temperatures.
The highest temperature for which the Eliashberg equations
admit nontrivial solutions �(k,iωn) 
= 0 defines the critical
temperature Tc.

B. Standard approximations

After having presented a concise derivation of Eliashberg’s
equations in the previous section, we now discuss technical
aspects which need to be addressed in order to actually solve
these equations. Since the superconducting pairing occurs
mainly within an energy window of width ωph around the
Fermi surface (ωph being a characteristic phonon energy),
it is standard practice to simplify the Eliashberg equations
by restricting the description to electron bands near the
Fermi energy.2–4,39 This simplification can be achieved in the
formalism by introducing the identity

∫ ∞
−∞ dε′δ(εk′ − ε′) = 1

on the right–hand side in Eqs. (15)–(17). The rapid changes
of �(k′,ωn′) and the numerator of Eq. (16) with the energy ε′
can be integrated analytically, while for the other quantities we
can set ε′ to the Fermi energy since the associated variations
take place on a much larger energy scale.4,39 Under this
approximation the energy shift becomes χ (k,iωn) = 0 and
only two equations are left to solve, one for the renormalization
function and one for the order parameter (or equivalently the
superconducting gap):

Z(k,iωn) = 1 + πT

ωn

∑
k′n′

Wk′
ωn′√

R(k′,iωn′ )
λ(k,k′,n − n′),

(21)

Z(k,iωn)�(k,iωn) = πT
∑
k′n′

Wk′
�(k′,iωn′ )√
R(k′,iωn′ )

× [λ(k,k′,n − n′) − NFV (k − k′)],
(22)

where R(k,iωn) and Wk are given by

R(k,iωn) = ω2
n + �2(k,iωn) and Wk = δ(εk)/NF. (23)

Equations (21) and (22) form a coupled nonlinear system
and need to be solved self-consistently at each temperature
T . The approximations leading to Eqs. (21) and (22) imply
that Z(k,iωn) and �(k,iωn) are only meaningful for the
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momentum/band index k at or near the Fermi surface. Away
from the Fermi surface the energy dependence of these
quantities is weak and is neglected.4,39 In addition Eqs. (21)
and (22) implicitly assume that the electron density of
states is approximately constant near the Fermi energy. This
simplification may break down for materials with narrow bands
or critical points in proximity of the Fermi level.2,38

In order to solve Eqs. (21) and (22) numerically it is
necessary to truncate the sum over Matsubara frequencies.
It is standard practice to restrict the sum to frequencies
smaller than a given cutoff ωc, with the cutoff of the order
of 1 eV and typically set to four to ten times the largest
phonon energy. In addition, it is convenient to introduce a
dimensionless Coulomb interaction parameter μ∗

c defined as
the double Fermi-surface (FS) average over k and k′ of the
term V (k − k′) in Eq. (22):

μc = NF〈〈V (k − k′)〉〉FS. (24)

By performing the energy integral analytically up to the
cutoff frequency it can be shown that the NFV (k − k′)
term in Eq. (22) can be replaced by the Morel-Anderson
pseudopotential μ∗

c given by40

μ∗
c = μc

1 + μc ln(εF /ωc)
. (25)

Following this replacement, μ∗
c is used as a semiempirical pa-

rameter in the subsequent numerical solution of the Eliashberg
equations. For a large class of superconductors Eqs. (24) and
(25) yield values of μ∗

c in the range 0.1–0.2. However, it is clear
by now that in several cases values of the Coulomb parameter
outside of this range are necessary for explaining experimental
data.27,41,42 In addition, the anisotropic nature of the Coulomb
interaction cannot be neglected for an accurate description of
the superconducting properties.12,14,15,43 These observations
should make it clear that the simplification provided by
Eqs. (24) and (25) is not optimal, and a fully ab initio
approach to the solution of the Eliashberg equations is highly
desirable.2,38 A description of the electron-phonon and the
electron-electron interactions on the same footing is achieved
in the SCDFT approach.6,7 While it is clear that the Eliashberg
approach considered in this work should be extended in order
to incorporate Coulomb effects from first-principles, this is
beyond the scope of the present investigation.

C. Superconducting gap along the real energy axis

In Eqs. (13)–(23) the dynamical aspects of the supercon-
ducting pairing are described using the imaginary Matsubara
frequencies iωn. The reason for this choice is that the
resulting formulation is computationally efficient since it only
involves sums over a finite number of frequencies. While the
imaginary axis formulation is adequate for calculating the
critical temperature as described in Sec. II A, the calculation
of spectral properties such as the quasiparticle density of states
requires the knowledge of the superconducting gap along the
real frequency axis.

It is in principle possible to calculate the superconducting
gap along the real axis, however this procedure involves the
evaluation of many principal value integrals and hence is
numerically demanding.1,44 In this work we prefer instead

to determine the solutions of the Eliashberg equations on the
real axis by analytic continuation of our calculated solutions
along the imaginary axis. The analytic continuation can be
performed either by using Padé approximants as in Refs. 45
and 46 or by means of an iterative procedure as in Ref. 47.

The continuation based on Padé approximants involves a
very light computational workload, however it is very sensitive
to the numerical precision of the solutions on the imaginary
axis.45,46,48 As a rule of thumb the analytic continuation based
on Padé approximants exhibits the correct gross structure of
the superconducting gap on the real frequency axis, however
fine spectral features are not always captured completely.

The iterative analytic continuation, on the other hand, is
generally rather accurate but involves a high computational
workload. In fact, as shown in Ref. 47, the iterative ana-
lytic continuation requires solving the following equations
self-consistently:

Z(k,ω) = 1 + i
πT

ω

∑
k′n′

Wk′
ωn′√

R(k′,iωn′ )
λ(k,k′,ω − iωn′ )

+ i
π

ω

∫ ∞

−∞
dω′�(ω,ω′)

∑
k′

Wk′α2F (k,k′,ω′)

× (ω − ω′)Z(k′,ω − ω′)√
Z2(k′,ω − ω′)R(k′,ω − ω′)

, (26)

Z(k,ω)�(k,ω)

= πT
∑
k′n′

Wk′[λ(k,k′,ω − iωn′ ) − μ∗
c ]

�(k′,iωn′ )√
R(k′,iωn′ )

+ iπ

∫ ∞

−∞
dω′�(ω,ω′)

∑
k′

Wk′α2F (k,k′,ω′)

× Z(k′,ω − ω′)�(k′,ω − ω′)√
Z2(k′,ω − ω′)R(k′,ω − ω′)

, (27)

where the following quantities have been introduced:

�(ω,ω′) = 1

2

(
tanh

ω − ω′

2T
+ coth

ω′

2T

)
, (28)

λ(k,k′,ω − iωn) = −
∫ ∞

−∞
dω′ α

2F (k,k′,ω′)
ω − iωn − ω′ , (29)

α2F (k,k′,−ω) = −α2F (k,k′,ω). (30)

Note that in the case where the square root is complex, the root
with positive imaginary part is chosen.

Once the mass renormalization function Z(k,ω) and the
superconducting gap �(k,ω) on the real frequency axis
are determined, one can examine the poles of the diagonal
component of the single-particle Green’s function:3

G11(k,ω) = ωZ(k,ω) + εk

[ωZ(k,ω)]2 − ε2
k − [Z(k,ω)�(k,ω)]2

, (31)

in order to obtain the quasiparticle energy Ek:

E2
k =

[
εk

Z(k,Ek)

]2

+ �2(k,Ek). (32)

At the Fermi level εk = 0 and the quasiparticle shift is
Ek = Re�(k,Ek). As a result the leading edge �k of the
superconducting gap for the combined band/momentum index
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k at the Fermi surface is given by

Re[�(k,�k)] = �k. (33)

D. Isotropic approximation

For conventional bulk metals or superconductors where the
Fermi-surface anisotropy is either weak or smeared out by
impurities, it is possible to resort to a simplified isotropic
formulation of the Eliashberg equations. Such formulation is
obtained from Eqs. (21) and (22) by averaging k over the Fermi
surface. We obtain

Z(iωn) = 1 + πT

ωn

∑
n′

ωn′√
R(iωn′)

λ(n − n′), (34)

Z(iωn)�(iωn) = πT
∑
n′

�(iωn′ )√
R(iωn′ )

[λ(n − n′) − μ∗
c ], (35)

where R(iωn) and λ(n − n′) are given by

R(iωn) = ω2
n + �2(iωn), (36)

λ(n − n′) =
∫ ∞

0
dω

2ωα2F (ω)

(ωn − ωn′)2 + ω2
, (37)

and α2F (ω) is the isotropic Eliashberg spectral function:

α2F (ω) =
∑
k,k′

WkWk′α2F (k,k′,ω). (38)

The isotropic Eliashberg equations on the real axis can be
obtained similarly by starting from Eqs. (26) and (27). From
the isotropic superconducting gap on the real axis we can
obtain the normalized quasiparticle density of states in the
superconducting state NS(ω):

NS(ω)

NF

= Re

[
ω√

ω2 − �2(ω)

]
. (39)

III. COMPUTATIONAL METHODOLOGY

A. Electron-phonon Wannier interpolation

We now describe the combination of the anisotropic
Eliashberg formalism of Sec. II A with the electron-phonon
Wannier interpolation of Ref. 27. The numerical solution of
Eqs. (21), (22), (26), and (27) requires an extremely careful
description of the electron-phonon scattering processes, es-
pecially in proximity of the Fermi surface. This requirement
translates into the necessity of evaluating electronic eigenval-
ues εk, phonon frequencies ωqν , and electron-phonon matrix
elements gkk′ν for a very large set of electron and phonon wave
vectors in the Brillouin zone, of the order of tens of thousands.

While it is practically impossible to evaluate so many
electron-phonon matrix elements directly using standard
density-functional calculations, it is possible to perform an
optimal ab initio interpolation of the matrix elements by
exploiting localization in real space. The key idea is to
first evaluate a small number of electron-phonon matrix
elements in the maximally localized Wannier representation,
and then perform a generalized Fourier interpolation into
the momentum space, i.e., into the Bloch representation.
The relation between the matrix elements in the Wannier

representation gRR and those in the Bloch representation gkk′

is

gkk′ = 1

N

∑
R,R′

ei(k·R+q·R′) Uk′ gRR′ U
†
kuq, (40)

where N is the size of the discrete Brillouin-zone mesh, Uk is
a band-mixing matrix which maps electron Bloch bands into
Wannier functions, uq is a branch-mixing matrix which maps
phonon branches into individual atomic displacements, q =
k′ − k, and R,R′ are vectors of the direct lattice. In Eq. (40) the
band and branch indices are absorbed in k,k′ and in R,R′. More
detailed expressions for implementation purposes can be found
in Refs. 27 and 32. Once the matrix elements in the Wannier
representation are obtained, the evaluation of Eq. (40) for any
pairs of initial and final electron wave vectors is inexpensive
since it involves only very small matrix multiplications.

The matrix elements in the Wannier representation are
computed by first calculating the corresponding elements in
the Bloch representation on a coarse Brillouin-zone mesh using
density-functional perturbation theory49 and then transforming
into the maximally localized Wannier representation50,51 using
the inverse relation of Eq. (40). All our density-functional
and density-functional perturbation theory calculations are
performed using the Quantum ESPRESSO package,52 and
maximally localized Wannier functions are determined using
the WANNIER90 program.53 The subsequent electron-phonon
interpolation is performed using the EPW program,32 which ex-
tracts and processes information from both Quantum ESPRESSO

and WANNIER90. Further details on the notion of Wannier
interpolation and its use in the study of electron-phonon
interactions can be found in Refs. 27, 28, and 32, respectively.

Even when using electron-phonon Wannier interpolation
the computational workload can become quite substantial
when one evaluates hundreds of thousands of matrix elements.
In order to reduce the computational load we exploit the crystal
symmetries and only evaluate the gap function �(k,iωn)
and the renormalization function Z(k,iωn) in the irreducible
wedge of the Brillouin zone. On the other hand, the sums
over k′ in Eqs. (21), (22), (26), and (27) are performed over
the entire Brillouin zone. The meshes of wave vectors k
and q = k′ − k are chosen to be uniform and commensurate,
in such a way that the grid of electron wave vectors in
the final state k′ maps into the grid of the initial wave
vectors k. Since the contributions to the superconducting gap
arising from electronic states away from the Fermi energy
are essentially negligible, the matrix elements of Eq. (40) are
evaluated only for electronic states such that εk and εk′ are
near the Fermi energy. Numerical convergence can be achieved
typically by restricting the sums in Eqs. (21), (22), (26) and
(27) to an energy window around the Fermi level of width
corresponding to four to ten times the characteristic phonon
frequency.

B. Self-consistent solution of the nonlinear system
and analytic continuation

In order to solve iteratively the Eliashberg equations on
the imaginary axis Eqs. (21) and (22), we start from an
initial guess �0(iωn) for the superconducting gap. The starting
guess �0(iωn) is chosen to be a step function vanishing for
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iωn > 2ωmax
ph , ωmax

ph being the largest phonon energy in the
system. The magnitude of �0(iωn) is estimated from the BCS
formula8 at zero temperature 2�0(iωn)/Tc = 3.52, with Tc

given by Allen-Dynes equation.54

Our experience shows that the convergence of the iterative
self-consistent solution is significantly improved by using the
Broyden mixing scheme commonly employed in standard
density-functional calculations.55,56 For the test cases consid-
ered in Sec. IV below we find that around 15–20 iterations
are sufficient to achieve convergence whenever T � 0.8Tc.
The number of iterations increases to 40–60 for temperatures
between 0.8 and 0.95Tc, and may exceed 100 for T � 0.95Tc.
In order to accelerate the convergence we use the gap functions
calculated at a given temperature as seeds for the iterations
at the next temperature. An alternative strategy for solving
the equations when T � Tc would be to use the linearized
form of the Eliashberg equations and determine the critical
temperature by solving an eigenvalue problem,2,17 however
we did not explore this possibility.

In order to determine the superconducting gap along the real
energy axis we consider two possibilities. The first possibility
is to perform an approximate analytic continuation using
Padé functions.45,46,48 This procedure works well if the Padé
functions are constructed using the Matsubara frequencies
on the imaginary axis. The second possibility consists of
performing the exact analytic continuation of the imaginary
solution to the real energy axis as described in Sec. III B. Since
this latter approach is computationally very demanding, we
speed up the convergence of the iterative analytic continuation
by using the approximate Padé continuation as an initial guess.

IV. APPLICATIONS

In order to validate the computational methodology devel-
oped within EPW, we investigate two prototypical systems: the
nearly isotropic lead (Pb) superconductor, and the anisotropic
magnesium diboride (MgB2) superconductor.

A. Computational details

The calculations are performed within the local density
approximation (LDA) to density-functional theory57,58 using
Quantum ESPRESSO.52 The valence electronic wave functions
are expanded in plane-wave basis sets with kinetic-energy
cutoff of 80 and 60 Ry for Pb and MgB2, respectively.
The core-valence interaction is taken into account by using
norm-conserving pseudopotentials.59,60 For Pb we consider
four valence electrons and a scalar-relativistic pseudopotential.
In order to facilitate the comparison with previous theoretical
studies we use the LDA theoretical lattice parameters for Pb
(a = 4.778 Å) and the experimental lattice parameters for
MgB2 (a = 3.083 Å and c/a = 1.142). The charge density
is computed using �-centered Brillouin-zone mesh with 163

and 243 k points for Pb and MgB2, respectively, and a
Methfessel-Paxton smearing61 of 0.02 Ry. The dynamical
matrices and the linear variation of the self-consistent potential
are calculated within density-functional perturbation theory49

on the irreducible set of a regular 83 (Pb) and 63 (MgB2)
q-point meshes. The electronic wave functions required for the
Wannier interpolation within EPW are calculated on uniform

and �-centered k-point meshes of sizes 83 and 63 for Pb and
MgB2.

In the case of Pb four Wannier functions are used to describe
the electronic structure near the Fermi level. These states are
sp3-like functions localized along each one of the Pb-Pb bonds,
with a spatial spread of 2.40 Å. In the case of MgB2 we consider
five Wannier functions in order to describe the band structure
around the Fermi level. Two functions are pz-like states and
are associated with the B atoms, and three functions are σ -like
states localized in the middle of B-B bonds. The spatial spread
of the MLWFs in MgB2 are 2.02 Å (pz) and 1.16 Å (σ ).

In order to solve the Eliashberg equations we evaluate
electron energies, phonon frequencies, and electron-phonon
matrix elements on fine grids using the method of Ref. 27. The
fine grids contain (403,403) k and q points for Pb (random
grids), and (603,303) points for MgB2 (uniform �-centered
grids). Such an extremely fine sampling of the Brillouin zone is
found to be crucial for the convergence of the superconducting
energy gap in the fully anisotropic case. The frequency cutoff
ωc in Eqs. (21), (22), (34), and (35) is set to ten times the
maximum phonon frequency of the system: ωc = 10ωmax

ph .
The calculations are performed using smearing parameters
in the Dirac δ functions corresponding to 100 and 0.5 meV
for electrons and phonons, respectively. The convergence of
the calculated critical temperature with respect to the smearing
parameters was checked by performing systematic tests within
the isotropic formalism of Sec. II D.

B. Lead

Bulk lead is the best known example of a strong-coupling
superconductor, exhibiting a superconducting transition tem-
perature Tc = 7.2 K.62 Although Pb is known to be a two-band
superconductor, the superconducting gap function is only very
weakly anisotropic,63–66 therefore for the sake of testing our
method we use the isotropic approximation to the Migdal-
Eliashberg formalism described in Sec. II D.

Figure 1 shows the calculated Eliashberg spectral function
α2F (ω) and the corresponding electron-phonon coupling
parameter λ. We find an overall good agreement with exper-
imental results,62 although we observe a small (�0.5 meV)
but non-negligible blueshift of the two peaks in the Eliashberg
function. This blueshift is well understood now and arises from
the overestimation of the phonon frequencies in the absence
of spin-orbit coupling in our calculation.67,68 Our calculated

FIG. 1. (Color online) Calculated isotropic Eliashberg spectral
function α2F (black solid line) of Pb, and cumulative contribution to
the electron-phonon coupling strength λ (red dashed line). The top of
the red dashed curve corresponds to λ = 1.24.
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FIG. 2. (Color online) Calculated energy-dependent supercon-
ducting gap of Pb at T = 0.3 K. The gap is obtained by solving the
isotropic Eliashberg equations with μ∗

c = 0.1. (a) Superconducting
gap along the imaginary energy axis (black solid line). (b) Supercon-
ducting gap along the real energy axis. We show both the solutions
obtained from the approximate analytic continuation using Padé
functions (black solid line and red dashed line), and the solutions
obtained using the iterative analytic continuation (green dash-dotted
line and blue dotted line).

electron-phonon coupling λ = 1.24 lies in between the values
reported in previous theoretical studies,41,65,66 although it is
somewhat smaller than the value 1.55 obtained from tunneling
measurements62 owing to the neglect of spin-orbit coupling.

Figure 2 shows the solutions of the isotropic Eliashberg
equations (34) and (35) for μ∗

c = 0.1 and T = 0.3 K. Along
the imaginary axis the superconducting gap function is purely
real and displays a frequency dependence similar to standard
plasmon-pole models [Fig. 2(a)]. The continuation of the
calculated superconducting gap to the real energy axis is
shown in Fig. 2(b). We see that the approximate analytic
continuation using Padé functions and the exact iterative
analytic continuation yield very similar results. As expected
the approximate Padé continuation misses some of the fine
features which are instead observed in the exact iterative
continuation. Our calculated superconducting gap is in very
good agreement with solutions of the Eliashberg equations
obtained directly on the real energy axis.65 In Fig. 2(b) we see
that a two-peak structure emerges both in the real part and the
imaginary part of �(ω). These two peaks occur on the scale
of the phonon energies and correlate with those observed in
the Eliashberg spectral function of Fig. 1.5 A detailed analysis
shows that the peaks in the real part of the gap function are
blueshifted by approximately �0 = �(ω = 0) with respect to
the corresponding peaks in α2F (ω).

Figure 3(a) shows the normalized quasiparticle density
of unoccupied states obtained from Eq. (39) using the gap
function of Fig. 2. As expected the strong van Hove singularity
marks the leading edge �0 of the superconducting gap.
The fine structure of the density of states around the van
Hove singularity [Fig. 3(b)] is the direct signature of the

FIG. 3. (a) Calculated quasiparticle density of states of Pb at
T = 0.3 K (black solid lines). The superconducting gap is obtained
from Fig. 2. (b) Same quantity as in (a), magnified in order to show
the structure which is used in tunneling experiments for extracting
the Eliashberg spectral function.

electron-phonon physics and is precisely the basis for direct
measurements of the Eliashberg function using tunneling
spectroscopy.

Figure 4 shows the superconducting gap function at the
Fermi level as a function of temperature, calculated for
μ∗

c = 0.1. The leading edge of the gap at T = 0 K is found
to be �0 = 1.24 meV, in good agreement with tunneling
measurements yielding 1.33 meV.62 The superconducting Tc

is identified as the temperature at which the gap vanishes.
From Fig. 4(a) we find Tc = 6.8 K, in very good agreement
with previous theoretical studies,7,65 and only slightly lower

FIG. 4. (Color online) (a) Calculated superconducting gap of Pb
at the Fermi level as a function of temperature (disks). The Coulomb
parameter is set to μ∗

c = 0.1. (b) Calculated superconducting gap
of Pb at the Fermi level for T = 0 K as a function of the Coulomb
parameter μ∗

c (disks). (c) Calculated critical temperature as a function
of the Coulomb parameter μ∗

c (disks). In all panels the solid lines are
guides to the eye.
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than the experimental datum of 7.2 K. For completeness in
Figs. 4(b) and 4(c) we also explore the sensitivity of the
calculated gap and critical temperature to the choice of the
Coulomb parameter μ∗

c . As expected, a reduction of
the effective Coulomb interaction results in an increase of
both �0 and Tc.

C. Magnesium diboride

Within the class of phonon-mediated superconductors
MgB2 holds the record of the highest critical temperature,
with Tc = 39 K.69 After a decade of intense experimental
and theoretical investigations since its discovery, it is now
understood that MgB2 is an anisotropic two-gap electron-
phonon superconductor.15,17,70–72 The anisotropy of the su-
perconducting gap is a consequence of the multisheet Fermi
surface of MgB2, consisting of two holelike coaxial cylinders
arising from the σ bonding bands, and two holelike tubular
networks arising from the π bonding and antibonding bands
(see for example Fig. 3 of Ref. 70).

Figure 5(a) shows our calculated isotropic Eliashberg spec-
tral function α2F (ω) and electron-phonon coupling strength
λ for MgB2. α2F (ω) displays a large dominant peak cen-
tered around 60 meV and a second weaker peak centered
around 86 meV. The corresponding isotropic electron-phonon
coupling strength is λ = 0.748. In order to quantify the
different contributions to the coupling strength associated
with the σ and π sheets of the Fermi surface we evaluate
a band- and wave-vector-dependent electron-phonon coupling
strength defined by λk = ∑

k′ Wk′λ(k,k′,n = 0). Figure 5(b)
shows that the calculated λk cluster into two separate ranges.
The lower range λk = 0.35–0.50 corresponds to the coupling
of the π Fermi surface sheets, and the higher range 0.95–1.35
corresponds to the coupling of the σ sheets. The wider range
of λk in the σ sheets reflects a more pronounced anisotropy

FIG. 5. (Color online) (a) Calculated isotropic Eliashberg spectral
function α2F of MgB2 (black solid line) and cumulative contribution
to the electron-phonon coupling strength λ (red dashed line).
(b) Distribution of the electron-phonon coupling strength λk for MgB2

(black solid line).

TABLE I. Electron-phonon coupling strength λ of MgB2 calcu-
lated using various meshes of k and q points in the Brillouin zone.
The numbers in the brackets correspond to a second choice of q
mesh while keeping the k mesh unchanged. The two bottom rows
correspond to uniform random distributions of k and q points.

Reference k mesh q mesh λ

Bohnen et al. (Ref. 73) 363 63 0.73
Choi et al. (Ref. 17) 12 × 182 12 × 182 0.73
Floris et al. (Ref. 15) 243 203 0.71
Eiguren et al. (Ref. 74) 403 403 0.776
Calandra et al. (Ref. 75) 803 203 0.741

This work 403 203 (403) 0.735
803 203 (403) 0.739
603 303 (603) 0.748
303 303 0.782
503 503 0.744

64000 8000 0.757
216000 27000 0.726

with respect to the π sheets. The structure of α2F (ω) and
the calculated coupling strength are in good agreement with
previous calculations.15,17,73–75 In particular our results are in
very good agreement with those reported in Ref. 74 where
a related interpolation scheme was used. For completeness
we show in Table I the sensitivity of the calculated average
coupling strength λ on the underlying Brillouin-zone grids,
and we compare with previous first-principles calculations.

Figure 6(a) shows the anisotropic superconducting gap
function �(k,ω) of MgB2 at T = 10 K calculated along the
imaginary axis using the anisotropic Eliashberg equations (21)
and (22) and μ∗

c = 0.16. Figure 6(b) shows the real part of the
superconducting gap function along the real energy axis, as
obtained from the imaginary axis solutions of Fig 6(a) via the
approximate analytic continuation using Padé functions. The
two-gap nature of MgB2 emerges in a completely natural way
from our implementation. Indeed for each energy two distinct
sets of superconducting gaps can be identified and associated
with the σ and the π sheets of the Fermi surface. The two
gaps are both anisotropic, and the corresponding Fermi-surface
averages are �π = 1.8 meV and �σ = 8.5 meV, respectively.
For comparison the experimental values for the gaps lie in
the range 2.3–2.8 meV for π band, and 7.0–7.1 meV for
σ band.76–78 As in the case of Pb, the structure that can be
observed both in the σ and π superconducting gaps reflects the
peaks occurring in the Eliashberg spectral function of Fig. 5.

Figure 7(a) shows the calculated leading edges �k of the
superconducting gaps as a function of temperature. Both the
π and σ gaps vanish at the critical temperature Tc = 50 K.
The corresponding quasiparticle density of states, presented
in Fig. 7(b), clearly shows the two-gap structure of MgB2, in
agreement with experiment.72

Our calculated critical temperature is larger than the exper-
imentally measured Tc of 39 K,69 however it is in very good
agreement with previous first-principles calculations based on
the ME formalism17 or the SCDFT formalism.15 At this time it
is still unclear whether the overestimation of the experimental
critical temperature is due to possible anharmonic effects,17

to the neglect of nonadiabatic corrections,75,79–81 or to the
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FIG. 6. Calculated energy-dependent superconducting gap of
MgB2 at T = 10 K. The gap is obtained by solving the
fully anisotropic Eliashberg equations with μ∗

c = 0.16. (a) Su-
perconducting gap along the imaginary energy axis (black dots).
(b) Superconducting gap along the real energy axis, obtained from
the approximate analytic continuation using Padé functions (black
dots). Only a representative sample of 105 data points out of entire
set of calculated gaps (107 points) is shown for clarity.

use of an isotropic Coulomb parameter.15 In fact, using the
anisotropic Eliashberg formalism and a Coulomb parameter
μ∗

c = 0.12, the authors of Ref. 17 find that the calculated Tc

FIG. 7. (Color online) (a) Calculated anisotropic superconducting
gaps of MgB2 on the Fermi surface as a function of temperature. The
Coulomb potential is set to μ∗

c = 0.16. (b) Corresponding quasipar-
ticle density of states for a few representative temperatures (15 K,
black solid line; 30 K, red dashed line; 45 K, blue dash-dotted line).

FIG. 8. Calculated energy distribution of the superconducting
gaps on the σ sheets of the Fermi surface of MgB2 at T = 30 K (black
lines). The gaps are obtained for various k- and q-point meshes, as
indicated by the labels on the horizontal axis. The Coulomb parameter
is set to μ∗

c = 0.16.

decreases from 55 to 39 K if phonon anharmonicity is taken
into account. On the other hand, using the SCDFT formal-
ism the authors of Ref. 15 calculate a critical temperature
Tc = 22 K when using the complete wave-vector-dependent
superconducting gap. When employing a band-averaged
superconducting gap and various levels of approximations
for the Coulomb interaction, the same authors find critical
temperatures in the range 30–50 K.15 A similar sensitivity
of the calculated Tc to fine details of the calculations are
reported in other studies based on a two-band approximation
to the ME formalism.14,43 Finally, according to Refs. 75
and 79–81, MgB2 lies in the pseudoadiabatic regime where
nonadiabatic effects and vertex corrections beyond Migdal’s
approximation can be expected. The origin of the discrepancy
between first-principles calculations of the critical temperature
of MgB2 and experiment clearly deserves further investigation,
however this is beyond the scope of the present paper.

The use of electron-phonon Wannier interpolation allows
us to investigate the sensitivity of the superconducting gap to
the electron and phonon meshes used for the calculations.
Figure 8 shows the energy distribution of the σ gap at
T = 30 K for eight sets of electron and phonon meshes.
If we compare the gaps shown in Fig. 8 and the average
coupling strengths reported in Table I we see that obtaining
converged results for �k is considerably more challenging
than for λ. For example, when using the same k-point mesh
(803) and different q-point meshes (203 and 403), the spread
of the superconducting gap distribution changes from �2.5 to
�1.5 meV, while the average coupling strength λ is essentially
unaffected. The same observation applies when we compare
results for the same q-point mesh (403) but different k-point
meshes (403 and 803). These differences highlight the difficulty
of describing anisotropic quantities, and point out the need
of having a very dense sampling of the Brillouin zone not
only for the electrons but also for the phonons. For this
reason the combination of the Eliashberg formalism with
electron-phonon Wannier interpolation demonstrated in this
work provides an ideal computational tool for investigating
anisotropic superconductors.

V. CONCLUSIONS

In summary we developed a computational method which
combines the anisotropic Migdal-Eliashberg formalism with
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electron-phonon interpolation based on maximally localized
Wannier functions (EPW). Our new method allows us to
calculate the momentum- and band-resolved superconduct-
ing gap both effectively and accurately using a very fine
description of electron-phonon scattering processes on the
Fermi surface. In order to demonstrate our methodology
we reported a comprehensive set of tests on two representative
superconductors, namely Pb and MgB2, and validated our
approach against previous first-principles calculations as well
as experiment. We discussed the performance of two analytic
continuation methods for obtaining the superconducting gap
on the real energy axis, and we investigated the sensitivity of
the calculated gaps on the underlying choice of the Brillouin-
zone grids for electrons and phonons.

In order to set a road map for first-principles studies
of superconductors we now discuss the key approximations
involved in the present approach and suggest possible avenues
for future developments. The main approximations leading to
Eqs. (21) and (22) are as follows: (i) vertex corrections in
the diagrammatic expansion of the electron self-energy are
neglected following Migdal’s theorem, (ii) the self-energy is
assumed to be diagonal in band indices, (iii) the Eliashberg
equations are restricted to bands near the Fermi level, (iv) the
density of states near the Fermi level is assumed to be constant,
and (v) the Coulomb interaction is described by an empirical
parameter.2,38,39

Regarding approximation (i), it is well known that Migdal’s
theorem can break down in the case of large electron-phonon
coupling, for systems with comparable electron and phonon
energies, or in the presence of Fermi-surface nesting.2,35–38 In
this area the availability of electron-phonon matrix elements
at a very small computational cost, as provided by our method,
could be used as a starting point to explore the effects of vertex
corrections beyond Migdal’s approximation. For example
the evaluation of the first noncrossing diagram should not
constitute a major challenge, at least in the normal state. This
may help assess the numerical error introduced by Migdal’s
approximation.

Going beyond approximation (ii) is computationally chal-
lenging since the Green’s function and the self-energy should
be treated as matrices in the band indices.82,83 This step
would increase substantially the complexity of the formalism
since the inversion of the Dyson’s equation would require

matrix operations. Given the small energies associated with the
superconducting gap it is reasonable to expect that off-diagonal
terms should not play an important role in simple cases.
However in the presence of degeneracies, and in particular
in Jahn-Teller systems, the correct description of these terms
may prove critical.84

It should be possible, at least in principle, to remove
approximation (iii) by including bands away from the Fermi
level in the calculations. Here the difficulty is purely on
the computational side, and for simple systems this should
be doable. However, relaxing this constraint would also
introduce one additional equation [Eq. (16)] in order to
calculate the correct quasiparticle shifts and impose the
conservation of charge in the system.

The assumption (iv) of a constant density of states near the
Fermi level obviously breaks down for materials exhibiting
structure in the density of states on the scale of the phonon
energy. In theses cases it has been shown that the energy
dependence of density of states can be retained within the
isotropic approximation to the Eliashberg equations.2,38,85 We
are planning to include this possibility in our methodology in
the future.

Last, approximation (v) means that in the present imple-
mentation the Coulomb repulsion between electrons remains
described at the empirical level as an adjustable parameter.
In order to remove this limitation our first step will be to
evaluate the Coulomb parameter using the dielectric matrix
in the random-phase approximation.86 In the longer term it
would be desirable to introduce inside Eq. (22) matrix elements
of the screened Coulomb interaction calculated using the
Sternheimer-GW method of Ref. 87.

We hope that the method reported here will prove useful
to the superconductivity community as a robust and rigorous
procedure for shedding light on existing superconductors
and possibly for predicting new superconductors yet to be
discovered.
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