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Exotic disordered phases in the quantum J1- J2 model on the honeycomb lattice
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We study the ground-state phase diagram of the frustrated quantum J1-J2 Heisenberg antiferromagnet on
the honeycomb lattice using a mean-field approach in terms of the Schwinger boson representation of the
spin operators. We present results for the ground-state energy, local magnetization, energy gap, and spin-spin
correlations. The system shows magnetic long-range order for 0 � J2/J1 � 0.2075 (Néel) and 0.398 � J2/J1 �
0.5 (spiral). In the intermediate region, we find two magnetically disordered phases: a gapped spin liquid
phase, which shows short-range Néel correlations (0.2075 � J2/J1 � 0.3732), and a lattice nematic phase
(0.3732 � J2/J1 � 0.398), which is magnetically disordered but breaks lattice rotational symmetry. The errors
in the values of the phase boundaries, which are implicit in the number of significant figures quoted, correspond
purely to the error in the extrapolation of our finite-size results to the thermodynamic limit.
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I. INTRODUCTION

The two-dimensional (2D) Heisenberg model on bipartite
lattices has been intensively studied in recent years. In the
unfrustrated case, the classical ground state is obtained when
all the spins in one sublattice are pointing in a given direction
while in the other sublattice the spins are pointing in the
opposite direction. However, in the quantum case this state is
not the real ground state; in fact this is not an eigenstate of the
Hamiltonian. The quantum ground state is exactly known in
one dimension,1 but no exact results for the two-dimensional
antiferromagnet are known, even for simple lattices like the
square lattice. However, several experimental and numerical
studies suggested that the ground state is in fact the spin
SU(2) symmetry-broken Néel-type state. In contrast, when we
include frustration in the system, for example, by including
second-nearest-neighbor interactions, the ground state may
become much more complicated.

In the quantum case, the ground-state energy is lower than
the classical value due to the quantum fluctuations. The effects
of these fluctuations vary depending on the dimension, the
spin quantum number, the presence of frustrating interactions,
and the coordination number of the lattice. One can ask
what the quantum fluctuations are when the coordination
number is changed. In two dimensions two paradigmatic
examples of unfrustrated systems are the square lattice, with
coordination number z = 4, and the honeycomb lattice, with
z = 3. Previous results2,3 have shown that the staggered
magnetization is smaller in the z = 3 case. This behavior is in
accord with the tendency towards a less classical behavior for
systems with a lower coordination number.

The inclusion of frustration in 2D quantum antiferro-
magnets is expected to enhance the effect of quantum spin
fluctuations and hence suppress magnetic order.4 This idea
has motivated many researchers to look for its realization.5–9

A special scenario to check this is the frustrated Heisenberg
model on the honeycomb lattice. Due to the small coordination
number (z = 3), which is the lowest allowed in a 2D system,
quantum fluctuations could be expected to be stronger than
those on the square lattice and may destroy the antiferromag-
netic order.10–13

The study of frustrated quantum magnets on the honey-
comb lattice has also experimental motivations.14–20 One of
the most exciting experimental progresses is one kind of
bismuth oxynitrate, Bi3Mn4O12(NO3), which was obtained by
Smirnova et al.14 In this compound the Mn4+ ions form a
S = 3/2 honeycomb lattice without any distortion. The mag-
netic susceptibility data indicate two-dimensional magnetism.
Despite the large antiferromagnetic Weiss constant of −257 K,
no long-range ordering was observed down to 0.4 K, which
suggests a nonmagnetic ground state.14–17 The substitution of
Mn4+ in Bi3Mn4O12(NO3) by V4+ may lead to the realization
of the S = 1/2 Heisenberg model on the honeycomb lattice.

The analysis of the honeycomb lattice from a more
general point of view has gained lately a lot of interest
both from graphene-related issues21 and from the possible
spin-liquid phase found in the Hubbard model in such
geometry.22–29 Due to these reasons, recently there has been
huge theoretical interest in frustrated Heisenberg models on
the honeycomb lattice, in which frustration is incorporated
by second-nearest-neighbor couplings23,30–37 and maybe also
third-nearest-neighbor couplings.38–45

Motivated by previous results, in this paper we study the
spin-1/2 Heisenberg model on the honeycomb lattice with
first (J1) and second (J2) nearest-neighbor couplings. Using a
Schwinger boson mean-field theory (SBMFT), we find strong
evidence for the existence of an intermediate disordered region
where a spin gap opens and spin-spin correlations decay expo-
nentially. This magnetically disordered region quantitatively
agrees well with recent numerical simulation results.36,37,39,45

Another key finding of our work is the presence of two
kinds of magnetically disordered phases in this region. One
is a gapped spin liquid (GSL)46,47 with short-range Néel
correlations, maintaining the lattice translational and rotational
symmetry. The other phase is a staggered-dimer valence-bond
crystal (VBC), which is also called lattice nematic.30 This
phase breaks lattice rotational symmetry but preserves lattice
translational symmetry.

The rest of this paper is arranged as follows. In Sec. II
we introduce our model and give a quick overview of the
final phase diagram. In Sec. III the general formalism of the
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FIG. 1. (Color online) The honeycomb lattice with the J1 and
J2 couplings considered in this paper. The lattice sites with different
colors belong to different sublattices. The primitive translation vectors
of the direct lattice are e1 = (

√
3/2,3/2) and e2 = (

√
3/2,−3/2).

a1 = (0,−1), a2 = (
√

3/2,1/2), and a3 = (−√
3/2,1/2) correspond

to the nearest neighbor bonds.

Schwinger boson mean-field approach is presented. In Sec. IV,
using the solutions of mean-field equations, we discuss the
phase diagram, especially the magnetically disordered region.
We close with a summary and discussion in Sec. V.

II. MODEL AND OVERVIEW OF THE PHASE DIAGRAM

The J1-J2 Heisenberg model on the honeycomb lattice is
given by

H = J1

∑
〈xy〉1

Ŝx · Ŝy + J2

∑
〈xy〉2

Ŝx · Ŝy, (1)

where Ŝx is the spin operator on site x and 〈xy〉n indicates the
sum over the nth neighbors (see Fig. 1). In this paper we are
interested in the antiferromagnetic case (J1,J2 � 0), and we
focus on the region J2/J1 ∈ [0,0.5].

In the classical limit, S → ∞, the model displays different
zero-temperature phases;48–50 see Fig. 2(a). For J2/J1 <

1/6, the system is Néel ordered, while for J2/J1 > 1/6,
the system shows spiral phases. For the quantum case,
aspects of this model have been explored previously in
the literature by various approaches, including spin wave
theory,30,31,49,50 a nonlinear σ -model approach,51 mean-field
theory,10,23 exact diagonalization (ED),34,39,50 a variational
Monte Carlo (VMC) method,33,36 series expansion (SE),40 the
pseudofermion functional renormalization group (PFFRG),42

and the coupled-cluster method (CCM).37 However, these
works yielded conflicting physical scenarios.

This model was studied by Mattsson et al.10 using SBMFT
with a mean-field decoupling that considers only antiferro-
magnetic correlations for nearest neighbors and ferromagnetic
correlations for next-nearest neighbors. This scheme can
only correctly describe Néel order. More recently, Wang23

studied this model within SBMFT including antiferromagnetic
correlations for both nearest and next-nearest neighbors.

Néel GSL VBC Spiral

0 0.2075 0.3732 0.398 0.5

Néel Spiral

0 1
6 0.5

(a)

(b)

FIG. 2. (Color online) Phase diagram as a function of the
frustration J2/J1. (a) Classical phase diagram. (b) Quantum phase
diagram corresponding to S = 1

2 obtained by means of SBMFT.

Unfortunately, the author did not give the phase diagram for
different values of J2/J1. Actually, for frustrated models we
cannot generally exclude either ferromagnetic or antiferro-
magnetic correlations,52 and it is important to use a mean-field
decomposition that allows us to include ferromagnetic and an-
tiferromagnetic correlations on equal footing. Another point is
that both of them assume the bond mean fields are independent
of the directions of the bonds. Therefore, these two schemes
cannot describe the phases in which the lattice rotational
symmetry has broken. Here we study Hamiltonian (1) in the
strong quantum limit (S = 1/2) using a rotationally invariant
version of this technique, which has proven successful in
incorporating quantum fluctuations.38,52–58

Our main results are summarized in Fig. 2(b). The magnetic
phase diagram is divided into four regions.59 At small values of
the frustrating coupling J2/J1, the system presents a Néel-like
ground state. By increasing the frustration, we find at J2/J1 �
0.2075 a continuous transition to a gapped spin liquid phase.
When the value of the frustrating coupling exceeds J2/J1 �
0.3732, we find a continuous transition into a staggered-dimer
VBC (lattice nematic) with broken Z3 symmetry (see Fig. 3),
which transforms at J2/J1 � 0.398 into a spiral phase.

III. SCHWINGER BOSON MEAN-FIELD APPROACH

It is well known that the SBMFT provides a natural
description for both magnetically ordered and disordered
phases based on the picture of the resonating valence bond
states.4,60–62 As a plus, this method does not start from any

FIG. 3. (Color online) Sketch of the staggered-dimer VBC state
which breaks the lattice rotational symmetry but preserves the lattice
translational symmetry.
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magnetic long-range order for the ground state (in contrast
to spin-wave theory), which should emerge naturally if the
Schwinger bosons condense at some momentum vector.63 At
this momentum vector, the lowest excitation spectrum of the
Schwinger bosons should be gapless. On the other hand, if
the Schwinger bosons are gapped, the phase is magnetically
disordered. In the following, we will present in detail the
rotationally invariant version of SBMFT which was introduced
by Ceccatto et al.53–55 and which we use in the following
sections.

Consider the SU(2) Heisenberg Hamiltonian on a general
lattice:

Ĥ = 1

2

∑
xyαβ

Jαβ(x − y)Ŝx+rα
· Ŝy+rβ

, (2)

where x and y are the positions of the unit cells and vectors rα

are the positions of each atom within the unit cell. Jαβ(x − y)
is the exchange interaction between the spins located in x + rα

and y + rβ .
In what follows we assume that the classical order can be

parameterized as

Ŝx
x+rα

= S sin ϕα(x), (3)

Ŝ
y
x+rα

= 0, (4)

Ŝz
x+rα

= S cos ϕα(x), (5)

with ϕα(x) = Q · x + θα , where Q is the ordering vector and
θα are the relative angles between the classical spins inside
each unit cell.

The spin operators Ŝx on site x are represented by two
bosons b̂xσ (σ =↑ ,↓),

Ŝr = 1

2
b̂†

r · �σ · b̂r , b̂r =
(

b̂r↑
b̂r↓

)
, (6)

where �σ = (σx,σy,σz) are the Pauli matrices. Equation (6) is
a faithful representation of the algebra SU(2) if we take into
account the following local constraint:

2S = b̂
†
x ↑b̂x ↑ + b̂

†
x ↓b̂x ↓. (7)

The exchange term can be expressed as

Ŝx+rα
·Ŝy+rβ

= : B̂†
αβ(x,y)B̂αβ(x,y) : −Â

†
αβ(x,y)Âαβ (x,y),

(8)

where Âα,β (x,y) and B̂α,β(x,y) are SU(2) invariants defined as

Âα,β(x,y) = 1

2

∑
σ

σ b̂(α)
x,σ b̂

(β)
y,−σ , (9)

B̂α,β(x,y) = 1

2

∑
σ

b̂†(α)
x,σ b̂(β)

y,σ , (10)

with σ =↑ ,↓. The double dots (: Ô :) indicate the normal
ordering of operator Ô. This decoupling is particularly
useful in the study of magnetic systems near disordered
phases because it allows us to treat antiferromagnetism and
ferromagnetism on equal footing.52–55 On the other hand, this
scheme has been tested to obtain quantitatively quite accurate
results which show excellent agreements with ED.38,53–55

To construct a mean-field Hamiltonian we perform the
following Hartree-Fock decoupling:

(Ŝx+rα
· Ŝy+rβ

)MF

= [B∗
αβ(x − y)B̂αβ(x,y) − A∗

αβ(x − y)Âαβ(x,y) + H.c.]

−〈(Ŝx+rα
· Ŝy+rβ

)MF 〉, (11)

where we have defined

A∗
αβ(x − y) = 〈Â†

αβ(x,y)〉, (12)

B∗
αβ(x − y) = 〈B̂†

αβ(x,y)〉, (13)

〈(Ŝ�x+�rα
· Ŝ�y+�rβ

)MF 〉= |Bαβ(�x − �y)|2 − |Aαβ(�x − �y)|2

and 〈 〉 denotes the expectation value in the ground state at
T = 0. It is convenient to change variables to R = x − y, and
eliminating x in the sums, we obtain

ĤMF = 1

2

∑
Ryαβ

Jαβ (R)

{
1

2

∑
σ

[
Bα,β(R) b̂

†(α)
R+y,σ b̂(β)

y,σ

− σAα,β (R) b̂
†(α)
R+y,σ b̂

†(β)
y,−σ + H.c.

]
− [|Bα,β(R)|2 − |Aα,β(R)|2]

}
.

The mean-field Hamiltonian is quadratic in the boson operators
and can be diagonalized. It is convenient to transform the
operators to momentum space

b̂(α)
x,σ = 1√

Nc

∑
k

b̂
(α)
k,σ eik·(x+rα ), (14)

where Nc is the number of unit cells. After some algebra and
using the symmetry properties

Jαβ (R) = Jβα(−R),

Aαβ(R) = −Aβα(−R), (15)

Bαβ(R) = B∗
βα(−R),

we obtain the following form for the Hamiltonian:

ĤMF = 1

2

∑
kαβ

∑
σ

{
γ B

αβ(k)b̂†(α)
kσ b̂

(β)
kσ + γ B

αβ(−k)b̂†(α)
−k−σ b̂

(β)
−k−σ

− σγ A
αβ(k)b̂†(α)

kσ b̂
†(β)
−k−σ − σ γ̄ A

αβ(k)b̂(α)
kσ b̂

(β)
−k−σ

}
− Nc

2

∑
Rαβ

Jαβ(R)[|Bαβ(R)|2 − |Aαβ(R)|2], (16)

where

γ B
αβ(k) = 1

2

∑
R

Jαβ(R)Bαβ(R)e−ik·(R+rα−rβ ), (17)

γ A
αβ(k) = 1

2

∑
R

Jαβ(R)Aαβ(R)e−ik·(R+rα−rβ ), (18)

γ̄ A
αβ(k) = 1

2

∑
R

Jαβ(R)Āαβ(R)e−ik·(R+rα−rβ ). (19)
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Now, we impose constraint (7) on average over each sublattice
α by means of Lagrange multipliers λ(α),

ĤMF → ĤMF + Ĥλ, (20)

with

Ĥλ =
∑
xα

λ(α)

(∑
σ

b̂†(α)
xσ b̂(α)

xσ − 2S

)
. (21)

Using symmetries (15), we can see that both kinds of bosons
(↑ ,↓) give the same contribution to the Hamiltonian. Then,
we can perform the sum over σ to obtain

ĤMF = 1

2

∑
kαβ

{(
γ B

αβ(k) + λ(α)δαβ

)
b̂
†(α)
k↑ b̂

(β)
k↑ + [

γ B
αβ(−k)

+ λ(α)δαβ

]
b̂
†(α)
−k↓b̂

(β)
−k↓ − σ

[
γ A

αβ(k)b̂†(α)
k↑ b̂

†(β)
−k↓

+ γ̄ A
αβ(k)b̂(α)

k↑ b̂
(β)
−k↓

]} − Nc

2

∑
Rαβ

Jαβ (R)[|Bαβ(R)|2

− |Aαβ(R)|2] − 2SNc

∑
α

λ(α).

It is convenient to introduce the Nambu spinor b̂†(k) =
(b̂†

k↑,b̂−k↓), where

b̂†
k↑ = (

b̂
†(α1)
k↑ ,b̂

†(α2)
k↑ , . . . ,b̂

†(αnc )
k↑

)
, (22)

b̂−k↓ = (
b̂
†(α1)
−k↓ ,b̂

†(α2)
−k↓ , . . . ,b̂

†(αnc )
−k↓

)
, (23)

and nc is the number of atoms in the unit cell. Now, we can
rewrite the Hamiltonian into a compact form:

HMF =
∑

k

b̂†(k) · D(k) · b̂(k)

− (2S + 1)Nc

∑
α

λ(α) − 〈HMF 〉, (24)

where the 2 nc × 2 nc dynamical matrix D(k) is given by

D(k)=
(

γ B
αβ(k) + λ(α)δαβ −γ A

αβ(k)
γ A

αβ(k) γ B
αβ(k) + λ(α)δαβ

)
.

To diagonalize the Hamiltonian (24) we need to perform a
paraunitary transformation of the matrix D(k) which preserves
the bosonic commutation relations.64 We can diagonalize the
Hamiltonian by defining the new operators â = F · b̂, where
the matrix F satisfies

(F †)−1 · τ3 · (F )−1 = τ3, τ3 =
(

I2×2 0
0 −I2×2

)
. (25)

With this transformation, the Hamiltonian reads

ĤMF =
∑

k

â†k · E(k) · âk − (2S + 1)Nc

∑
α

λ(α) − 〈ĤMF 〉,

(26)

where

E(k) = diag[ω1(k), . . . ,ωnc
(k),ω1(k), . . . ,ωnc

(k)]. (27)

In terms of the original bosonic operators, the mean-field
parameters are

Aαβ(R) = 1

2Nc

∑
k

{
eik(R+rα−rβ )

〈
b̂

(α)
k↑ b̂

(β)
−k↓

〉
− e−ik(R+rα−rβ )

〈
b̂

(α)
−k↓b̂

(β)
k↑

〉}
, (28)

Bαβ(R) = 1

2Nc

∑
k

{
eik(R+rα−rβ )

〈
b̂
†(β)
k↑ b̂

(α)
k↑

〉
− e−ik(R+rα−rβ )

〈
b̂
†(β)
−k↓b̂

(α)
−k↓

〉}
, (29)

and the constraint in the number of bosons can be written in
the momentum space as∑

k

{〈
b̂
†(α)
k↑ b̂

(α)
k↑

〉 + 〈
b̂
†(α)
−k↓b̂

(α)
−k↓

〉} = 2SNc, (30)

where Nc is the total number of unit cells and S is the spin
strength. The mean-field equations (28) and (29) must be
solved in a self-consistent way together with the constraints
(30) on the number of bosons.

Finding numerical solutions involves finding the roots of
the coupled nonlinear equations for the parameters A and B,
plus the additional constraints to determine the values of the
Lagrange multipliers λ(α). We perform the calculations for
finite but very large lattices, and finally, we extrapolate the
results to the thermodynamic limit.

We solve numerically for different values of the frustration
parameter J2/J1 and with the values obtained for the MF
parameters and the Lagrange multipliers we compute the
energy and the new values for the MF parameters. We
repeat this self-consistent procedure until the energy and
the MF parameters converge. After reaching convergence,
we can compute all physical quantities, such as the energy,
the excitation gap, the spin-spin correlation, and the local
magnetization. During the calculation, it is convenient to fix
the energy scale by setting the value of the nearest-neighbor
coupling J1 = 1.

IV. RESULTS

In Fig. 4, we show the boson dispersion relation gap
extrapolated to the thermodynamic limit as a function of the
frustration (J2/J1). In the gapped region, the absence of Bose
condensation indicates that the ground state is magnetically
disordered. This result agrees well with recent ED,39 VMC,36

and CCM37,45 studies. In the gapless region, the excitation
spectrum is zero at a given wave vector k∗ = Q/2, where
the Boson condensation occurs. This is characteristic of the
magnetically ordered phases. The structure of these phases
can be understood through the spin-spin correlation function
(SSCF) and the excitation spectrum. Some typical examples
for different phases will be shown later.

To pin down the precise phase boundaries between the
magnetically ordered and disordered phases, we introduce the
local magnetization M(Q) as an order parameter, which is
obtained from the long-distance SSCF:53,54

lim
|x−y|→∞

〈Sx · Sy〉 ≈ M2 (Q) cos[Q·(x − y)]. (31)
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Néel GSL

VBC

Spiral

a b c d

0.39

FIG. 4. (Color online) Gap in the boson dispersion extrapolated
to the thermodynamic limit as a function of the frustration J2/J1

corresponding to S = 1/2. The gapped region corresponds to two
different magnetically disordered phases: one is GSL, and the other
is a staggered-dimer VBC. The inset shows the Z3 order parameter
defined in Eq. (32). The onset of the VBC phase is determined by the
value of J2/J1 where |ψ | is nonzero (red arrows).

In Fig. 5, we show the local magnetization for J2/J1 ∈ [0,0.5].
For J2/J1 = 0, the local magnetization is M(Q) =0.24176,
which is in excellent agreement with the second-order spin-
wave calculation result of 0.2418.65 This value is significantly
reduced by quantum fluctuations compared with the classical
value of 0.5. The quantum Monte Carlo (QMC) result66 is
0.2677(6), which is considerably larger than ours. For the
unfrustrated case, all the mean-field approaches are quite
inaccurate compared with much more controlled techniques
like QMC. The difference in the M(Q) values of about 10%

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

J2 J1

M
Q

0.398 0.402 0.406
0.00
0.02
0.04
0.06
0.08

J2 J1

M
Q

0.2 0.204 0.2080.000
0.005
0.010
0.015

J2 J1

M
Q

FIG. 5. (Color online) Local magnetization determined by
Eq. (31) extrapolated to the thermodynamic limit as a function
of the frustration J2/J1. The shaded region corresponds to the
magnetically disordered phases. Insets correspond to the regions
where the magnetization for Néel (left) and spiral (right) phases
becomes zero.

provides, in the absence of any other quantitative evidence
for the accuracy of the method as applied to this model, an
indication of the accuracy of the method and of all the results
quoted that depend on the order parameters, including the
phase boundaries. However, the mean-field approach is still
very useful to study gapped phases in frustrated systems. On
one hand, it is well known that for frustrated systems QMC
presents the famous sign problem. On the other hand, the study
of quantities like energy gap requires the study of large-size
clusters, and the use of exact diagonalization for small-size
clusters makes it very difficult to extrapolate the results.

As J2/J1 increases, the local magnetization decreases.
It vanishes continuously at J2/J1 � 0.2075, as shown in
Fig. 5.59 This value is in excellent agreement with recent
numerical results, such as 0.2 by Mezzacapo et al.,36 who
use VMC with an entangled-plaquette variational ansatz, as
well as 0.207 ± 0.003 by Bishop et al.,37 who use CCM.
The shift of the Néel boundary compared with the classical
estimate 1/6 is due to quantum fluctuations which tend to be
collinear Néel rather than spiral phases in some cases.39 In
this region, the SSCF is antiferromagnetic in all directions,
and the Boson condensation happens at the 
 point of the
first Brillouin zone: k∗ = (0,0), which corresponds to the
ordering vector Q = (0,0). As J2/J1 decreases from 0.5,
the local magnetization M(Q) decreases. It vanishes contin-
uously at J2/J1 � 0.398, as shown in Fig. 5.59 This value is
also in good agreement with recent numerical results, such as
0.4 by Mezzacapo et al.,36 as well as 0.385 ± 0.010 by Bishop
et al.37 In this region, the SSCF shows different properties in
different directions; however, it exhibits long-range order in all
directions. The gapless points of the excitation spectrum move
continuously inside the first Brillouin zone as J2/J1 changes.
These results correspond to a spiral phase. In the classical
version (S → ∞) of the model [see Fig. 2(a)], for J2/J1 > 1/6
there remains a line-type degeneracy in which the spiral wave
number is not determined uniquely and is allowed on a ring
in the Brillouin zone.49,50 Our results suggest that the classical
degeneracy is lifted in the quantum version, where some spiral
wave vectors are favored by quantum fluctuations from the
manifold of classically degenerate spiral wave vectors. This
spiral order by disorder selection was already seen by using the
spin-wave approach of Mulder et al.,30 and we have recovered
this selection with a different approach.

The most interesting part of the phase diagram is the
intermediate region, which has no classical counterpart. In
this region, the nonmagnetic ground state retains SU(2) spin
rotational symmetry and the lattice translational symmetry.
However, it may break the Z3 directional symmetry of
the lattice. Following Mulder et al.,30 we introduce the Z3

directional symmetry-breaking order parameter |ψ |, where

ψ = 〈SA (r) · SB (r)〉 + ω 〈SA (r) · SB (r + e1)〉
+ω2 〈SA (r) · SB (r − e2)〉 . (32)

Here A and B correspond to the two different sublattices, r
denotes the unit cell position, and ω = exp(i2π/3). Equiv-
alently, Okumura et al.32 define m3 = ε1a1 + ε2a2 + ε3a3,
where εμ (μ = 1,2,3) are bond energies corresponding to the
three nearest-neighbor bonds aμ (μ = 1,2,3). It is trivial to
see |ψ | = |m3|. This order parameter is zero when the spin
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correlations along the three directions are equal. We find that
|ψ | remains zero when J2/J1 � 0.3732; it becomes nonzero
continuously at J2/J1 � 0.3732, as shown in Fig. 4.59 There-
fore, in the region 0.2075 � J2/J1 � 0.3732, the ground state
preserves the Z3 lattice rotational symmetry. The SSCF shows
short-range antiferromagnetic correlations in all directions,
and the minimum of the excitation spectrum remains pinned
at the 
 point. Namely, the system remains a GSL. The
appearance of the GSL agrees with recent two different VMC
studies.33,36 In the region 0.3732 � J2/J1 � 0.398, the Z3

lattice rotational symmetry has broken. We find that the values
of the mean fields A and B are A(B)a2 = A(B)a3 �= A(B)a1 ;
the bond energies have the same property: ε2 = ε3 �= ε1.
Therefore, the system should belong to the staggered-dimer
VBC (lattice nematic). To further analyze this region, one
needs to calculate the dimer-dimer correlations. However,
it is out of the scope of the present paper. The existence
of the staggered-dimer VBC is in agreement with a recent
ED study,34 a bond operator mean-field study,30 and a VMC
study.33

The errors in the values of the phase boundaries that are
implicit here in the number of significant figures quoted
correspond purely to the error in the extrapolation of our
finite-size results to the thermodynamic limit. In no way
are they intended to represent the essentially unknown errors
implicit in the mean-field approach, e.g., the 10% difference in
M(Q) compared with the QMC result in the unfrustrated limit.
All the transition values presented in this paper correspond to
mean-field estimations. In order to improve these values, it is
necessary to study in detail the phase transitions beyond the
mean-field level, which is out of the scope of the present paper.

In Fig. 6 we show the results for the ground-state energy
per unit cell extrapolated to the thermodynamic limit. For the
unfrustrated case (J2 = 0), Egs/Nc = −1.09779, which is in
excellent agreement with the second-order spin-wave calcu-
lation result of −1.0978.65 Compared with published QMC
results by Reger et al.67 [−1.0890(9)] and, more recently,

FIG. 6. (Color online) Ground-state energy per unit cell extrap-
olated to the thermodynamic limit as a function of the frustration
J2/J1. The regions of the four different phases are indicated using the
same colors that are used in Fig. 2.

FIG. 7. (Color online) SSCF for a system of size N = 2 × 50 ×
50 in the zigzag direction corresponding to the four different phases:
(a) J2/J1 = 0.18 (Néel), (b) J2/J1 = 0.36 (GSL), (c) J2/J1 = 0.38
(staggered-dimer VBC), and (d) J2/J1 = 0.48 (spiral).

by Löw68 [−1.08909(39)], it has appreciable difference, as
mentioned in our previous discussion of the difference in
the M(Q) values. Since energy estimates always have an
intrinsic quadratic error, compared to an intrinsic linear error
for other properties, even small errors in the energy can be of
significance. The shape of the energy curve also supports that
the three quantum phase transitions are continuous.

In the following we show several typical examples for the
four different phases. The SSCF along zigzag and armchair
directions for a system of 5000 sites is shown in Figs. 7 and 8
for J2/J1 = 0.18 (Néel), 0.36 (GSL), 0.38 (staggered-dimer
VBC), and 0.48 (spiral). The corresponding lowest excitation
spectrum is shown in Fig. 9. Although it is a finite-size
system, we can still see the corresponding properties for
the four different phases, as we have presented above. For
J2/J1 = 0.18, the SSCF in both of the zigzag and armchair
directions shows long-range Néel correlations, and the lowest
excitation spectrum becomes gapless at the 
 point (for a finite-
size system there is a small gap which disappears after the
extrapolation). For J2/J1 = 0.36, the SSCF in both the zigzag
and armchair directions shows short-range Néel correlations,
and the minimum of the lowest excitation spectrum remains
at the 
 point; however, there is a large gap which does
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FIG. 8. (Color online) SSCF for a system of size N = 2 × 50 ×
50 in the armchair direction corresponding to the four different
phases: (a) J2/J1 = 0.18 (Néel), (b) J2/J1 = 0.36 (GSL), (c) J2/J1 =
0.38 (staggered-dimer VBC), and (d) J2/J1 = 0.48 (spiral).

not disappear after the extrapolation. For J2/J1 = 0.38, the
SSCF does not show any long-range correlation, and the
short-range correlations are different along the zigzag and
armchair directions, which is an indication that the lattice
rotational symmetry is broken. Simultaneously, the minimum
of the lowest excitation spectrum is away from the 
 point,
and the lattice rotational symmetry is clearly broken. There is
also a gap in this region which remains finite in the thermo-
dynamic limit. For J2/J1 = 0.48, the SSCF shows magnetic
long-range correlations in both of the zigzag and armchair
directions. Since one component of the ordering vector Qx = 0
(corresponding to k∗

x = 0 in the lowest excitation spectrum),
the SSCF is Néel-like along the zigzag directions. This result
agrees well with the spin-wave calculations by Mulder et al.30

Finally, we would like to talk about the next step of our
work. We have used a mean-field approach based on the
Schwinger boson representation of the spin operators. This
mean-field approach has the drawback of being defined in a
constrained bosonic space, with unphysical configurations be-
ing allowed if this constraint is treated as an average restriction.
This drawback can be, in principle, corrected by including
local fluctuations of the bosonic chemical potential.69 This
correction was calculated by Trumper et al.55 for the J1-J2

square lattice using collective coordinate methods, where a
comparison between the mean-field results and the corrected
results was made. However, this hard calculation allows us to
calculate only some special quantities, such as the ground-state
energy and the spin stiffness. The corrections developed by
Trumper et al. could be extended to spiral phases,70 which
would allow us to investigate, for instance, the present model.

V. SUMMARY AND DISCUSSION

In the present paper, we have investigated the quantum
J1-J2 Heisenberg model on the honeycomb lattice within
a rotationally invariant version of SBMFT. In the region
J2/J1 ∈ [0,0.5], the quantum phase diagram of the model
displays four different regions.59 The magnetic long-range
order of the Néel and spiral types is found for J2/J1 � 0.2075
and J2/J1 � 0.398, respectively. For the spiral region, we
get the spiral order from quantum disorder selection, which
agrees with Mulder et al.,30 who used spin-wave theory. In
the intermediate region, the energy gap is finite while the
local magnetization is zero, which indicates the presence
of a magnetically disordered ground state. We have used
the Z3 directional symmetry-breaking order parameter |ψ |
defined in Eq. (32) to classify this part into two different
magnetically disordered phases: one is a GSL, which shows
short-range Néel correlations (J2/J1 � 0.3732), and the other
is a staggered-dimer VBC (lattice nematic), which breaks the
Z3 directional symmetry (J2/J1 � 0.3732). Considering the
properties of order parameters and the ground state energy,
these three quantum phase transitions seem to be continuous.

As we have mentioned above, recent theoretical studies of
the phase diagram of the spin-1/2 J1-J2 Heisenberg model
on the honeycomb lattice have obtained conflicting results.
The central controversial point is the existence and nature of
magnetically disordered phases when the Néel order becomes
unstable while increasing the frustration J2/J1. There is
a growing consensus30,33,34,36,37,39,42,45,50 that a magnetically
disordered region should appear. However, the nature of this
region is still not clear, with different approaches giving
different results. An early ED work by Fouet et al.50 first
claimed that a GSL might appear in the region J2/J1 ≈ 0.3–
0.35, and for J2/J1 ≈ 0.4 the system might be in favor of the
staggered-dimer VBC. A recent ED study by Mosadeq et al.34

has claimed that a plaquette valence bond crystal (PVBC)
might exist in the region 0.2 < J2/J1 < 0.3, and a phase
transition from PVBC to the staggered-dimer VBC exists at
a point of the region 0.35 � J2/J1 � 0.4. However, a more
recent ED work by Albuquerque et al.,39 which has treated
larger system sizes, has been unable to discriminate whether
this magnetically disordered region corresponds to PVBC with
a small-order parameter or a GSL. It is possible that the PVBC
may just come from the finite-size effects.36 For larger J2/J1,
it has been also hard to discriminate the staggered dimer VBC
with spiral phases, since it is especially difficult to use ED to
treat the incommensurate behavior of spin correlations due to
the small lattice sizes.

There are two recent studies of this model using VMC
with different variational wave functions. Clark et al.33

have used Huse-Elser states and resonating valence bond
(RVB) states and claimed that a GSL appears in the region
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a b

c d

FIG. 9. (Color online) Momentum dependence of the lowest excitation spectrum for a system of size N = 2 × 50 × 50 corresponding to
the four different phases: (a) J2/J1 = 0.18 (Néel), (b) J2/J1 = 0.36 (GSL), (c) J2/J1 = 0.38 (staggered-dimer VBC), and (d) J2/J1 = 0.48
(spiral). The dashed hexagon denotes the first Brillouin zone of the lattice.

0.08 � J2/J1 � 0.3, a dimerized state which breaks lattice
rotational symmetry for J2/J1 � 0.3. However, a more recent
work by Mezzacapo et al.36 using an entangled-plaquette
variational (EPV) ansatz has obtained lower energy estimates
and claimed that in the magnetically disordered region 0.2 �
J2/J1 � 0.4, the PVBC order parameter vanishes in the
thermodynamic limit. Therefore, the PVBC may just come
from the finite-size effects. Since the Z3 directional symmetry-
breaking order parameter has not been considered in this paper,
it is still not clear whether the lattice rotational symmetry is
broken or not in the region 0.2 � J2/J1 � 0.4.

In a recent study using PFFRG42 the authors have obtained
that within the magnetically disordered region, for larger
J2/J1, there is a strong tendency for the staggered-dimer
ordering; for low J2/J1, both plaquette and staggered-dimer
responses are very weak. A further recent study using CCM37

has got a more quantitative magnetically disordered region:
0.207 ± 0.003 < J2/J1 < 0.385 ± 0.010, in which the PVBC
phase has been reported. However, the ground state within
0.21 � J2/J1 � 0.24 is hard to determine using this approach.

The other controversial point is the form of the magnetic
long-range order when J2/J1 exceeds the magnetically disor-
dered region. There are two proposals: the anti-Néel order37

and the spiral order. It is difficult to get a conclusion by ED

since it is hard to use it to treat the incommensurate spin
correlations due to small lattice sizes.39 Neither of the recent
SE40 and PFFRG42 studies have found any evidence for the
existence of the anti-Néel order, and they concluded that the
spiral state should be the stable ground state. However, both
the VMC with EPV ansatz36 and the CCM37 studies support
the opposite proposal. Since we are interested in the exotic
disordered phases in the magnetically disordered region and
focus on J2/J1 ∈ [0,0.5], we cannot exclude the possibility
that the anti-Néel order state exists for J2/J1 > 0.5.

Due to the existence of strong quantum fluctuations
and frustration, the spin-1/2 J1-J2 Heisenberg model on
the honeycomb lattice is a challenging model which needs
further investigation, especially for the nature of the in-
termediate phase. Unbiased numerical simulations are still
needed, such as the density matrix renormalization group
(DMRG) method.71–73 Recently, DMRG has been applied to
the spin-1/2 kagome Heisenberg model74,75 and the spin-1/2
square J1-J2 Heisenberg model76 and obtained GSLs as the
ground state. Since quantum fluctuations are expected to
be stronger on the honeycomb lattice than those on the
square lattice, it would be very interesting to apply DMRG
to the spin-1/2 J1-J2 Heisenberg model on the honeycomb
lattice.

024415-8



EXOTIC DISORDERED PHASES IN THE QUANTUM . . . PHYSICAL REVIEW B 87, 024415 (2013)

ACKNOWLEDGMENTS

We are especially grateful to Hirokazu Tsunetsugu for
his suggestion of this project and numerous enlightening
discussions for numerical calculations. We would like to

thank Peng Li for fruitful discussions. H.Z. is supported by
the Japanese Government Scholarship from MEXT of Japan.
C.A.L. is partially supported by CONICET (PIP 1691) and
ANPCyT (PICT 1426).

*Corresponding author: zhanghao@issp.u-tokyo.ac.jp
1H. A. Bethe, Z. Phys. 71, 205 (1931).
2W. Zheng and C. J. Hamer, Phys. Rev. B 47, 7961 (1993).
3A. W. Sandvik, Phys. Rev. B 56, 11678 (1997).
4P. W. Anderson, Mater. Res. Soc. Bull. 8, 153 (1973); P. Fazekas
and P. W. Anderson, Philos. Mag. 30, 423 (1974); P. W. Anderson,
Science 235, 1196 (1987).

5M. A. Metlitski and S. Sachdev, Phys. Rev. B 77, 054411 (2008).
6R. K. Kaul, M. A. Metlitski, S. Sachdev, and C. Xu, Phys. Rev. B
78, 045110 (2008).

7L. Wang and A. W. Sandvik, Phys. Rev. B 81, 054417 (2010).
8R. Moessner, S. L. Sondhi, and P. Chandra, Phys. Rev. B 64, 144416
(2001).

9A. Ralko, M. Mambrini, and D. Poilblanc, Phys. Rev. B 80, 184427
(2009).

10A. Mattsson, P. Fröjdh, and T. Einarsson, Phys. Rev. B 49, 3997
(1994).

11K. Takano, Phys. Rev. B 74, 140402 (2006).
12M. Hermele, Phys. Rev. B 76, 035125 (2007).
13R. Kumar, D. Kumar, and B. Kumar, Phys. Rev. B 80, 214428

(2009).
14O. Smirnova, M. Azuma, N. Kumada, Y. Kusano, M. Matsuda,

Y. Shimakawa, T. Takei, Y. Yonesaki, and N. Kinomura, J. Am.
Chem. Soc. 131, 8313 (2009).

15S. Okubo, F. Elmasry, W. Zhang, M. Fujisawa, T. Sakurai, H. Ohta,
M. Azuma, O. A. Sumirnova, and N. Kumada, J. Phys. Conf. Series
200, 022042 (2010).

16M. Matsuda, M. Azuma, M. Tokunaga, Y. Shimakawa, and
N. Kumada, Phys. Rev. Lett. 105, 187201 (2010).

17M. Azuma, M. Matsuda, N. Onishi, S. Olga, Y. Kusano,
M. Tokunaga, Y. Shimakawa, and N. Kumada, J. Phys. Conf. Series
320, 012005 (2011).

18Magnetic Properties of Layered Transition Metal Compounds,
edited by L. J. De Jongh (Kluwer, Dordrecht, 1990).
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