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Quantum theory of magnetoelectricity in rare-earth multiferroics: Nd, Sm, and Eu ferroborates

A. I. Popov,1,2 D. I. Plokhov,1 and A. K. Zvezdin1,3

1A. M. Prokhorov General Physics Institute of Russian Academy of Sciences, 38 Vavilov Str., 119991, Moscow, Russia
2National Research University of Electronic Technology 5 Pas. 4806, 124498, Zelenograd, Moscow, Russia

3Moscow Institute of Physics and Technology 9 Institutsky Per., 141700, Dolgoprudny, Moscow Region, Russia
(Received 24 July 2012; revised manuscript received 30 September 2012; published 17 January 2013)

The quantum theory of magnetoelectricity in rare-earth ferroborates is developed. It is shown that the
electric polarization in the materials is induced by means of two single-ion mechanisms: effective magnetic
and crystal fields produce the electric dipole moment directly in the electronic 4f shells of rare-earth ions (the
electronic contribution) and also through displacement of oppositely charged ion sublattices (the ionic one). The
magnetoelectrical properties are described in detail for the neodymium, samarium, and europium ferroborates.
In particular, the field and temperature dependencies of polarization are obtained.
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I. INTRODUCTION

Recently, multiferroic (MF) materials have attracted con-
siderable attention focused on both improved fundamental
understanding and novel desirable applications. Challenging
and promising visions emerged, for example, of how to switch
magnetism with bare electric fields and thus overcome the
overheating bottleneck in microelectronic devices.1,2 Today, a
rich variety of multiferroic materials is encountered. Despite
its smallness, the linear magnetoelectric effect (MEE) has
been shown to control spintronics devices very efficiently,
for example, even by using the classic magnetoelectric (ME)
antiferromagnet Cr2O3.3 In recent years, it has also been shown
that significantly larger values of MEE can be in multiferroic
composites.4,5

Nevertheless, a problem of searching for new materi-
als with substantial magnetoelectricity still remains highly
topical. To handle the problem, profound understanding of
MEE microscopic mechanisms is needed, since traditional
phenomenological theories, based on the symmetry analysis
approach, which can predict the presence (or the absence) of
the effect, are not capable of giving exact temperature or field
dependencies.

The conventional MEE is the result of the interaction
between the two subsystems of an ionic crystal, namely elec-
trical, consisting of charged ions, and magnetic, constituted
of the uncompensated spin magnetic moments of the ions.
The microscopic mechanisms of the magnetoelectric effect
have not been sufficiently identified. The magnetoelectricity
of transition d ions is usually explained in terms of the
exchange striction and the inverse Dzyaloshinskii-Moriya
mechanisms, which are both attributed to a modulation of
interionic exchange interactions, which is quite strong for d

ions. As for multiferroics, there exist two microscopic theories
of magnetoelectric coupling in them, one theory based on the
spin current model6 and the other based on the model of an
electric current compensation.7

In recent years, a new class of (improper) multiferroics,
namely rare-earth (RE) ferroborates RFe3(BO3)4, where
R = La–Lu, is actively studied, both theoretically and
experimentally.8–11 The materials are attractive because of the
huge MEE9 and a possible effect of an electric polarization
control with an external magnetic field.10 The magnetoelectric-

ity of rare-earth ferroborates is owed primarily to the presence
of rare-earth f ions, which is convincingly proved by the
minute MEE in yttrium ferroborate9 and recently observed
giant MEE in rare-earth alumoborates.12 Weak exchange
interaction between rare-earth f ions (compared with d-d
and f -d exchange), large orbital moments together with
weak orbital-moment quenching and a low-symmetry crystal
field make the single-ion mechanisms of magnetoelectricity
in rare-earth f ions dominate over double-ion mechanisms,
which are typical for transition metal d ions.

In the present work, the quantum theory of the magne-
toelectric effect in rare-earth ferroborates is worked out by
the example of Nd, Sm, and Eu ferroborates. Two single-ion
mechanisms are shown to underlie the magnetoelectricity of
such compounds. These are the electronic mechanism (the
electric dipole moment in the electronic 4f shell of a rare-earth
ion is produced by an effective exchange and external magnetic
fields combined with a low-symmetry crystal field) and ionic
one (attributed to displacement of oppositely charged ion
sublattices in a magnetic field). Prominently, the second-order
contributions to polarization from both mechanisms coincide
in the form. The field and temperature dependencies of the
electric polarization induced with the magnetic field taking
into account both the electronic and ionic contributions are
obtained. A good agreement achieved between the theoretical
predictions and the experimental data counts in favor of the
validity of the theory developed.

II. THE ELECTRONIC MECHANISM

First of all, we consider the electronic mechanism of
the magnetoelectricity in rare-earth ions, which was already
outlined in Ref. 13. We would like to discuss it now somewhat
closer in respect to rare-earth ferroborates.

Let a rare-earth ion be under the influence of magnetic and
external electric fields. The actual perturbation Hamiltonian V
of the ion then reads

V = −dE + Hodd
cr , (1)

where d = −e
∑n

k=1 rk is the dipole moment operator of the
ion with n electrons in the 4f shell. The crystal field (CF)
operator Hodd

cr in Eq. (1) contains only odd harmonics and can
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be expressed as a sum,

Hodd
cr =

∑
tτk

Bt
τC t

τ (k),

where index t is odd andCt
τ (k) =

√
4π

2t+1Ytτ (θ,ϕ) are the single-
electron irreducible tensor operators, which are defined by the
reduced matrix element 〈l′||Ct ||l〉 = √

2l + 1 Cl′0
l0t0. Ytτ (θ,ϕ)

are spherical functions.
For rare-earth ferroborates this crystal field operator has the

following form:

Hodd
cr =

∑
k

B3
3

(
C3

−3(k) − C3
3 (k)

) +
∑

k

B5
3

(
C5

−3(k) − C5
3 (k)

)
.

(2)

The crystal field parameters Bt
τ used in Eq. (2) are found

to be B3
3 = 2110 cm−1 and B5

3 = 2170 cm−1 for Pr3+ ions
in the frame of the point charge model.14 It will be shown
below that the same parameters allow the description of the
magnetoelectric properties of other rare-earth ferroborates
with sufficient accuracy.

The linear on the strength of the applied electric field
corrections to the ion energy levels arises in the second-order
perturbation theory with small parameter ||V||/W , where
||V|| is the norm of the V operator in Eq. (1) and W is the
energy difference between the ground states and the weight
center of excited ion electronic configurations (typically, W ∼
105 cm−1 for rare-earth ions). For the sake of simplicity, we
will take into account only the lowest 4f n−15d1 configuration.

Making use of the wave-function genealogical scheme
construction and the quantum theory of angular momentum,15

we derived the expression for the magnetoelectric operator of
rare-earth ferroborates. Referring the reader to the Appendix
for the details of calculations, we give here the final expression
for the magnetoelectric Hamiltonian,

Hme = −
(

erf d

W

)
ED

= −
(

erf d

W

)
(E+D− + E−D+ + EzDz), (3)

where rf d is the radial integral (see the Appendix) and Dα

(α = x,y,z) are the effective operators of the RE ion electric
dipole moment components. For the sake of brevity, we use the
notation of so called “cyclic” operators E± = (Ex ± iEy)/

√
2

and D± = (Dx ± iDy)/
√

2, where

D± =
∑

p=2,4,6

b
p

2 C
p

∓2 +
∑

p=4,6

b
p

4 C
p

±4,

(4)
Dz = b4

3

(
C4

3 − C4
−3

) + b6
3

(
C6

3 − C6
−3

)
.

Hereafter the summation over electrons is assumed but the
summation symbol is omitted to avoid bulky expressions.
Coefficients b

p
q in Eq. (4) can be expressed in the terms of

the crystal field parameters,

b2
2 = 4

√
3

7
√

7
B3

3 , b4
2 = − 11

21
√

14
B3

3 + 4
√

5

7
B5

3 ,

b6
2 = −

√
78

7
√

11
B5

3 ,

b4
4 = 11

√
2

21
B3

3 − 2
√

5

7
√

7
B5

3 , b6
4 = 3

√
65

7
√

11
B5

3 ,

b4
3 = −11

42
B3

3 − 4
√

10

7
√

7
B5

3 , b6
3 = −3

√
39

7
√

22
B5

3 .

In order to describe magnetoelectric properties of rare-earth
materials, it is necessary to know the energy levels and
eigenfunctions of rare-earth ions in the crystals. Rare-earth
ferroborates consist of two exchange-coupled magnetic sub-
systems, one of which is formed by Fe3+ ions and the second
is formed by rare-earth ions. At low temperatures T < TN

(TN ∼ 30 . . . 40 K is the Neel temperature) the iron subsystem
consists of two antiferromagnetically ordered magnetic sublat-
tices M1 and M2. The RE-Fe exchange interaction, considered
under the molecular field approximation, is less by the order
of magnitude than that of iron ions, which is responsible
for the magnetic ordering of the magnetic moments of the
iron ions. The exchange interaction between rare-earth ions is
weaker by the order of magnitude than the RE-Fe exchange and
thus can be neglected. While there is the magnetic ordering
of iron ions in ferroborates, rare-earth ions are divided into
two subsystems. The first one is coupled by the exchange
interaction mainly with iron ions of sublattice M1; the second
one interacts with ions of sublattice M2. In the presence of
external magnetic field H the rare-earth ions in sublattices 1
and 2 are under the action of effective magnetic field,

hq = H + Hmol,q , (5)

where index q = 1,2 and Hmol,q = λMq is the molecular field
and λ is the constant of the molecular field.

The magnetoelectric contribution to the free energy of the
crystal then reads

Fme = −Q

(
E

∑
q=1,2

〈D〉q
)

, (6)

where Q = (N/2)(erf d/W ) and N is the number of rare-earth
ions in the sample. Symbol 〈. . .〉 means the thermodynamics
averaging over wave functions of a rare-earth ion. Equation (6)
allows us to analyze magnetoelectric properties (the field and
temperature dependencies of the polarization components) in
rare-earth ferroborates:

Pα = −∂Fme

∂Eα

= Q
∑
q=1,2

〈Dα〉q, α = x,y,z. (7)

In order to calculate the dependencies, the energy levels and
wave functions of rare-earth ions in crystal and magnetic fields
are required.

III. THE CRYSTAL FIELD

At the R3+ sites in rare-earth ferroborates with D3 symme-
try, in the Cartesian system of coordinates with the z and x

axes along the crystallographic c and a (which is of the C2

symmetry) axes, the containing even harmonics crystal field
Hamiltonian can be described by six independent real crystal
field parameters,

HCF = B2
0C2

0 + B4
0C4

0 + B6
0C6

0 + iB4
−3

(
C4

−3 + C4
3

)
+ iB6

−3

(
C6

−3 + C6
3

) + B6
6

(
C6

6 + C6
−6

)
. (8)

024413-2



QUANTUM THEORY OF MAGNETOELECTRICITY IN RARE- . . . PHYSICAL REVIEW B 87, 024413 (2013)

TABLE I. The Nd3+ ground multiplet split by the crystal field into the five Kramers doublets.

k Ek (cm−1) |ψk〉, |ψ̄k〉
0 0 ±0.498| ± 7

2 〉 ± 0.129i| ± 1
2 〉 ± 0.858| ∓ 5

2 〉
1 72 (−0.276 ± 0.454i)(| + 9

2 〉 ± | − 9
2 〉) − 0.660(| − 3

2 〉 ± | + 3
2 〉)

2 146 ±0.840| ± 7
2 〉 ± 0.174i| ± 1

2 〉 ∓ 0.514| ∓ 5
2 〉

3 229 (−0.242 ± 0.399i)(| + 9
2 〉 ± | − 9

2 〉) + 0.531(| − 3
2 〉 ± | + 3

2 〉)
4 326 ±0.215| ± 7

2 〉 ∓ 0.174i| ± 1
2 〉 ± 0.022| ∓ 5

2 〉

We should here remind, that the summation over 4f electrons
is assumed in Eq. (8). The numerical values of the crystal-field
parameters are obtained by the fitting the CF levels of the CF
Hamiltonian in Eq. (8) to the high-resolution polarized optical
absorption spectra.14,16 Currently, the neodymium crystal field
parameters are determined with a high degree of reliabil-
ity: B2

0 = 551 cm−1, B4
0 = −1239 cm−1, B6

0 = 519 cm−1,
B4

−3 = 697 cm−1, B6
−3 = 105 cm−1, and B6

6 = 339 cm−1.
Unfortunately, the crystal field of the Sm3+ ion is not known
in such detail, but, given the proximity between samarium and
neodymium, we can calculate the Sm3+ spectrum on the base
of the neodymium CF data. The results of the calculations are
represented in Table I for Nd3+ and in Table II for Sm3+ ions.

Obviously, the averaging of the D operator (see Sec. II) in
a zero magnetic field over the states that are combinations of
the harmonics differing in the magnetic quantum number by
3, 6, or 9 is equal to zero. In an effective magnetic field, the
ground Kramers doublet (|ψ0〉,|ψ̄0〉) of an ion is split by the
field into the two close-lying levels,

|ψ0
1,2(q)〉 = C

(1)
1,2(q)|ψ0〉 ± C

(2)
1,2(q)|ψ̄0〉,

with energies,

E1,2(q) = ±gJ μBhq
q,

where 
q =
√

g2
‖γ 2

q‖ + g2
⊥γ 2

q⊥ , unit vector 
γq = hq/hq , gJ is

the Lande factor, and μB is the Bohr magneton. The nonzero
magnetic spectroscopic factors are only gxx = gyy = g⊥ and
gzz = g‖ (for neodymium g|| = 0.964, g⊥ = 1.751, and gJ =
8/11; for samarium g|| = 0.379, g⊥ = 1.441, and gJ = 2/7).
Coefficients C(n)

m (q) read

C(n)
m (q) = 1√

2

(
1 − (−1)n+m

g‖γq‖


q

)1/2

e−i(−1)n(π+ϕq )/2,

where ϕq are defined by the expression tan ϕq = γqy/γqx .
The contribution of the higher levels to the wave function

of the rare-earth ion in the magnetic field can be taken into

TABLE II. The Sm3+ ground multiplet split by the crystal field
into the three Kramers doublets (cos α = 0.980, sin α = 0.201).

k Ek (cm−1) |ψk〉, |ψ̄k〉
0 0 ∓i sin α| ± 5

2 〉 ± cos α| ∓ 1
2 〉

1 247 ∓i cos α| ± 5
2 〉 ± sin α| ∓ 1

2 〉
2 194 ±| ± 3

2 〉

account by the perturbation theory,

|ψ1,2(q)〉 = ∣∣ψ0
1,2

〉 + ∑
k

〈ψk|VZ(q)|ψ0
1,2〉

E0 − Ek

∣∣ψ0
k

〉
, (9)

where operator VZ(q) = gJ μBJhq represents the Zeeman
interaction of the ion magnetic moment in the qth subsystem
with the effective magnetic field. The energies Ek and the
wave functions (|ψk〉, |ψ̄k〉) of the Kramers doublets for
the neodymium and samarium ground multiplets split by
the crystal field are given in Tables I and II, respectively. It
should also be noted that the applicability of the perturbation
theory is limited to the range of not too strong magnetic fields
H � Ek/μB ∼ 106 Oe.

In the most interesting case of the low temperatures kT �

, where 
 is the energy difference between the first excited
and the ground doublets, the magnetoelectric contribution to
the free energy can be found as follows:

Fme = N

2

∑
q=1,2

∑
i=1,2〈ψi(q)|Hme|ψi(q)〉e−Ei (q)/kT∑

i=1,2 e−Ei (q)/kT
, (10)

where magnetoelectric Hamiltonian Hme is given by Eq. (3).
In Eq. (10), we have neglected the population of all levels
with the exception of the ground doublet levels. Calculating
the matrix elements in Eq. (10) and taking into account Eq. (9)
we find that

Fme = QgJ μB

∑
q=1,2

hqχ (hq,T )(C1I1(q) + C2I2(q)), (11)

where

χ (hq,T ) = 1


q

tanh

(
gJ μBhq

kT

q

)
,

I1(q) = Ex(γ 2
qx − γ 2

qy) − 2Eyγqxγqy , and I2(q) = Exγqyγqz

− Eyγqxγqz.
Coefficients C1 and C2 are given by the following quite

complicated expressions:

C1 = 2g⊥
∑
q=1,3

Re[〈ψ0|D̂x |ψq〉〈ψq |Ĵ+|ψ0〉]
Eq

= 2.952,

C2 = −2g||
∑
q=1,3

Im[〈ψ0|D̂x |ψq〉〈ψq |Ĵ+|ψ0〉]
Eq

−
∑
q=2,4

2g⊥〈ψq |Ĵz|ψ0〉 − g||〈ψq |Ĵ+|ψ̄0〉
2Eq

Im〈ψ̄0|D̂x |ψq〉

= 1.164,
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for neodymium and

C1 = −g⊥
E2

(〈ψ2|Ĵ+|ψ̄0〉〈ψ0|D̂x |ψ2〉

+ 〈ψ̄0|D̂x |ψ2〉〈ψ2|Ĵ−|ψ0〉) = 4.92,

C2 = − i〈ψ̄0|D̂x |ψ1〉
E1

(
2g⊥〈ψ1|Ĵz|ψ0〉 − g||〈ψ1|Ĵ−|ψ̄0〉

)
+ ig||

E2
(〈ψ0|Ĵ+|ψ2〉〈ψ2|D̂x |ψ0〉

− 〈ψ2|Ĵ+|ψ̄0〉〈ψ̄0|D̂x |ψ2〉) = 7.09,

for samarium ions. Operator D̂x = (D̂+ + D̂−)/
√

2 is defined
by Eq. (4).

The components Px and Py of the induced electric polar-
ization can easily be obtained from Eq. (11) as

Px = −∂Fme

∂Ex

= QgJ μB

∑
q=1,2

hqχ (hq,T )(C1(γ 2
qy − γ 2

qx) − C2γqyγqz),

(12)

and

Py = −∂Fme

∂Ey

= QgJ μB

∑
q=1,2

hqχ (hq,T )(2C1γqxγqy + C2γqxγqz). (13)

Equations (12) and (13) determine the polarization behavior of
ferroborates with rare-earth ions with the doublet or quasidou-
blet ground state (Kramers ions) depending on the magnitude
and the orientation of an external magnetic field as well as
on the temperature. It is to be remarked that the z component
of the polarization equals to zero in the frame of the above
described approximation. Actually, the component arises out
of Eq. (9) only when the higher order terms in the perturbation
theory are considered (starting at the third-order terms).

IV. THE EFFECTIVE MAGNETIC FIELD

In this section we proceed to the direct calculation of the
field and temperature dependencies of the polarization for
neodymium, samarium, and europium ferroborates. To obtain
a quantitative description, one has to know the dependencies of
effective field hq = H + Hmol,q (q = 1,2) on external field H
and temperature T . With this purpose in mind, we consider the
model of the magnetic structure for the ferroborate crystals.

Neodymium ions enhance the stability of the crystal ab

plane for the iron ion spins, thus the antiferromagnetic L
vector is in the ab plane (0 < T < TN , TN = 32 K is the
Neel temperature). In relatively weak magnetic fields (up to
10 kOe) magnetic and domain structures of the sample are
changed so that the L vector becomes uniform over the sample
and perpendicular to the external magnetic field. In fields
exceeding 10 kOe, the magnetization process is determined
by the rare-earth subsystem and the spin-flip of the iron
sublattices.

If the external magnetic field is directed along the a

crystallographic axis [i.e., Ha = Hex (H > Hflop = 10 kOe)],

FIG. 1. The field dependencies of the polarization induced in the
samarium and neodymium ferroborates at T = 4.2 K for different
directions of the external magnetic field. The experimental data are
given from Ref. 9.

then the effective magnetic field,11

hq =
(

1 + Hmol

Hflip

)
Hex + (−1)qHmol

√
1 −

(
H

Hflip

)2

ey,

(14)

where Hmol = 50 kOe and Hflip ∼ 106 Oe are the Fe-Nd
molecular field and the iron spin-flip field, relatively. The
temperature dependence of the molecular field can be ac-
counted for in the frame of the molecular field theory. Given the
proximity between samarium and neodymium, we can extend
the foregoing theory to the case of samarium ferroborate with
reasonable accuracy. The Fe-Sm molecular field is Hmol =
330 kOe. Figures 1 and 2 shows the field and temperature
dependencies of the polarization induced in neodymium and
samarium ferroborates. The dependencies are described by
Eqs. (12) and (14).

FIG. 2. (Color online) The temperature dependence of the polar-
ization induced in the samarium and neodymium ferroborates. The
binding of the theoretical curves to the experimental ones9 is given at
the point of the largest polarization (T = 4.2 K).
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V. THE IONIC MECHANISM

In this section we consider the ionic contribution to the
polarization. We use an approach based on the model of point
charges. If the coordinate system is chosen so that the kth
electron of a rare-earth ion is in the origin, then the potential
produced by the environment ions is

V (k) =
∑

n

qn

|rk − Rn| ,

where qn and Rn are the charge and the radius vector of the
nth ion. With this we can write the unperturbed crystal field
Hamiltonian in the form,

H(0)
cr =

∑
tτk

At
τP

t
τ (rk) =

∑
tτk

Bt
τC t

τ (k). (15)

Here P t
τ (r) =

√
4π

2t+1 rtYtτ (θ,ϕ) are the polynomials of degree

t and Bt
τ = 〈rt 〉At

τ . We will use a simplified model of the
polarization (a “garlic squeezer” model), in which all rare-
earth ions are displaced by the same vector u. The model
neglects the displacement of the other ions in the crystal,
assuming that they remain at their original positions. Such a
shift of the rare-earth ions results in the following modification
of the Hamiltonian in Eq. (15),

Hcr (u) =
∑
tτk

At
τP

t
τ (rk − u). (16)

In this equation, the ions of the rare-earth sublattice are re-
moved from the summation, because the shift u = 0 for them.
Under the linear approximation the crystal field perturbations
can be expressed as

δHcr = Hcr (u) − H(0)
cr = −

∑
kα

uα

∂H(0)
cr

∂rkα

. (17)

In fact, Eq. (17) gives the magnetoelectric Hamiltonian, which
can be reduced to the form,

Hme =
∑
tτkα

bt
ταC t

τ (k). (18)

The crystal field Hamiltonian in Eq. (15) of rare-earth
ferroborates contains the odd harmonics [see Eq. (2)].
Equation (2) can be rewritten in a polynomial form (the
summation over k is implied),

Hodd
cr = A3

3

√
5

2
(x3 − 3xy2)

+ A5
3

√
35

8
(9z2 − r2)(x3 − 3xy2). (19)

Calculating the derivatives in Eq. (19) will give polynomials
of even degree. As a result, the ionic mechanism results in
the Hamiltonian of the magnetoelectric interaction in the form
similar to that of the Hamiltonian in Eq. (3), in which the E
vector is replaced by the u vector and parameters bt

τα [see
Eq. (18)], like the parameters in Eqs. (3) and (4), are defined
by the B3

3 and B5
3 parameters of the odd crystal field.

The second-order contribution into magnetoelectric
Hamiltonian is obtained from Eqs. (17) and (19):

H(2)
me = 〈r2〉

〈r3〉 (uxDx + uyDy) = 〈r2〉
〈r3〉b

(
u−C2

−2 + u+C2
2

)
, (20)

where operators of the effective dipole moment induced in
the ion Dx = b(C2

−2 + C2
2 ) and Dy = −ib(C2

−2 − C2
2 ) and

coefficient b = −B3
3

√
15
2 = 5780 cm−1. The value of r in

Eq. (20) is 〈r〉 ∼ 0.05 nm.
The thermodynamic potential per ion is

F =
∑

α

cαu2
α

2
+ 〈Hme〉

=
∑

α

cαu2
α

2
+ 1

2r

∑
q=1,2

(u−〈D+〉q + u+〈D−〉q + uz〈Dz〉q),

where cα stands for an effective stiffness coefficient. Operators
D± and Dz are given by Eq. (4) with coefficients bt

τ calculated
from Eq. (17). From the equilibrium condition ∂F/∂uα = 0,
we find that the equilibrium shift is uα = −∑

q〈Dα〉q/(2rcα).
The electric polarization is then given by Pα = −3euα , where
3e is the charge of a rare-earth ion, therefore,

Pα = 3e

2rcα

∑
q=1,2

〈Dα〉q . (21)

Finally, it should be noted that this equation coincides in form
with Eq. (7).

VI. THE MEE IN EUROPIUM FERROBORATE

Now we consider the magnetoelectricity of europium
ferroborate. The ground state of a Eu3+ ion is described by the
quantum number of total momentum J = 0, separated from
states with J = 1 and J = 2 by energies 
1 = 350 cm−1 and

2 = 1050 cm−1, relatively. The wave function of the ground
state in external effective magnetic field hq is

|ψ0(q)〉 =
(

1 − 2μ2
Bh2

q


2
1

)
|0,0〉 − 2μB


1

∑
ν=0,±1

hqν |1, − ν〉

+ μ2
B

√
3


1
2

(
3h2

q0 − h2
q

)|2,0〉

− 6μ2
Bhq0


1
2

∑
ν=±1

hqν |2, − ν〉

+ μ2
B

√
3


1
2

∑
ν=±1

h2
qν |2, − 2ν〉, (22)

where hq0 = hqz, hq,±1 = ∓(hqx ± ihqy)/
√

2. If external field
H is directed along crystallographic axis a, then effective
magnetic field hq is given by Eq. (14) with Hmol = 134 kOe.

In order to obtain the Px component of the induced polariza-
tion Px = −(e/2rcx)

∑
q〈ψ0(q)|Dx |ψ0(q)〉, we calculate the

matrix elements,

〈ψ0(q)|Dx |ψ0(q)〉 = 4μ2
B

5
2
1

(

1


2
+

√
3

2

) (
h2

qx − h2
qy

)
, (23)
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FIG. 3. The temperature dependence of the polarization induced
in the europium ferroborate.

and finally arrive at the following expression for the polariza-
tion,

Px(H,T ) = A

{
H 2

mol−H 2

[(
Hmol

Hflip

)2

+
(

1 − Hmol

Hflip

)2
]}

.

(24)

The temperature dependence of the molecular field can be
accounted for in the frame of molecular field theory, as in
Sec. III. The best possible fit with the experimental data9

has been achieved with the Neel temperature TN = 36 K.
The plot of polarization vs temperature is shown in Fig. 3.
The comparison between the theoretical calculations and
the experimental data opens a possibility to estimate the
value of the effective stiffness cx . According to Eq. (24),
Px = 1.6 × 10−26 · N/cx C · erg/cm, where N = 1022 is the
number of ions per volume unit. The experiment gives Px =
70 μC/m2, therefore cx ∼ 104 erg/cm2.

VII. CONCLUSION

Thus, the quantum theory of magnetoelectricity in rare-
earth ferroborates is developed and the mechanisms of mag-
netoelectricity in them is explained in detail. It is shown, that
single-ion mechanisms dominate in the case of rare-earth ions,
which leads to the large values of the polarization induced in
the materials. The dependencies of the electrical polarization
on the magnitude and direction of an external magnetic field
and temperature are calculated. Comparison of the theoretical
results obtained in this work with all experimental data
shows their good quantitative agreement and indicates that
the crystal field parameters obtained from spectroscopic data
allow us to accurately describe magnetoelectric phenomena in
the rare-earth ferroborates. Although we concentrate on the
neodymium, samarium, and europium ferroborates, the theory
developed can be applied with minor modifications not only to
rare-earth ferroborates but also to other rare-earth compounds.
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APPENDIX

The purpose of this additional section is the detailed
derivation of the magnetoelectric Hamiltonian of rare-earth
ferroborates. As already mentioned in Sec. II, the analysis is
based on the perturbation theory. The second-order corrections
to the rare-earth ion energy levels read

E(2)
g =

∑
l′,el′

〈g|dE|el′ 〉〈el′ |Vodd
cr |g〉 + 〈g|Vodd

cr |el′ 〉〈el′ |dE|g〉
Wl′

.

(A1)

Here |g〉 are the rare-earth ion states of the ground ln

configuration in a magnetic field (l = 3 is the orbital quantum
number of rare-earth ions with n electrons in the ion 4f shell),
|el′ 〉 are the states from the excited ln−1l′ configuration with
l′ = l ± 1, and Wl′ is the energy difference between the |el′ 〉
and |g〉 states. The splitting of the ln−1l′ configuration levels
is neglected. The configuration with l′ = l − 1 = 2 (typically
Wl−1 ∼ 105 cm−1) is closer to the ground levels than the
configuration with l′ = l + 1 = 4.

The operator describing the interaction of the ion dipole
moment d with an electric field E can be written in terms of
irreducible tensor operators,

dE =
∑

μ=0,±1

(−1)μE−μd1μ,

where d1,±1 = ∓(dx ± idy)/
√

2, d10 = dz, E±1 = ∓(Ex ±
iEy)/

√
2, and E0 = Ez.

In order to construct the wave functions |g〉 and |el′ 〉 we use
the genealogical scheme. The wave function |g〉 is expanded
as |g〉 = ∑

M aM |JM〉, where J and M are the quantum
numbers of the ion ground multiplet and aM are the numerical
coefficients given by the following equations:

|JM〉 =
∑

MLMS

CJM
LMLSMS

|lnSLMSML〉,

|lnSLMSML〉 =
∑

S1L1m

∑
MS1 ML1 μ

GSL
S1L1

C
LML

L1ML1 lmC
SMS

S1MS1
1
2 μ

×�S1L1MS1 ML1
(−1)n−mψlm 1

2 μ(ξ ),

|el′ 〉 = 1√
n

∑
m′

(−1)n−m′
�S1L1MS1 ML1

ψl′m′ 1
2 μ′(ξ ).

Here symbols GSL
S1L1

and C
jm

j1m1j2m2
stand for the genealogical

and Clebsch-Gordan coefficients, respectively, and L1, S1,
ML1 , MS1 are the quantum numbers of the initial therm.

The known identity
∑

nm Cnm
1μtpCnm

1νtq = δμνδpq
15 yields

∑
el′

〈g|d1μ|el′ 〉〈el′ |Ct
τ |g〉 =

∑
nm

Cnm
1μtτ 〈g|{d1 ⊗ Ct }nm|g〉,
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where the matrix element of the direct product is

〈g|{d1 ⊗ Ct }nm|g〉 =
∑
el′ νq

Cnm
1νtq〈g|d1ν |el′ 〉〈el′ |Ct

q |g〉. (A2)

Equation (A2) contains matrix elements of irreducible tensor
operators Tpq = ∑

k tpq(k) which can be expanded as

〈g|Tpq |el′ 〉 = √
n

∑
M,ML,MS

∑
S1,L1,MS1 ,ML1

∑
ml,ml′ ,μ

a∗
MCJM

LMLSMS

×GSL
S1L1

C
LML

L1ML1 lml
C

SMS

S1MS1
1
2 μ

〈lml|tpq |l′ml′ 〉,
(A3)

where 〈lml|tpq |l′ml′ 〉 = C
lml

l′ml′pq〈l||tpq ||l′〉/
√

2l + 1 and
〈l||tpq ||l′〉 is the reduced matrix element.

Substituting Eq. (A3) into Eq. (A2) we obtain

〈g|{d1 ⊗ Ct }nm|g〉
= −en

∑
Cnm

1νtqC
lml

l′ml′ 1νC
l′ml′
lm′

l tq
a∗

MaM ′CJM
LMLSMS

CJM ′
LM ′

LSMS

×C
LML

L1ML1 lml
C

LM ′
L

L1M
′
L1

lm′
l

(
GSL

S1L1

)2 〈l||r1||l′〉〈l′||Ct ||l〉√
(2l + 1)(2l′ + 1)

.

(A4)

According to the theory of angular momentum,15 the reduced
matrix elements in Eq. (A4) can be rewritten as 〈l||r1||l′〉 =

rll′
√

2l′ + 1Cl0
l′010 and 〈l′||Ct ||l〉 = (rt )ll′

√
2l + 1Cl′0

l0t0, where
(rt )ll′ = 〈l|rt |l′〉 are the radial integrals. Summing up the first
three factors in Eq. (A4) over ν, q, and ml′ results in (see
Ref. 15)∑

νqml′

Cnm
1νtqC

lml

l′ml′ 1νC
l′ml′
lm′

l tq

= (−1)n
√

(2n + 1)(2l′ + 1)Clml

lm′
lnm

{
t 1 n

l l l′

}
,

where { t 1 n

l l l′
} are the 6j symbols with even index n.

Introducing the coefficient,

A(ll′,tn) = −erll′
Cl0

l′010C
l′0
l0t0

Cl0
l0n0

{
t 1 n

l l l′

} √
(2l′ + 1)(2l + 1),

and substituting Eq. (A1) into Eq. (A2) we arrive at
the contribution of an ion to the magnetoelectric opera-
tor projected onto the space of the ion ground multiplet
functions,

Hme = 2
∑
μtτ

∑
nm

(−1)μE−μBt
τA(ll′,tn)W−1

l′ Cnm
1μtτC

n
m. (A5)

The effective magnetoelectric operator can be obtained as
the result of the summation over all indices in Eq. (A5) [see
Eq. (3) in the text].
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