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Theoretical study of the magnetic order in α-CoV2O6
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The electronic structure and magnetic properties of α-CoV2O6 are investigated using density functional
theory calculations including spin-orbit coupling and orbital polarization effects. These calculations reveal a
strong magnetocrystalline anisotropy with a magnetization easy axis close to the c axis. The evaluation of
magnetic couplings on the basis of broken-symmetry formalism suggests the occurrence of an antiferromagnetic
ground-state order where ferromagnetic chains running along b are coupled antiferromagnetically to their nearest
neighbors along a and c. Monte Carlo simulations are finally employed to explore the origins of the 1/3 plateau
observed in the magnetization curves of this compound and to propose a structure for the corresponding state.
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I. INTRODUCTION

Co-based spin-chain compounds often display fascinating
magnetic properties and provide a wide range of real material
systems susceptible to test models developed in condensed-
matter physics. For example, CoNb2O6, a compound built
from weakly coupled ferromagnetic zigzag Co chains, has
recently allowed the experimental observation of a quantum
phase transition of the one-dimensional Ising chain in a
transverse field.1,2 Geometry, magnetic couplings, or single-
ion anisotropy are the fundamental ingredients that eventually
determine the specific magnetic behavior of these compounds.
Their theoretical study is therefore crucial when interpreting
the observed magnetic properties but also for the design of
new systems.

In this paper, we focus our attention on CoV2O6, a
compound that has been the subject of a series of recent
experimental investigations.3–7 This compound crystallizes
under two distinct polytypes,5,8,9 triclinic γ -CoV2O6 and
monoclinic α-CoV2O6. We will restrict our study to the second
phase only, which crystallizes in the branneritelike monoclinic
structure with space group C2/m8 depicted in Fig. 1(a). In this
structure, the formally divalent cobalt ions (3d7) are located
in distorted octahedra sharing edges so as to form linear
chains running along the b crystallographic axis. These chains
are linked together through VO5 square pyramids involving
pentavalent, and therefore nonmagnetic (3d0), vanadium ions.
Experimental investigations of the magnetic properties of
α-CoV2O6 established the basic features of this compound:4,5

(i) a transition to an antiferromagnetic (AF) order occurring
at 15 K, (ii) a large magnetic anisotropy with a magnetic
easy axis oriented along the crystallographic c axis, i.e.,
perpendicular to the chain direction, (iii) a metamagnetic
behavior characterized by two steps in the magnetization curve
delimiting a plateau at 1/3 of the saturation magnetization in
the absence of an obvious triangular or kagome-type lattice,
and (iv) a saturation magnetization of (4.5–4.6)μB/Co2+ ion
indicative of a large orbital contribution.

Most of the classical works10–12 devoted to the study of the
magnetic properties of octahedrally coordinated Co2+ tackled
this problem on the basis of a crystal-field analysis. Under the

combined effect of tetragonal (or trigonal) distortion of the
cubic crystal field and spin-orbit (SO) coupling, the ground
state of the ion appears to be a Kramers doublet located well
below the higher energy levels. This result led to interpretations
of the magnetic properties of compounds containing this ion as
systems of strongly anisotropic effective spin 1/2. Although
this single-ion model is very powerful to justify the Ising nature
typical of Co2+-based compounds, it is obviously unable to
shed light on collective properties such as long-range magnetic
ordering. In this paper, we propose a different approach based
on density functional theory (DFT) calculations beyond stan-
dard generalized gradient approximation (GGA) and Monte
Carlo simulations to investigate the electronic structure and
magnetic properties of α-CoV2O6. In particular, we show that
the effective exchange interactions obtained from the DFT
calculations correctly predict the AF ground state and allow
an understanding of the specific magnetic order corresponding
to the 1/3 magnetization plateau.

II. CALCULATION METHOD

Electronic structure and total energy calculations were
performed using the WIEN2K code.13 This program is an
implementation of the full-potential linearized augmented
plane-wave method based on density functional theory. The
calculations presented hereafter were performed using the
generalized gradient approximation of Perdew, Burke, and
Ernzerhof14 for exchange and correlation and a cutoff parame-
ter RKmax = 7. The radii of the muffin-tin spheres were set to
1.97 a.u. for Co, 1.65 a.u. for V, and 1.47 a.u. for O in all of these
calculations. Spin-orbit coupling, when included, was treated
using scalar-relativistic wave functions in a second-variational
procedure15 and orbital polarization (OP) effects were treated
using the ad hoc correction proposed by Brooks.16

III. RESULTS

A. Electronic structure

The spin-polarized projected density of states (PDOS) for
Co, V, and O atoms in α-CoV2O6 are shown in Fig. 2(a).
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FIG. 1. (Color online) (a) Atomic structure of α-CoV2O6: Red
balls denote oxygen ions, CoO6 octahedra are shown in blue, and
VO5 square pyramids in green. (b) Magnetic couplings in α-CoV2O6.
Intrachain couplings (J1 and J6) are shown in red and interchain
couplings (J2, J3, J4, J5, and J7) are shown in blue. (c) Splitting of
the Co 3d levels illustrating successively the effects of the tetragonal
and orthorhombic distortions of the Co coordination octahedron.

This calculation has been performed for a ferromagnetic
arrangement of the Co magnetic moments and for the
experimental crystal structure. This compound appears as a
semiconductor with a band gap of 0.25 eV occurring between
minority-spin crystal-field-split Co 3d states. The specific
splitting of the one-electron Co 3d orbitals visible in the
PDOS can be understood with the help of Fig. 1(c). A first
dominant tetragonal distortion associated with a contraction
(≈10%) of the bond length between the apical oxygen and the
Co ions is first responsible for the dx2−y2 -(dxz,dyz) and dz2 -dxy

splitting. Then, an orthorhombic distortion in the equatorial
plane further lifts the dxz-dyz degeneracy.

It should be noted here that due to the orthorhombic
distortion, a nonconventional orientation of the local system
of coordinates has been chosen, as indicated in Fig. 1(c).
With this choice, the z axis is slightly off the crystallographic
c axis by an angle of 9◦ in the ac plane. The x direction
is parallel to the chain direction, i.e., the crystallographic
b axis. It can be clearly seen here that Co2+ ions adopt a
high-spin (HS) S = 3/2 electronic configuration, giving rise
to a magnetic moment of 3μB/Co ion or 2.52μB inside the
Co muffin-tin sphere. In our local system of coordinates, the
two occupied minority-spin 3d orbitals are therefore dx2−y2

and dxz. To confirm that this particular orbital occupation
scheme indeed corresponds to the lowest-energy electronic
state of the divalent Co ion in this compound, additional
calculations have been carried out by stabilizing either a second
HS configuration where the minority-spin dyz is occupied
instead of dxz or a low-spin (LS) S = 1/2 configuration. These
configurations are found respectively 140 and 460 meV/f.u.
higher in energy, confirming the ground-state nature of the
electronic structure shown in Fig. 2(a). Calculations performed
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FIG. 2. (Color online) (a) Co, V, and O projected densities of
states calculated in the GGA with the experimental crystal structure
and a ferromagnetic arrangement of the Co magnetic moments in
α-CoV2O6; (b) Co 3d projected density of states calculated with
the GGA + SO + OP decomposed on complex dm orbitals. For
symmetry reasons, a nonconventional orientation of the local system
of coordinates has been chosen.

for an AF arrangement17 of the Co ions in both the HS and
LS states confirm the stabilization of the HS state by the same
energy difference. We thus conclude that the HS state is the
low-energy configuration for the Co ion independently of the
specific magnetic order. As a gap in the electronic DOS is
already found in the GGA, giving an acceptable description
of this magnetic insulator, the calculations shown hereafter
have been carried out using the same exchange-correlation
functional.

B. Magnetic anisotropy

To examine the magnetocrystalline anisotropy of HS Co2+
in this compound, and in particular to determine the magne-
tization easy axis, GGA + SO calculations were carried out.
The DFT total energy dependence upon the Co magnetization
orientation has been systematically calculated in the bc and
the ac planes in the framework of collinear magnetism. These
calculations give an anisotropy of 1.8 meV/Co ion and a
minimum when the magnetization is oriented along the local
z axis, i.e., close to the crystallographic c axis in agreement
with the experiments.4,7 The corresponding orbital magnetic
moment is 0.2μB and parallel to the spin-only magnetic
moment as the 3d electronic shell is more than half filled.
These results can be readily understood by considering the
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Co2+ crystal-field levels shown in Fig. 1(c) and treating the SO
coupling as a perturbation. As the exchange splitting is large
enough to separate majority from minority spins relatively
well in energy, we can consider only the spin-conserving part
of the SO Hamiltonian ĤSO = ξ L̂ · Ŝ in our analysis. For an
orientation of the magnetization along the n(θ,φ) direction (θ
and φ are respectively the polar and azimuthal angles in our
local coordinate system), we therefore write

ĤSO ≈ ξ Ŝn

(
L̂z cos θ + 1

2
sin θ [L̂+e−iφ + L̂−eiφ]

)
. (1)

The leading terms in the second-order nondegenerate per-
turbation expansion imply matrix elements 〈d↓

xz|ĤSO|d↓
yz〉 ∝

i
ξ

2 cos θ and 〈d↓
x2−y2 |ĤSO|d↓

xy〉 ∝ iξ cos θ , maximizing the SO
stabilization for θ = 0◦ and thus fixing the magnetization along
the local z axis. If this approach confirms the orientation
of the experimental magnetization easy axis, it also largely
underestimates the orbital magnetic moment and might be
interpreted as a failure of the GGA to respect Hund’s second
rule for Co in this compound. The addition of a Hubbard U to
the GGA functional does not correct the problem. Indeed this
approach reduces the magnetic anisotropy and consequently
the orbital contribution to the magnetic moment. The reason is
that it increases the gap and consequently the energy difference
between the states responsible for the leading terms in the
perturbative expansion of the spin-orbit interaction. In order
to remedy this deficiency, we used the orbital polarization
correction proposed by Brooks16 as implemented in WIEN2K.
The results confirm the orientation of the magnetic easy
axis but enhance the magnetic anisotropy by two orders of
magnitude, giving an upper estimate of 130 meV/Co ion and
leading to an orbital contribution to the total magnetic moment
of 0.93μB . The large imbalance in the weights of the d±1 and
d±2 complex orbitals associated with the appearance of this
orbital moment can be readily seen in the decomposition of the
Co 3d LDOS presented in Fig. 2(b). Despite a seemingly large
overestimation of the magnetic anisotropy, orbital polarization
corrections nevertheless prove necessary to get an overall
better description of the magnetic behavior of this compound.

C. Magnetic order

To get further insight into the macroscopic magnetic
properties of α-CoV2O6, we evaluated magnetic couplings
in this compound on the basis of broken-symmetry formalism,
i.e., based on the computation of total energies for supercells
characterized by different collinear arrangements of the Co2+
magnetic moments. Taking into account the Ising-type behav-
ior dominating the phenomenology of α-CoV2O6, we modeled
the magnetic excitations in this compound with the following
Hamiltonian:

Ĥ = Ĥ0 − D
∑

i

Ŝ2
iz +

∑
i>j

J
‖
ij ŜizŜjz

+ J⊥
ij (Ŝix Ŝjx + Ŝiy Ŝjy), (2)

where Ĥ0 is the spin-independent part of the Hamiltonian,
Ŝi and Ŝj represent the spin-3/2 operators associated with
sites i and j , respectively, D is the spin anisotropy parameter,
and J

‖,⊥
ij are the anisotropic magnetic couplings to calculate.

In this work, exchange couplings up to the seventh nearest
neighbors, i.e., within a maximum Co-Co distance of 8 Å, have
been calculated and are shown in Fig. 1(b). In order to extract
such a large number of couplings, two distinct supercells A
(1 × 2 × 2) and B (1 × 4 × 1) have been employed.

The expectation value of (2) on the configuration k of the
supercell S = A,B is then

εS
k (n) = εS

0 (n) − 9

4
NDδ‖,n + 9

4

∑
i>j

J n
ij σiσj , (3)

where εS
0 (n) is the spin-independent part of the total energy, n

is the magnetization direction in the local coordinate system,
taken either parallel (‖) or perpendicular (⊥) to the magnetic
easy axis, N is the number of magnetic ions in the supercell,
and σi = ±1.

The two 72-atom supercells contain N = 8 magnetic ions
leading, in each case, to a total of 28 = 256 possible config-
urations. Taking spin reversal and crystalline symmetries into
account, the number of independent configurations reduces
to 22 for the 1 × 2 × 2 supercell and 18 for the 1 × 4 × 1
supercell. The total energies for the magnetic configurations
in the A or B supercells can be written respectively as

εA
k (n) = εA

0 (n) − 9

4
NDδ‖,n + 9

4

[
8J n

6 + cA
1 J n

1

+ cA
2

(
J n

2 + J n
5

) + cA
3 J n

3 + cA
4 J n

4 + cA
7 J n

7

]
(4)

and

εB
k (n) = εB

0 (n) − 9

4
NDδ‖,n + 9

4

[
8J n

3 + cB
1 J n

1

+ cB
2

(
J n

2 + J n
4

) + cB
5 J n

5 + cB
6 J n

6 + cB
7 J n

7

]
. (5)

Supercell A does not allow calculation of J6 and separation
of J2 and J5, and in a similar way, it is not possible to calculate
J3 and to separate J2 and J4 using supercell B. Both supercells
were therefore needed to unambiguously determine all the
seven couplings by minimizing the following error function:18

E(n) =
∑

S=A,B

∑
k

gS
k

[
εS
k (n) − εS

0 (n)

+ 9

4
NDδ‖,n − 9

4

∑
l

cS
l (k)J n

l

]2

, (6)

where gS
k is the degeneracy of the configuration k, i.e., the

number of equivalent configurations. The spin-independent
contributions to the total energy can be calculated as the
weighted average of the calculated energies:

εS
0 (n) = 9

4
NDδ‖,n + 1

2N

∑
k

gS
k εS

k (n), S = A,B. (7)

The resulting fits of the total energies in a GGA + SO + OP
calculation with the magnetization parallel and perpendicular
to the easy axis are shown in Fig. 3. A summary of the
corresponding magnetic couplings is presented in Fig. 4.

Three magnetic interactions dominate the low-temperature
behavior of this compound: a ferromagnetic intrachain inter-
action J

‖
1 = −29.8 K and two AF interchain interactions J

‖
2 =

4.9 K along a and J
‖
3 = 10.6 K along c. The corresponding
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FIG. 3. (Color online) Graphical representation of the results
obtained using the least-squares fit procedure: for each configuration,
the DFT relative energy is represented as a function of the optimized
Ising energy. The best-fit values are shown in the inset. According to
the convention used in Eq. (2), positive couplings correspond to AF
interactions. (a) Magnetization along the easy axis. (b) Magnetization
perpendicular to the easy axis.

magnetic couplings for a direction of the magnetization
perpendicular to the easy axis are systematically weaker.

These calculations lead to two important conclusions. First,
they suggest a collinear AF structure characterized by a
(0,0,1/2) propagation vector as the magnetic ground state for
α-CoV2O6. In this structure, ferromagnetic chains running
along b are coupled antiferromagnetically to the nearest chains
in a and c directions. This magnetic order [see the inset
of Fig. 3(a)] is in agreement with the structure determined
recently17 by neutron diffraction for this compound. Second,
within the specific geometry of this compound, frustration can
occur only in the presence of long-range magnetic interactions

FIG. 4. (Color online) (a) Magnetic couplings computed in
α-CoV2O6 up to the seventh-nearest neighbor for a direction of the
magnetization along or perpendicular to the magnetic easy axis.

beyond third-nearest neighbors, i.e., beyond a Co-Co distance
of 6.6 Å. As shown in Fig. 4, the computed values for these
interactions are negligible with the exception of J

‖
4 = −3.4 K.

As already pointed out,7,19 the interchain interactions J2, J3,
and J4 define a triangular network in a plane perpendicular
to the ferromagnetic chains which could possibly be at the
origin of the magnetization plateau observed for α-CoV2O6.19

This is however based on the assumption that all these
interactions are antiferromagnetic, in contradiction with our
results for J4. However, the weak amplitude of this interaction,
close to the accuracy limit of our method, as well as the
neglect of potentially large magnetoelastic coupling effects,7,17

can reasonably justify the reassessment of J4 to a weak
antiferromagnetic value.

To test this hypothesis, we have used the magnetic couplings
determined by the broken-symmetry procedure with the
exception of J

‖
4 set to 2 K. The system was therefore modeled
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FIG. 5. (Color online) Magnetization curve obtained by Metropo-
lis Monte Carlo calculations. The schematic structures correspond-
ing to antiferromagnetic (M/Ms = 0 for h < hc1), intermediate
(M/Ms = 1/3 for hc1 < h < hc2), and ferromagnetic (M/Ms = 1
for h > hc2) orders are shown in the insets. The crystal is observed
along the chain direction and red (blue) octahedra represent spin-up
(spin-down) magnetic moments.
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with the Hamiltonian

Ĥ =
∑
i>j

jij σiσj − h
∑

i

σi, (8)

where we have chosen |J ‖
1 | as the energy unit, σi = ±1 are

the effective spin-1/2 variables on the Co lattice sites, jij the
reduced magnetic couplings J

‖
i /|J ‖

1 |, and h = gμBH/|J ‖
1 | the

adimensional Zeeman term representing the interaction with
an external magnetic field H oriented along the easy axis.

The magnetization curve obtained from Monte Carlo simu-
lations and the Metropolis algorithm on a system of 720 spins
for a reduced temperature t = 0.67 is shown in Fig. 5. These
results clearly show (i) the presence of the antiferromagnetic
ground-state structure described above for external fields
h < hc1 and (ii) the occurrence of a phase corresponding to
a 1/3 magnetization plateau between critical fields hc1 and
hc2 and characterized by a ↑↑↓ order of the neighboring
chains along a and c. These results are in agreement with
the experimental magnetic structure determined very recently
by Markkula and co-workers.20

IV. SUMMARY

In summary, our calculations show that α-CoV2O6 is
a strongly anisotropic system favoring an orientation of
the spins close to the c axis. Its magnetic interactions are
those of a system of ferromagnetic Ising chains coupled
on a weaker anisotropic (J ‖

2 �= J
‖
3 �= J

‖
4 ) antiferromagnetic

triangular lattice leading simultaneously to the stabilization of
a ground-state antiferromagnetic order and to the occurrence
of an M = 1/3 phase under finite external fields through
global spin flip of ferromagnetic chains. The antiferromagnetic
ground state and our prediction for the M = 1/3 plateau are
in agreement with the magnetic structures determined very
recently by neutron diffraction experiments as reported in
Refs. 17 and 20, respectively.
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Marie Curie, Campus Jussieu, 4 place Jussieu F-75252 Paris Cedex
05, France.
1R. Coldea et al., Science 327, 177 (2010).
2S. Lee et al., Nat. Phys. 6, 702 (2010).
3M. Belaı̈che et al., Physica B 305, 270 (2001).
4Z. He et al., J. Am. Chem. Soc. 131, 7554 (2009).
5M. Lenertz et al., J. Phys. Chem. C 115, 17190 (2011).
6S. A. J. Kimber, H. Mutka, T. Chatterji, T. Hofmann, P. F. Henry,
H. N. Bordallo, D. N. Argyriou, and J. P. Attfield, Phys. Rev. B 84,
104425 (2011).

7K. Singh et al., J. Mater. Chem. 22, 6436 (2012).
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