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Magnetic texture-induced thermal Hall effects
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Magnetic excitations in ferromagnetic systems with a noncollinear ground-state magnetization experience a
fictitious magnetic field due to the equilibrium magnetic texture. Here, we investigate how such fictitious fields
lead to thermal Hall effects in two-dimensional insulating magnets in which the magnetic texture is caused by
spin-orbit interaction. Besides the well-known geometric texture contribution to the fictitious magnetic field in
such systems, there exists also an equally important contribution due to the original spin-orbit term in the free
energy. We consider the different possible ground states in the phase diagram of a two-dimensional ferromagnet
with spin-orbit interaction: the spiral state and the skyrmion lattice, and find that thermal Hall effects can occur
in certain domain walls as well as the skyrmion lattice.
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I. INTRODUCTION

Traditionally, the role of information carrier in spin
and electronic devices is taken by the spin or the charge,
respectively, of the conduction electrons in the system. In
recent years, however, there has been an increasing awareness
that spin excitations in insulating magnets (either magnons
or spinons) may be better suited for this task. The reason
behind this is that these excitations are not subject to Joule
heating. Therefore, the energy associated with the transport of
a single unit of information carried by a magnon (or spinon)
current can be much lower in such insulating systems.1 The
quasiparticle bosonic nature of the magnons, furthermore,
allows in principle to essentially eliminate losses due to
scattering or contact impedances at low temperatures.2

Creation of a magnon current has been shown to be possible
by means of the spin Seebeck effect,3 the spin Hall effect,4

and with high spatial accuracy by means of laser-controlled
local temperature gradients.5 The resulting spin current can
be measured utilizing the inverse spin Hall effect.4,6 It has
been shown that the magnon current can propagate over
distances of several centimeters in yttrium iron garnet (YIG).4

It has recently been shown that it is theoretically possible
to implement the analogs of different electronic components
using insulating magnets.2,7

Hall effects for magnon currents are of interest both from
a fundamental point of view as well as from the point of
view of applications. Even though the physical magnetic field
does not directly couple to the orbital motion of neutral
magnons, certain kinds of spin-orbit interactions can lead
to Hall phenomena similar to those of a charged particle
in a magnetic field. Mechanisms that have been shown to
give rise to nonzero Hall conductances in certain insulating
magnets include coupling of spin chirality to a magnetic field8

and Dzyaloshinskii-Moriya (DM) interaction.9 Of interest for
applications is the fact that Hall effects in insulating magnets
allow one to control the magnon spin current.

Recently, Katsura et al. predicted8 a nonzero thermal Hall
conductivity (see Fig. 1) for the Heisenberg model on the
kagome lattice. The finite conductivity originates from the
fact that the coupling of spin chirality to an applied magnetic
field leads to a fictitious magnetic flux for the magnons

in the specific case of the kagome lattice. Later, Onose
et al. measured9 the thermal Hall effect in the pyrochlore
ferromagnet Lu2V2O7. In this experiment, the combination of
DM interaction and the pyrochlore structure leads to the finite
thermal Hall conductivity.

In those previous studies, the thermal Hall effect was
considered using a quantum-mechanical lattice model as
starting point. The symmetry of the underlying lattice played
a crucial role. We take a different approach and consider
insulating ferromagnets with a noncollinear ground-state
magnetic texture, which we model using a phenomenological
description. It is well known that the effect of the presence
of a noncollinear ground state on the elementary excitations
in a ferromagnet can be captured by introducing a fictitious
electromagnetic potential in the equation of motion for the
magnons.10,11 Spin-orbit interactions generally also contribute
non-Abelian gauge fields into the magnetic Hamiltonian.12

Furthermore, nonlinearized gauge fields for Dzyaloshinskii-
Moriya interaction were derived in Ref. 13 using the CP1

representation. There are, correspondingly, two contributions
to the fictitious electromagnetic potential. The first one
depends only on the equilibrium magnetic texture; the second
depends on the form of the free energy that gives rise to the
noncollinear ground state in the first place, i.e., the contribution
to the free energy due to spin-orbit interaction. Since both
contributions are determined by the spin-orbit interaction, they
will generally be of similar magnitude.

It has been shown that the fictitious electromagnetic
potential couples the motion of magnetic texture and that
of heat currents.14 This coupling reveals itself through local
cooling by magnetic texture dynamics14 and thermally induced
motion of magnetic textures such as domain walls.15,16

This work is organized as follows. In Sec. II we introduce
our system and derive the fictitious electromagnetic vector
potential that acts on the magnons, which turns out to include
an often-overlooked contribution. In Sec. III we derive the
relevant ground-state properties of the different ground states
in the phase diagram of an insulating ferromagnet with nonzero
DM interaction. In Sec. IV we calculate the band structure of
one of the ground states, the triangular skyrmion lattice, and
calculate its thermal Hall conductivity.
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FIG. 1. (Color online) Pictorial representation of the thermal spin
Hall effect. A temperature difference �T applied to a sample leads to
a finite heat current. Since the heat current is carried by the magnons
in the system, the fictitious magnetic field that magnons experience
due to a nontrivial magnetic ground state will lead to a finite thermal
Hall conductivity.

II. MAGNONS IN THE PRESENCE
OF MAGNETIC TEXTURE

We consider a two-dimensional nonitinerant ferromagnet
in the x-y plane with spatially varying and time-dependent
spin density sm(r,t). The spin density is related to the
magnetization M(r,t) as sm(r,t) = M(r,t)/γ , where γ is the
gyromagnetic ratio (γ < 0 for electrons). The magnitude s of
the spin density is assumed to be constant, and m(r,t) is a unit
vector. The system is described by the Lagrangian10,11

L =
∫

d2r[D(m) · ṁ − F (m,∂j m)]. (1)

Here D = sh̄(nD × m)/(1 + m · nD) is the vector potential
corresponding to the Wess-Zumino action with an arbitrary
nD pointing along the Dirac string. F (m,∂j m) is the magnetic
free energy density of the system, which we assume to be of
the form (here j = x,y; double indices are summed over)

F (m,∂j m) = J s

2
(∂j m)2 − Msm · H + sF�(m,∂j m). (2)

Here J is the strength of the exchange interaction, Ms = γ s

is the saturation magnetization, H the external magnetic field
(which we will always assume to be in the z direction), and
F�(m,∂j m) describes terms due to broken symmetries. For
isotropic ferromagnets in the exchange approximation, the
leading-order terms in the free energy are quadratic in the
texture [first term in Eq. (1)]. Breaking inversion symmetry
by spin-orbit interactions, while still retaining isotropy in the
x-y plane, allows us to construct terms that are first order in
texture. These terms are given by

F�(m,∂j m) = �Rmz∇ · m + �DMm · (∇ × m). (3)

We defined ∇ = ∂xx + ∂yy, where x,y are unit vectors. The
first term is due to structural inversion symmetry breaking and
hence is anisotropic in the z direction. Such terms occur in
systems with finite Rashba spin-orbit interaction17 or on the
surface of a topological insulator.18 The second term describes
DM interaction,19 which originates from the breaking of bulk
inversion symmetry and is therefore isotropic. We note that
the two terms in Eq. (3) are equivalent (up to an irrelevant
boundary term) under a simple rotation around the z axis in

spin space. Since such a rotation does not have any additional
effect on the equation of motion for the magnetization, Eq. (4),
we can always absorb the term proportional to �R in the term
proportional to �DM. We will therefore put �R to zero in the
remainder of this work. For simplicity, we have ignored a term
−κm2

z that would describe easy axis anisotropy, and a term
−Msm · Hm/2, where Hm describes the magnetic stray field,
in Eq. (2).

Substitution of Eq. (1) in the Euler-Lagrange equation leads
to the Landau-Lifshitz equation

sh̄ṁ − m × δmF(m,∂j m) = 0, (4)

where F(m,∂j m) is the total magnetic free energy of the
system. We split the magnetization m in a static equilibrium
magnetization m0 and small fast oscillations δm (spin waves)
around the equilibrium magnetization. To lowest order in δm
the two are orthogonal. In a textured magnet m0 = m0(r),
which makes finding the elementary excitations a nontrivial
task. To circumvent this issue we introduce a coordinate
transformation m′(r) = R̂(r)m(r), where R̂(r) is such that the
new equilibrium magnetization m′

0 is constant and parallel to
the z axis. In this coordinate frame the spin waves are in the
x-y plane.

The 3 × 3 matrix R̂ describes a local rotation over an
angle π around the axis defined by the unit vector n =
[z + m0]/[2 cos(θ/2)]. Here, θ is the polar angle of m0,
and z is a unit vector. Using Rodrigues’ rotation formula,
we find R̂ = 2nnT − 1̂. The effect of the transformation
to the new coordinate system is that we have to use the
covariant form of the differential operators, ∂μ → (∂μ + Âμ),
with Âμ = R̂−1(∂μR̂), in the Landau-Lifshitz equation. The
subscript μ describes both time (μ = 0) and space (μ = 1,2)
coordinates.

In the new coordinate system, the Landau-Lifshitz equation
for the free energy Eq. (2) becomes

ih̄ṁ+ = [J (∇/i + A)2 + ϕ]m+. (5)

Here, m± = (δm′
x ± iδm′

y)/
√

2 describes circular spin waves
in the rotated frame of reference. Furthermore, ϕ = m0 ·
H/s + h̄[R̂−1(∂t R̂)]|12, and the components of the vector
potential A are given by Aj = Âj |12. The skew-symmetric
matrices Âj are here defined as Âj = R̂(∂j − ζ Îj )R̂. In the
latter equation we defined ζ = �DM/J , and the matrices

Îx =

⎛
⎜⎝

0 0 0

0 0 −1

0 1 0

⎞
⎟⎠ and Îy =

⎛
⎜⎝

0 0 1

0 0 0

−1 0 0

⎞
⎟⎠ . (6)

We see that the components Aj of the fictitious magnetic vector
potential consist of two contributions. The first comes from
the exchange interaction in the presence of magnetic texture;
the second (texture-independent) part originates from the DM
interaction term in the free energy. While it may be tempting
to neglect the latter contribution, we will show here that it has
important consequences. Indeed, typically both contributions
will be of the same order of magnitude. This is because the
magnetic texture itself is caused by the DM interaction, and
will therefore manifest itself on length scales J/�DM.

We can quantize Eq. (5) by introducing the bosonic creation
operator b† ∝ m−. This quantization works since m′

+ and
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m′
− satisfy approximate bosonic commutation relations in the

limit of small deviations from equilibrium. After quantization,
Eq. (5) can be interpreted as the von Neumann equation
belonging to the Hamiltonian

H =
∫

d2rb†[J (∇/i + A)2 + ϕ]b. (7)

Therefore, the elementary excitations of the system behave
as noninteracting bosonic quasiparticles. The effect of the
smoothly varying equilibrium magnetization is captured by
the inclusion of a fictitious magnetic vector potential A and
electric potential ϕ.

In the derivation of Eq. (5) we have assumed that the
length of a typical wave packet is much smaller than the
spatial extension over which the magnetic texture varies. We
will refer to this as the adiabatic approximation.20 Using this
assumption, we have neglected terms in Eq. (5) that are higher
order in texture. Such terms, which become important at lower
wave vectors, lead to two distinct effects.20 Firstly, a term
−J [(Âx |13)2 + (Âx |23)2 + (Ây |13)2 + (Ây |23)2]/2, which is
quadratic in magnetic texture, has to be added to the fictitious
electric potential ϕ in Eq. (5) at low wave vectors. Secondly,
at low wave vectors one needs to add to the right-hand side of
Eq. (5) a term J [(Âx |13 + iÂx |23)2 + (Ây |13 + iÂy |23)2]m−,
which introduces a finite ellipticity of the magnons.

III. TEXTURED GROUND STATES

In this section we present the different possible ground
states for systems with free energy given by Eq. (2) (with
�R = 0) as a function of the external magnetic field H = Hz.
We also present the fictitious magnetic vector potentials that
find their origin in these textured ground states. It has been
shown13,21 that as the magnetic field H increases from zero,
the ground state of a two-dimensional ferromagnet with spin-
orbit interaction changes from a spiral state for H < Hc1, to a
skyrmion lattice state for magnetic fields Hc1 < H < Hc2, and
finally to the ferromagnetic ground state for H > Hc2. Both
critical fields Hc1 and Hc2 are typically of the order �2

DM/J

(see Refs. 13 and 22). This last observation, in combination
with the adiabatic assumption and the fact that the equilibrium
magnetization is time independent, allows us to neglect the
fictitious electric potential ϕ in Eq. (7). Since the ferromagnetic
ground state has no magnetic texture, it is of no interest for our
purposes. In this section we will therefore derive the properties
of the spiral and skyrmion lattice ground state.

A. Spiral state

Following Ref. 21 we will derive the properties of the spiral
ground state m0(r) of a two-dimensional ferromagnet with DM
interaction. We write m0(r) in the following form:

m0(r) = cos ξ sin θx + sin ξ sin θy + cos θz. (8)

For the spiral state, θ = θ (y) and ξ is a constant. With these
constraints, the free energy becomes a functional that depends
only on θ (y) and ∂yθ (y). Minimizing this functional with
respect to θ (y) gives the following differential equation,

∂2
y θ + α sin θ = 0, (9)

where we defined α = −γH/J . Equation (9) is the equation of
motion for the mathematical pendulum. The general solution
is given in implicit form by the expression∫ θ(y)

0

dθ

2

1√
1 − m2 sin2 θ/2

= 1

2
βy, (10)

where m = 4α/(2α + C) and β = √
2α + C. Alternatively,

we can write θ (y) = 2φ(βy/2,m), where φ(u,m) is the
amplitude of the Jacobi elliptic function. The constant C is the
first constant of integration. To determine it, we use the fact
that θ (y) is a periodic function with period y0. By integrating
the inverse of the first integral ∂yθ of Eq. (9) over one period
we can determine y0 as

y0 =
∫ 2π

0
dθ

1√
2α cos θ + C

. (11)

To fix C, we minimize the average free energy
(1/y0)

∫ y0

0 F (θ,∂yθ ), which leads to the following implicit
expression for C:∫ 2π

0
dθ

√
2α cos θ + C = 2πζ. (12)

The minimization of the average free energy also fixes cos ξ =
1. From this we see that the ground state is a spiral state whose
structure locally resembles a Bloch domain wall, as is expected
for the DM interaction.21 We also note that in the case of zero
magnetic field (α = 0) the spiral state is described by a simple
sinusoid with period y0 = 2π/ζ , whereas for finite magnetic
field the mirror symmetry with respect to the x-y plane is
broken. Equation (12) also puts a constraint on the maximum
value of H for which the spiral state is stable.

Some general observations can be made with regard to the
fictitious magnetic vector potential due to the spiral ground
state. For the ground state Eq. (8) with θ = θ (y) and ξ

constant, the fictitious vector potential is A(y) = ζ sin θ (y)x.
This potential is caused solely by the DM contribution to A;
the geometric texture contribution is zero everywhere. The z

component of the fictitious magnetic field that the magnons ex-
perience is given by Bz(y) = ∇ × A|z = −ζ∂yθ (y) cos θ (y).
It is easily seen that the total fictitious magnetic flux over one
period of the spiral 〈Bz〉 = ∫ y0

0 dyBz(y) = 0. The fictitious
magnetic field Bz(y) has been plotted in Fig. 2 for different
magnitudes of the applied magnetic field H = Hz. Transport
in the presence of a magnetic field that is spatially varying in
one direction and has zero average has been studied extensively
(see Ref. 23 for a recent review). It is well known that these
systems do not display a finite Hall conductivity. However,
such magnetic fields have been predicted to influence the
longitudinal conductance, due to the presence of localized
snake orbits at energies that are low compared to the cyclotron
frequency associated with the amplitude of the magnetic
field.24,25 From our analysis it is also seen that one-dimensional
textures can give rise to a nonzero average fictitious magnetic
flux for certain domain walls, since these consist of only half
a period of the spiral. Hence, such domain walls will display
the thermal Hall effect.

Lastly, we note that a proper statistical mechanical descrip-
tion of the spiral phase in three dimensions (or less) requires the
inclusion of leading-order nonlinearities in the free energy.26
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FIG. 2. (Color online) Fictitious magnetic field due to the spiral
ground state. Parameters are ζ = 70 μm−1, J/(kBε2) = 63 K, and
the interatomic spacing is taken to be ε = 4.5 Å (see Ref. 22). To
make the connection to electromagnetism, we note that a fictitious
field Bz = 2πζ/y0(0) ≈ 5 × 1015 m−2 acting on a spin wave gives
rise to the same magnetic length as a h̄

e
ζ 2 ≈ 3 T magnetic field acting

on a free electron.

The role of those nonlinearities in the thermal Hall physics is
yet to be understood.

B. Skyrmion lattice

For magnetic fields Hc1 < H < Hc2 the ground state
of the two-dimensional ferromagnet with DM interaction
is a skyrmion lattice.22 This triangular lattice has basis
vectors a1 = ax and a2 = (a/2)x + (a

√
3/2)y, and contains

skyrmions with radius R. The size of a single unit cell is
(
√

3/2)a2, where a = 2R. The magnetization m0(r) of a single
skyrmion of radius R centered at the origin is parametrized in
polar coordinates (ρ,φ) by Eq. (8) with θ = θ (ρ) and boundary
conditions

θ (0) = π and θ (R) = 0. (13)

Furthermore, ξ = Nφ − π/2, where N is the charge of the
skyrmion. We will assume N = 1 throughout. The magne-
tization profile can in principle be determined numerically
by minimizing the free energy with the aforementioned
boundary conditions. However, for simplicity we will assume
a linear dependence θ (ρ) = π (1 − ρ/R) for our analysis of
the texture-induced thermal Hall effect.

In polar coordinates the fictitious magnetic vector potential
A(r) due to a single skyrmion centered at the origin is given
by (here 0 � ρ � R and φ is a unit vector)

A(r) =
[

cos θ (ρ) − 1

ρ
− ζ cos θ (ρ)

]
φ. (14)

The z component of the fictitious magnetic field for this vector
potential is given by Bz(ρ) = ρ−1∂ρ(ρAφ). It follows that the
total flux through a unit cell is 〈Bz〉 = 2π

∫ R

0 dρρBz = 4π .
This means that each unit cell contains two magnetic flux
quanta. The nonzero average flux is caused by the texture
contribution to A(r); the DM-interaction contribution averages
to zero. From the fact that the average magnetic flux is
nonzero, it follows that the skyrmion lattice has a nonzero Hall
conductivity. One might then be inclined to take the average
value of the fictitious magnetic field and ignore the spatial

dependence when calculating the thermal Hall conductivity of
the skyrmion lattice. However, we will show shortly that the
spatial variation of the fictitious magnetic field is substantial,
so that we should take both contributions into account in our
analysis.

To illustrate this point, let us consider the situation in
which R = π/ζ . In that case Bz(ρ) = ζ 2 cos θ (ρ). The spatial
variation is therefore large enough that the fictitious field
switches from a negative minimum at ρ = 0 to a positive
maximum at ρ = R. Such large variations have been shown to
have a significant influence on the band structure of magnetic
lattices.27

For what follows, it will be convenient to formally split
the fictitious magnetic vector potential in two parts, A(r) =
A0(r) + A′(r), where A0(r) describes the contribution from
the homogeneous nonzero average fictitious magnetic flux, and
A′(r) the periodic contribution with zero average (we work in
the Landau gauge)

A0(r) = −B0yx,
(15)

A′(r) =
∑
τ,η

[Ax(τ,η)x + Ay(τ,η)y]ei(τk1+ηk2)·r.

Here, B0 = 8π/(
√

3a2) is the average fictitious magnetic field,
and k1 = (2π/a)(x − y/

√
3) and k2 = (2π/a)(2/

√
3)y are the

basis vectors of the reciprocal lattice, such that the periodic
part of the fictitious vector potential satisfies A′(r + a1) =
A′(r + a2) = A′(r). Such spatially varying magnetic fields are
known to give rise to a finite Hall conductivity, even in the
absence of a nonzero average.28

IV. THERMAL HALL CONDUCTIVITY
OF THE SKYRMION LATTICE

Since the magnetic excitations of the skyrmion lattice can
be described by a free bosonic Hamiltonian with a spatially
varying fictitious magnetic field with on average two magnetic
flux quanta per unit cell and the same symmetry as the
skyrmion lattice, the eigenstates of the skyrmion lattice are
magnetic Bloch states. In Sec. IV A we will determine the
excitation spectrum and explicit form of these states. In
Sec. IV B we will show how the thermal Hall conductivity
of the skyrmion lattice is determined by the Berry curvature
of these magnetic Bloch states.

A. Diagonalization

To find the elementary excitations of the skyrmion lattice,
we need to diagonalize the Hamiltonian H in Eq. (7) with the
fictitious magnetic vector potential given in Eq. (14). We do
this by numerically diagonalizing the matrix that results from
rewriting H in the basis of the Landau levels that describe
excitations with the appropriate symmetry in the presence
of the fictitious magnetic vector potential A0(r) only. Our
derivation follows that of Ref. 27, with the difference that
we consider the case with two flux quanta instead of one flux
quantum per unit cell.

The eigenstates of a free system of dimensions L × L

with only a homogeneous magnetic field B0z and without any
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underlying symmetries are given by

ψnkx
(r) = Nn√

L
e−ikxxϕn

(
B

1
2

0 y + B
− 1

2
0 kx

)
, (16)

where Nn = 1√
2nn!

(B0
π

)
1
4 and ϕn(x) = e−x2/2Hn(x), with Hn(x)

the nth Hermite polynomial. The corresponding energies are
En = 2JB0(n + 1/2). To account for the presence of the
triangular lattice and the fact that every unit cell contains
two flux quanta, we need to find the most general linear
combination of eigenstates that satisfies

M̂a1ψnmk(r) = eik1aψnmk(r), M̂a2ψnmk(r) = eik2aψnmk(r).

(17)

Here, k1 and k2 are defined such that (2π/a)k = k1k1 + k2k2.
Furthermore, k is restricted to lie within the first Brillouin
zone. We will discuss the origin of the quantum number m

later. We have to work with magnetic translation operators
M̂a1,2 since the canonical momentum is no longer a good
quantum number in the presence of the vector potential
A0(r). These magnetic translation operators are defined as
M̂a1 = T̂a1 and M̂a2 = exp[−i(4π/a)x]T̂a2 , where T̂a1,2 are the
usual translation operators. The appropriate eigenstates are
then given by

ψnmk(r) =
∞∑

l=−∞
(−1)(l+ m

2 )(l+ m
2 −1)e−i(l+ m

2 )( k1
2 −k2)a

×ψn,−k1−(l+ m
2 ) 4π

a
. (18)

The quantum number m, which in our case can take values 0 or
1, accounts for the fact that in the presence of a natural number
p of flux quanta per unit cell, each magnetic band will split up
in p subbands. These subbands are degenerate for a constant
magnetic field but will generally split for a spatially varying
magnetic field, as we will see later. The set of wave functions
defined in Eq. (18) constitutes a complete orthonormal basis
with triangular symmetry. The eigenfunctions are chosen in
such a way that perturbations in the fictitious magnetic vector
potential that are periodic in the triangular lattice are diagonal
in the momenta k1 and k2.

We are now in a position to calculate the matrix elements
of H with respect to the basis defined by the eigenstates in
Eq. (18). We rewrite H = H0 + H1 + H2, where the subscript
denotes the order in which A′(r) occurs in the respective term.
The matrix elements of H0 are then trivially given by (we have
suppressed the k dependence of the eigenstates in our notation)

〈n′,m′|H0|n,m〉 = 2JB0(n + 1/2)δn,n′δm,m′ . (19)

The matrix elements of H1 are given by

〈n′,m′|H1|n,m〉n′�n

= J
∑
τ,η

δ
(mod2)
m′−m,τB(τ,η)

×
[
Ln′−n

n (zτη) −
(

n + n′

zτη

Ln′−n
n (zτη) − 2n′

zτη

Ln′−n
n−1 (zτη)

)]

×(−1)mηGn′n(τ,η) (20)

and the matrix elements of H2 by

〈n′,m′|H2|n,m〉n′�n

= J
∑

τ ′,η′,τ,η

δ
(mod2)
m′−m,τ ′+τ

× [Ax(τ ′,η′)Ax(τ,η) + Ay(τ ′,η′)Ay(τ,η)]

× (−1)m(η′+η)Gn′n(τ ′ + τ,η′ + η). (21)

We defined the function

Gn′n(τ,η) =
(

n!

n′!

)1/2

(
√

2/B0π )n
′−n

[
i
2η − τ√

3a
− τ

a

]n′−n

× e−zτη/2eπiτη/2eiηk1a/2eiτ (k2a+π)/2. (22)

Furthermore, we defined zτη = (2π/
√

3)(τ 2 − τη + η2). The
function Lα

n(x) is the associated Laguerre polynomial. The
function δ

(mod2)
i,j is defined as δ

(mod2)
i,j = 1 when i = j (mod2),

and δ
(mod2)
i,j = 0 otherwise. The first ten subbands of the band

structure of the skyrmion lattice with parameters 2JB0/kB ≈
50 mK, R = 45 nm, and ζ = 70 μm−1 (similar values to
those found in Ref. 22) are given in Fig. 3. In our numerical
calculation we used the fact that the coupling between two
band decays superexponentially [to be precise, it decays as√

(n!/n′!)], so that only a limited number of bands have to
be taken into account. It is seen that the inclusion of the
spatially varying fictitious magnetic field has a pronounced
effect, leading both to different splittings of the different
subbands, as well as substantial broadening of the subbands.
From Fig. 3 it is seen that the typical level splitting between
magnetic subbands is 50 mK, which sets the temperature scale
on which the system is in the quantum Hall regime. Systems
with larger ratio �2

DM/J will display quantum Hall behavior
at higher temperatures. We note that finite Gilbert damping α

will broaden the different magnetic subbands by an amount
(�ω/ω) = 2α. Eventually this will destroy the visibility of
individual subbands. However, since the Gilbert damping is
around α ∼ 10−3 in a range of different materials, this only
becomes problematic at high magnetic subbands.

FIG. 3. (Color online) Band structure of the skyrmion lattice with
parameters R = 45 nm, ζ = 70 μm−1, and 2JB0/kB ≈ 50 mK. The
labels on the horizontal axis denote (k1,k2), with the wave vectors
normalized to 2π/a.
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We note that within our model we do not find the expected
Goldstone modes associated with the skyrmion lattice.29 We
argue that this is due to our adiabatic assumption, which breaks
down for the smallest wave vectors. Assuming a quadratic
dispersion for the magnons, we can estimate the magnitude
|km| of the characteristic wave vector of the magnons that
make up the lowest magnetic subband as J |km|2 = JB0, which
leads to a typical magnon wavelength λm ∼ a. The wave vector
|km| increases for higher subbands. Since the accuracy of our
model increases with increasing wave vector, our description
improves for higher magnetic subbands.

In the next section we will investigate the effect of the
finite bandwidth of the magnetic subbands on the thermal Hall
conductivity of the skyrmion lattice.

B. Thermal Hall conductivity

It is well known30 that the semiclassical dynamics of a
wave packet in the basis of the magnetic Bloch states unk(r) =
e−ik·rψnk(r) is described by

ṙ = ∂kEn(k) − k̇ × �n(k) and h̄k̇ = 0. (23)

We have assumed here that there are no electric fields present
and that the states unk(r) are the eigenstates of the Hamiltonian
H, including the fictitious magnetic vector potential A(r).
�n(k) is the Berry curvature of the nth magnetic Bloch
band. Since we consider a two-dimensional system, only its z

component is relevant. It is given by

�n(k) = 2Im

[〈
unk(r)

∂kx

∣∣∣∣unk(r)

∂ky

〉]
. (24)

For the skyrmion lattice, the magnetic Bloch states are given
by

unk(r) = e−ik·r ∑
n′,m′

cn
n′m′kψn′m′k(r). (25)

The weights cn
n′m′k follow from the diagonalization performed

in Sec. IV A. It should be noted that every completely filled
subband carries a total Berry curvature that is a multiple of 2π ,
in accordance with the quantization of the Thouless-Kohmoto-
Nightingale-den Nijs (TKNN) invariant.31

Matsumotu and Murakami have shown32 that the thermal
Hall conductivity for a system described by Eq. (23) is given
by

κxy = k2
BT

h̄V

∑
n,k

c2(ρnk)�n(k). (26)

Here c2(ρ) = (1 + ρ)(log 1+ρ

ρ
)2 − (log ρ)2 − 2Li2(−ρ)

describes the effect of the thermal distribution of the
magnons, and ρ(ε) = (expβ(ε−μ) −1)−1 is the Bose-Einstein
distribution function.

Figure 4 shows the Berry curvature for the two highest
magnetic subbands in Fig. 3. Together with the band structure
given in Fig. 3, the Berry curvature completely determines
the thermal Hall conductivity, as can be seen from Eq. (26).
The position and width of the magnetic subbands determine at
which energies states become available for thermal transport;
the Berry curvature determines the extent to which these states
contribute to the thermal Hall conductivity.

FIG. 4. (Color online) Berry curvature of the two highest mag-
netic subbands in Fig. 3 in a single Brillouin zone. The subband
corresponding to the top figure does not carry a net curvature; the
bottom figure carries 2π .

We have shown then that the spatially varying fictitious
magnetic field gives rise to a nontrivial structure of the Berry
curvature as well as a broadening of the magnetic subbands.
As follows from Eq. (26), the combination of these two effects
may be studied experimentally by measuring κxy as a function
of temperature. As the temperature increases, the thermal
distribution of the bosonic magnons broadens, which enables
the higher bands to contribute to thermal transport.

Alternatively, one can probe the chiral subgap edge states
(above the bands whose total TKNN number is odd) directly
by microwave means. The first magnetic subband corresponds
to several gigahertz, which falls within the scope of standard
microwave techniques. Excitation of some of the low-energy
modes of the skyrmion lattice by microwave radiation has
been performed33 and analyzed.34 The magnonic reflectionless
waveguide modes are analogous to those found in photonic
crystals35 and can provide intriguing spintronics applications.
Magnonic edge states have recently been proposed to exist in
YIG without any equilibrium spin texture but with an array of
Fe-filled pillars, in which ellipticity of magnons due to dipolar
interactions can give rise to magnonic bands with a nonzero
TKNN invariant.36

V. CONCLUSIONS

We have studied how fictitious magnetic fields, which
are caused by a textured equilibrium magnetization, lead to
thermal Hall effects in two-dimensional insulating magnets
in which the nontrivial equilibrium magnetization is caused
by spin-orbit interaction. We have given a general expression
for the fictitious magnetic vector potential and found that it
consists of two contributions: a geometric texture contribution
and a contribution due to the original spin-orbit term in the free
energy. We have shown that both contributions are generally
of the same order of magnitude.

We have derived the relevant properties of the two ground
states of interest to us (the spiral state and the skyrmion lattice
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state) in the phase diagram of a two-dimensional nonitinerant
ferromagnet with nonzero Dzyaloshinskii-Moriya interaction.
We have found that a system which has the spiral state as
magnetic ground state does not have a finite thermal Hall
conductivity. However, we predicted that certain domain wall
structures do display thermal Hall effects.

We have numerically diagonalized the Hamiltonian describ-
ing the triangular skyrmion lattice. We found that due to the
spatially varying fictitious magnetic vector potential, the exci-
tation spectrum consists of broadened magnetic subbands. We
have calculated the Berry curvature of the magnetic subbands
and showed that the Berry curvature in combination with the
excitation spectrum completely determines the thermal Hall
conductivity of the skyrmion lattice. At present, we are only

able to capture the contribution to the thermal Hall conductivity
from higher magnetic subbands, as well as thermal- or
microwave transport through the associated edge states. In
order to properly describe the lowest subbands, our model
has to be amended to capture nonadiabatic magnon-transport
effects, in the way described at the end of Sec. II.
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