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Phase-field-crystal study of grain boundary premelting and shearing in bcc iron
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We use the phase-field-crystal (PFC) method to investigate the equilibrium premelting and nonequilibrium
shearing behaviors of [001] symmetric tilt grain boundaries (GBs) at high homologous temperature over the
complete range of misorientation 0 < θ < 90◦ in classical models of bcc Fe. We characterize the dependence
of the premelted layer width W as a function of temperature and misorientation. In addition, we compute the
thermodynamic disjoining potential whose derivative with respect to W represents the structural force between
crystal-melt interfaces due to the spatial overlap of density waves. The disjoining potential is also computed by
molecular dynamics (MD) simulations, for quantitative comparison with PFC simulations, and coarse-grained
amplitude equations (AE) derived from PFC that provide additional analytical insights. We find that, for GBs over
an intermediate range of misorientation (θmin < θ < θmax), W diverges as the melting temperature is approached
from below, corresponding to a purely repulsive disjoining potential, while for GBs outside this range (θ < θmin

or θmax < θ < 90◦) W remains finite at the melting point. In the latter case, W corresponds to a shallow attractive
minimum of the disjoining potential. The misorientation range where W diverges predicted by PFC simulations
is much smaller than the range predicted by MD simulations when the small dimensionless parameter ε of the
PFC model is matched to liquid structure factor properties. However, it agrees well with MD simulations with
a lower ε value chosen to match the ratio of bulk modulus and solid-liquid interfacial free energy, consistent
with the amplitude-equation prediction that θmin and 90◦ − θmax scale as ∼ ε1/2. The incorporation of thermal
fluctuations in PFC is found to have a negligible effect on this range. In response to a shear stress parallel to
the GB plane, GBs in PFC simulations exhibit coupled motion normal to this plane or sliding. Furthermore,
the coupling factor exhibits a discontinuous change as a function of θ that reflects a transition between two
coupling modes. Sliding is only observed over a range of misorientation that is a strongly increasing function of
temperature for T/TM � 0.8 and matches roughly the range where W diverges at the melting point. The coupling
factor for the two coupling modes is in excellent quantitative agreement with previous theoretical predictions
[Cahn, Mishin, and Suzuki, Acta Mater. 54, 4953 (2006)].
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I. INTRODUCTION

Grain boundaries (GBs) strongly influence the mechanical
behavior and other materials properties. For this reason,
they have been widely studied both experimentally1 and
computationally2 for decades. At high homologous temper-
ature, GBs can display pronounced disorder, manifested in
the most extreme case by the formation of nanometer-scale
intergranular films with liquid-like properties. The formation
of those films below the bulk melting point, typically referred
to as GB premelting, can dramatically reduce shear resistance
and lead to catastrophic materials failure. This phenomenon
is of interest for predicting the formation of solidification
defects associated with the formation of those intergranular
films, which can lead to hot cracking during the late stages
of solidification,3–5 and more generally for understanding the
microstructure and mechanical behavior of structural alloys at
high homologous temperature.

GB premelting has been widely studied experimentally6–16

as well as theoretically. Theoretical approaches include
discrete lattice models17 and molecular dynamics (MD)

simulations,18–23 as well as conventional phase-field
models,24–27 which either exploit an orientational order
parameter24,25 or multiple phase-fields26,27 to distinguish
between grains, and the phase-field-crystal (PFC) method,28,29

which resolves the crystal density field on an atomic scale
and hence naturally models crystal defects such as isolated
dislocations and GBs.

Two central issues in GB premelting have been the
determination of the premelted layer width W and the
quantification of the fundamental forces that control this
width. It has been generally difficult to address those issues
experimentally due to the challenges inherent in observing
internal materials interfaces such as GBs. Limited observations
to date support the existence of a nanometer-thick premelted
layer in pure materials a few degrees below the bulk melting
point, and there is more ample evidence for premelting in
alloys. More definitive insights into those issues have been
provided by recent PFC29 and MD simulation21,22 studies
that have characterized quantitatively the structural forces due
to the overlap of density waves underlying GB premelting.
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Quantification of those forces has been obtained by computing
the “disjoining potential” V (W ) defined through the excess
Gibbs free energy per unit of grain boundary area

Gexc(W,T ) = �G(T )W + 2γsl + V (W ), (1)

where �G = Gs − Gl is the bulk Gibbs free energy difference
between liquid [Gl(T )] and solid [Gs(T )], and γsl is the
solid-liquid interfacial free energy. With this definition, V (W )
represents the part of this excess due to the overlap of
crystal density waves from the two grains on each side of the
GB. Hence the derivative −dV (W )/dW measures the force
between crystal-melt interfaces due to this overlap, which can
be either repulsive or attractive depending on whether the sign
of −dV (W )/dW is positive or negative, respectively. It is
worth noting that the disjoining potential can be defined in
different thermodynamic ensembles. While Eq. (1) defines it
in the Gibbs ensemble for MD simulations, we shall also use
the grand canonical and canonical ensembles for PFC and
amplitude equation simulations, respectively.

In the simplest formulation of the disjoining potential, W

can be viewed as the width of a liquid layer sandwiched
between two atomically sharp solid-liquid phase boundaries.3

Furthermore, V (W ) is assumed to have a simple exponentially
decaying form (see, e.g., Ref. 30)

V (W ) = �γ exp(−W/δ), (2)

where �γ = γgb − 2γsl is the difference between the GB
energy (γgb) and the excess free energy of two separated
solid-liquid interfaces (2γsl). Substitution of this form into
Eq. (1) and minimization of Gexc(W,T ) with respect to W

predicts that, for �γ > 0, the GB is “dry” (W = 0) up to
a bridging temperature Tb < TM beyond which W increases
and diverges logarithmically at the melting temperature TM ,
while for �γ < 0, the GB remains dry up to a superheated
temperature T ∗ > TM ; for T > T ∗, the dry GB state becomes
thermodynamically unstable and the solid melts completely.

Recent PFC29 and MD studies21,22 have shed light on
several important aspects of the disjoining potential and GB
premelting that are not predicted by this simple model. First,
while V (W ) is indeed found to be purely repulsive for some
high-energy GBs, with a form that can be approximately fitted
by Eq. (2),21,29 it is not purely attractive (i.e., dV (W )/dW > 0
for all W ) for lower energy GBs. For the latter GBs, V (W )
exhibits a long-range attractive part, due to the overlap
of the decaying tails of crystal density waves from each
grain, as qualitatively predicted by Eq. (2), but also a short-
range repulsive part associated with the formation energy of
crystal defects (e.g., dislocations for low-angle GBs) when
W becomes comparable to the lattice spacing.29 As a result,
for GBs where W does not diverge at TM , V (W ) generically
exhibits a minimum, which implies that the premelted layer
width remains finite at the melting point. Importantly, this
nanometer-scale width represents a compromise between the
long-range-attractive and short-range-repulsive parts of the
disjoining potential that are both structural in nature, since
they involve the decaying tails of the crystal density field and
crystal-defect formation energy, respectively.

More generally, V (W ) also contains an attractive part due to
London dispersion forces that are not accounted for in PFC and

MD simulations, but play an important role in other systems
such as ceramic materials.31 However, in metallic systems, dis-
persion forces can be estimated to only contribute an attractive
tail to V (W ) whose magnitude is less than a mJ/m2 for W on
the nanometer scale. In contrast, MD computations of V (W ) in
pure Ni21,22 show that V (W ) has a magnitude of tens of mJ/m2

for W in this same range [consistent with the prediction of
Eq. (2) in a purely repulsive case]. Hence, GB premelting
appears clearly dominated by structural forces in metallic
systems, as further supported by the present study in pure Fe.

Recent PFC29 and MD23 studies have also shed light on the
condition under which a GB will be “wet” (with a diverging
W ) or “dry” (with a finite W ) at the melting point (neglecting
dispersion forces). The classic wetting condition �γ = γgb −
2γsl > 0 turns out to give a grossly inaccurate prediction when
a low-temperature GB energy is used to compute γgb. This
inaccuracy originates from the fact that the GB energy at the
melting point γgb(TM ) is generally significantly smaller than
at low temperature, with a large part of the decrease due to
the elastic softening of the material (decrease of the elastic
constants) at high homologous temperature.29 Hence, a more
accurate prediction of when a GB will be wet or dry has been
obtained in PFC simulations by using the wetting condition
�γ > 0 in conjunction with a value of γgb(TM ) that takes into
account this elastic softening.29 The extension of this approach
to MD simulations of Fe for symmetric [001] tilt GBs has
yielded reasonably good predictions of which GBs will be fully
wet or dry over a complete range of misorientation.23 This
study also associated departures from this prediction to the
existence of a dislocation-pairing transition, which provides
an additional means for the GB to lower its free energy, distinct
from elastic softening.

The formation of an integranular liquid-like layer would
be expected physically to lead to dramatic decrease of shear
resistance of a wet GB, and hence relative sliding of the
two grains when a shear stress is applied parallel to the
GB plane. In contrast, a low-angle dry GB with intact solid
bridges in between isolated dislocations with premelted cores
would be expected to support shear more like a static solid.
However, both theoretical32–36 and experimental37–39 studies
over the last decade have shown that a dry GB generically
moves normal to itself under an applied shear stress. This
motion coupled to shear, commonly referred to as “coupled
motion”, is characterized by a relationship v‖ = βvn between
the translation velocity of the two grains parallel to the
GB plane, v‖, and the GB velocity normal to this plane,
vn. For symmetric tilt GBs, analytical predictions for the
coupling factor β(θ ) (where θ is the misorientation) based
on geometrical arguments have been validated by both MD
simulations33 and experiments.37,38

An important question for mechanical behavior at high
homologous temperature is when will a GB exhibit coupled
or sliding motion. An MD study of symmetric tilt GBs in pure
Ni33 showed that the range of misorientation where sliding
is observed increases close to the melting point, consistent
with the view that the formation of an intergranular liquid-like
film favors sliding over coupling. However, a recent combined
PFC and MD study36 also showed that asymmetrical GBs can
exhibit sliding unrelated to premelting, so that the transition
from coupling to sliding is generally more complex.
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In this paper, we investigate GB premelting and shearing
and their relationship using the PFC method.40–46 We use the
simplest PFC model40,41 with the same free energy function
as the Swift-Hohenberg model of pattern formation,47 which
favors hexagonal and bcc ordering in two and three dimensions
(2D and 3D), respectively. This model can be interpreted43

as a considerably simplified version of classical density
function theory (DFT)48–53 where the crystal density field is
dominated by the set of primary reciprocal lattice vectors.
With suitable choices of parameters for Fe (see Ref. 44),
this model has been shown to predict reasonable values of
solid-liquid interfacial energy44,54 and GB energies,46 despite
the uncontrolled truncation of many other sets of reciprocal
lattice vectors. It has also proven capable of reproducing
a subtle dislocation-pairing GB structural transition at high
homologous temperatures,23 previously evidenced in a 2D
PFC study of GB premelting,29 and also observed in MD
simulations.23 However, the only two PFC studies of GB
premelting to date have remained qualitative.28,29 The study of
Berry et al.28 in 3D did not compute the disjoining potential and
was not carried out for parameters of Fe. The one of Mellenthin
et al.29 computed this potential, revealing the existence of a
shallow minimum for dry boundaries, but was limited to 2D
hexagonal ordering. In addition, PFC studies of GB shearing
have only been carried out recently for 2D square ordering.36

Here we compute quantitatively the disjoining potential
for [001] symmetric tilt grain boundaries over the complete
range of misorientation 0 < θ < 90◦ and also study quantita-
tively the response to an applied shear stress, distinguishing
between regimes of coupling and sliding as a function of
θ and temperature. We also investigate the role of thermal
fluctuations on the disjoining potential by carrying out
PFC simulations without and with the addition of Langevin
noise that is uncorrelated in space and time. Following the
standard approach, the magnitude of this noise is fixed by
the fluctuation-dissipation theorem, and we also introduce a
short-wavelength cutoff of this noise, which is shown to be
necessary to avoid unphysical divergences. To benchmark our
results, we compare the disjoining potentials computed by
PFC and MD simulations. The MD simulations are carried
out using the same EAM potential55 that was previously
used to calibrate PFC model parameters for Fe.44,45,54 With
appropriate rescaling of length and energy, the PFC model
can be expressed in a form that involves a single small
dimensionless parameter ε. In the context where PFC is derived
from DFT, ε is uniquely determined by liquid-structure factor
properties.44,45,54 More generally, decreasing this parameter
makes the freezing transition more weakly first order and
increases the width of the solid-liquid interface in units of
lattice spacing. To gain additional insights into the role of
this parameter, we also compute the disjoining potential using
amplitude equations.56–63 These equations can be formally
derived from the PFC model in the small ε limit using
similar multiscale expansions introduced previously to analyze
continuum models of pattern formation.64–71 While amplitude
equations have recently been shown to break down for high
angle GBs because of issues related to frame invariance,63

they are asymptotically exact for small ε and low angle GBs.
Hence, in the present context, they allow us to derive scaling
laws for the range of misorientation over which GBs exhibit

a diverging liquid-layer width. Here we report amplitude-
equation results that pertain to the numerical computation of
disjoining potentials and the derivation of this scaling law.
In a companion paper to this one, we present the results of
a more in depth analytical and numerical amplitude-equation
study of disjoining potentials. In this paper, we also treat the
case (analogous to the computation of γ surfaces) where two
crystals of the same orientation are translated from each other
in the plane of the interface.72

The rest of this paper is organized as follows. In Sec. II,
we write down the PFC model and motivate the necessity
of introducing a short-wavelength cutoff in the Langevin
noise with a short calculation of the renormalization of the
free energy of the liquid state. In Sec. III, we write down
the amplitude equations and relations that connect them to the
PFC model. In Sec. IV, we then discuss the methodology to
compute the disjoining potential with the PFC model without
and with fluctuations and in MD simulations. The same
methodology developed in Refs. 21 and 22, which relates the
disjoining potential V (W ) to the probability density P (W,T )
of width fluctuations at different temperatures close to the
melting point, is used for both MD and PFC simulations
with noise. PFC simulations without noise follow the same
methodology developed in Ref. 29 using the grand canonical
ensemble appropriate for PFC. In Sec. V, we then present the
numerical results for disjoining potentials computed with the
PFC approach without and with fluctuations, MD simulations,
and amplitude equations, and we derive a scaling law for the
critical angle below (or above) which a GB is dry or wet. Next,
in Sec. VI, we present the PFC results for GB shearing. Our
results are then summarized in Sec. VII.

II. PFC MODEL

A. Basic equations

We use the simplest version of the PFC model40,41 with the
same free-energy functional as the Swift-Hohenberg model of
pattern formation,47 which is defined by

F =
∫

d�r
(

φ

2

[
ā + λ

(
q2

0 + ∇2
)2]

φ + g
φ4

4

)
, (3)

where φ is a dimensionless measure of the crystal density
field. This free energy favors bcc ordering in 3D and has been
shown to predict reasonably well the solid-liquid interfacial
free energy and its anisotropy as compared to MD simulations
for parameters of Fe.44

In order to minimize the number of relevant parameters, we
introduce the scalings

ε = − ā

λq4
0

, (4)

�r ′ = q0�r, (5)

ψ =
√

g

λq4
0

φ, (6)

F = g

λ2q5
0

F , (7)
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leading to the dimensionless free-energy functional,

F =
∫

d�r
(

ψ

2
[−ε + (∇2 + 1)2]ψ + ψ4

4

)
, (8)

where we have dropped the prime on �r ′, so that �r denotes the
dimensionless position vector hereafter.

We use a nonconserved dynamics of the form

∂ψ

∂t
= −δ�

δψ
+ η, (9)

where � = F − μ
∫

d�r ψ is the grand potential, μ is the
constant chemical potential, and η is a Langevin noise that
is uncorrelated in space and time with zero mean,

〈η(�r,t)〉 = 0, (10)

and variance

〈η(�r,t)η′(�r ′,t ′)〉 = �δ(�r − �r ′)δ(t − t ′), (11)

where

� = 2kBT g

λ2q5
0

, (12)

measures the noise strength in our dimensionless PFC units.
In simulations without noise, η is set to 0.

While the present study could be equivalently carried out
using the standard form of the PFC dynamics that conserves
ψ ,40,41 we have found it useful to work in the grand canonical
ensemble where μ plays an analogous role to temperature in
the Gibbs ensemble in which the disjoining potential is usually
defined via Eq. (1). We can then use thermodynamic relations
to relate results in those two ensembles.

The higher order spatial derivatives make the PFC equations
stiff in real space. We therefore conduct our simulations in
spectral space, as originally presented in29 with the details for
the addition of noise presented in Appendix A 1.

To simulate GB shearing, we stay in the grand canonical
ensemble, but use the modified PFC model with inertia (i.e.,
with an additional ∂2ψ/∂t2 term)73

∂2ψ

∂t2
+ α

∂ψ

∂t
= − δF

δψ
+ μ, (13)

which has the advantage of quickly relaxing the elastic field via
propagative phonon-like modes, as opposed to purely diffusive
modes. This allows us to shear the crystal at velocities much
faster than those we could use with the standard diffusive
dynamics. Equation (13) is simulated with a modified spectral
scheme presented in Appendix A 2.

B. Short-wavelength noise cutoff

In this section, we examine how to choose the short-
wavelength (high-k) cutoff of the Langevin noise in the PFC
model. Previous studies of Langevin noise in PFC have used
such a cutoff to carry out simulations.74–77 The issue of
whether introducing noise may lead to a double counting
of fluctuations has often been discussed. On the one hand,
the free-energy functional of classical DFT, or its simplified
version in PFC, already represents a mean-field average of
atomic scale fluctuations. Thus adding back fluctuations would
appear to be double counting. However, without the addition

of noise, dynamical DFT or PFC simulations do not reproduce
long-wavelength hydrodynamic fluctuations, e.g., capillary
fluctuations of the solid-liquid interface,78 which are present
in a real system. Hence, in situations where those fluctuations,
which are not double counted, are of interest, it makes sense
to add noise with a short-wavelength cutoff to avoid double
counting short-wavelength fluctuations already incorporated
in the DFT or PFC free-energy functional.

In general, the magnitude of the noise is set by the
fluctuation-dissipation theorem. However, the choice of
the cutoff between not-double-counted long-wavelength and
double-counted short-wavelength fluctuations contains some
degree of arbitrariness. A common choice is to cut off the
noise on the lattice scale, which is equivalent to choosing the
maximum wave vector of the noise kmax of order unity in
our dimensionless units, where length is measured in units
of q−1

0 . To make this choice somewhat more precise, we
compute here explicitly how the noise renormalizes the grand
potential (Landau free energy) of the liquid. This renormalized
noise-induced excess potential is found to diverge ∼k3

max. We
then compute the value of kmax at which this excess potential is
equal to the barrier height of the double-well potential between
solid and liquid of the noiseless PFC. This value sets an upper
bound on kmax, beyond which the noise is too strong and
essentially destroys solid-liquid coexistence.

To compute the renormalized grand potential, we substitute
ψ = ψ̄l + δψ into Eq. (8) and expand to quadratic order the
excess �� ≡ �(η �=0) − �(ψ̄l), which is the difference between
the grand potential of a liquid with density fluctuations driven
by the Langevin noise and a liquid of constant density ψ̄l . Since
μ

∫
d�r δψ = 0 gives no contribution, this excess is given by

�� =
∫

d�r δψ(�r)

2

[−ε + 3ψ̄2
l + (∇2 + 1)2

]
δψ(�r)

=
∫

d�k
2(2π )3

γ (k)δψ̃(�k)δψ̃(−�k), (14)

where we have defined γ (k) ≡ −ε + 3ψ̄2
l + (1 − k2)2 and the

Fourier transforms

δψ̃(�k) =
∫

d�r δψ(�r)e−i�k·�r , (15)

δψ(�r) = 1

(2π )3

∫
d �k δψ̃(�k)ei�k·�r . (16)

Next, the “renormalized” excess grand potential is the
equilibrium statistical average of �� given by

〈��〉eq =
∫

d�k
2(2π )3

γ (k)〈δψ̃(�k)δψ̃(−�k)〉eq . (17)

The correlation function 〈δψ̃(�k)δψ̃(−�k)〉eq is readily obtained
by linearizing Eq. (9) around the liquid state with the
substitution ψ(�r,t) = ψ̄l + δψ(�r,t) and Fourier transforming
the resulting equation, which yields

∂t δψ̃(�k) = −γ (k)δψ̃(�k) + η̃(�k,t). (18)

Equation (18) has the solution

δψ̃(�k,t) =
∫ t

0
dτ e−γ (k)(t−τ )η̃(�k,τ ). (19)
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Substituting this form into Eq. (17) and using the Fourier
transform of Eq. (11),

〈η̃(�k,t)η̃′(�k′,t ′)〉 = �(2π )3δ(�k + �k′)δ(t − t ′), (20)

we obtain

〈δψ̃(�k,t)δψ̃(�k′,t)〉 = (2π )3�

2γ (k)
(1 − e−2γ (k)t )δ(�k + �k′), (21)

and thus in the equilibrium long-time limit (t → ∞)

〈δψ̃(�k)δψ̃(�k′)〉eq = (2π )3�

2γ (k)
δ(�k + �k′). (22)

Substituting the above result into Eq. (17), we obtain the final
form of the excess liquid grand potential due to noise-induced
density fluctuations,

〈��〉eq = 4π�V

4(2π )3

∫ kmax

0
k2dk = 4π�V

12(2π )3
k3

max. (23)

Equation (23) shows that the renormalized grand potential of
the liquid has an ultraviolet divergence that requires keeping
kmax finite. Next, to estimate what this cutoff should be, we
compare 〈��〉eq to the barrier height of the double-well
potential between solid and liquid. To compute the latter, we
start from the expression

�� ≡ �s − �l, (24)

where

�l/V = (−ε + 1)
ψ̄2

l

2
+ ψ̄4

l

4
− μψ̄l, (25)

and �s/V is obtained by substituting into Eq. (8) the form for
a bcc crystal density field,44

ψ(�r) − ψ̄ = ε1/2
∑

i

Aei�ki ·�r = 4ε1/2A(cos qx cos qy

+ cos qx cos qz + cos qy cos qz), (26)

where �ki are the set of 12 [110] bcc principal reciprocal lattice
vectors [cf. Eq. (34) below] and q = 1/

√
2. This yields the

expression

�s/V = (−ε + 1)
ψ̄2

s

2
+ ψ̄4

s

4
− μψ̄s

− 6ε2A2 + 18εψ̄2
s A2 + 48ε3/2ψ̄sA

3 + 135ε2A4.

(27)

Expanding ψ̄s(l) in powers of ε1/2 as ψ̄s(l) = ψs(l)0ε
1/2 +

ψs(l)1ε + · · · and using the results (see Sec. III A of Ref. 44)
that ψs(l)0 ≡ ψc = −√

45/103 and ψs(l)1 = 0, we obtain the
expression for the grand potential difference between solid
and liquid per unit volume,

�� = ε2Vfdw(A) + O(ε3), (28)

where

fdw(A) = −6A2 + 18ψ2
c A2 + 48ψcA

3 + 135A4 (29)

has the shape of a double-well potential with minima at Al = 0
and As = 8/(3

√
515) corresponding to the liquid and solid

states, respectively, and with a maximum at Ab = 4/(3
√

515)
corresponding to the free-energy barrier between those two

TABLE I. Calculated constants and MD input parameters from
the MH(SA)2 potential.55 The “Original” values correspond to
ε = 0.0923 while the “Rescaled” values correspond to ε = 0.0329.
Calculated constants are derived in Appendix C.

Quantity Original Rescaled Unit

n0 0.0765 0.0765 Å−3

us 0.72 0.72
q0 2.985 2.985 Å−1

ā −2.136 −1.274 eV Å3

λ 0.291 0.488 eV Å7

g 9.705 258.646 eV Å9

ε 0.0923 0.0329
S(q0) 3.01 5.04
C ′′(q0) −10.40 −17.43 Å2

L 1.968 × 109 1.968 × 109 J/m3

states. Next, equating the renormalized excess grand potential
of the liquid and the height of the double-well potential,
〈��〉eq = ε2Vfdw(Ab), and using Eqs. (12) and (23) together
with the expressions for g, λ, and ε given in Appendix C, we
obtain

k3
max = 3(2π )2B

√
−S(q0)C ′′(q0)3u2

s n0

16
√

2
fdw(Ab), (30)

where we have defined the dimensionless constant

B ≡
√

3ψ2
c − 1(− 2

15ψc + 1
15

√
5 − 11ψ2

c

)2 . (31)

Finally, evaluating fdw(Ab) using Eq. (29) and using the
parameters given in Table I, we find that kmax ≈ 0.918. The
shortest wavelength of the noise converted back to dimensional
units is defined as

λmin ≡ 2π/(q0kmax), (32)

which implies that λmin ≈ 0.77a for kmax ≈ 0.918, where the
lattice spacing a = 2π

√
2/q0 for a bcc lattice. Using the

parameters from Table I, a = 2.98 (Å). Cutting off the noise
at this length scale ensures that the noise does not wash
out the barrier between the solid and liquid states. Details
of the noise discretization and discussed in Appendix A 1, and
results for two different choices of λmin are discussed below.

III. AMPLITUDE EQUATIONS

As a complementary approach we use here an amplitude
equations (AE) model which is derived via a multiscale ex-
pansion from the three-dimensional phase-field-crystal model,
Eq. (8), and use ε as a small parameter in the regime of the
phase diagram which describes the coexistence between the
bcc and the homogeneous (melt) phase.

As in classical density-functional theory (DFT), the spatial
variations of the density field, δψ(�r), are expanded as a sum
of density waves

δψ(�r) =
∑

j

u(j )ei�k(j )·�r , (33)
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where �k(j ) represent different reciprocal lattice vectors
(RLVs) and u(j ) are their associated amplitudes. In the
liquid phase, where the time-averaged density is spa-
tially constant, the amplitudes vanish, and in an undis-
torted solid phase they all attain the same constant value,
u(j ) = us .

Unlike DFT, where a large number of modes is required
to obtain sharp peaks around atomic positions, the simpler
free energy allows for a truncation of this sum to a small
set of reciprocal lattice vectors. Various methods have been
developed to change the kernel of the free energy in order
to stabilize a variety of two- and three-dimensional periodic
and crystal structures.45,79,80 Here we focus on bcc structures,
therefore we restrict the summation to the N = 12 principal

reciprocal vectors

[110],[101],[011],[11̄0],[101̄],[011̄],
(34)

[1̄1̄0],[1̄01̄],[01̄1̄],[1̄10],[1̄01],[01̄1].

Notice that, by the condition of having a real density field
ψ , the N complex amplitudes are not independent but are
complex conjugates (denoted by an asterisk) for antiparallel
RLVs. Therefore, we restrict the description to the first row of
these RLVs and use only N/2 independent complex fields u(j ).

A detailed derivation of the amplitude equations, which
describe the evolution of the fields u(j ) has been given in
Refs. 54 and 63, and therefore we only give the resulting
expressions here. The evolution equations can be derived from
a free-energy functional, which reads

FAE = F0

∫
d �R

⎡
⎢⎣N/2∑

i=1

|�jA
(j )|2 + 1

12

N/2∑
j=1

A(j )A(j )∗ + 1

90

⎧⎪⎨
⎪⎩

⎛
⎝N/2∑

j=1

A(j )A(j )∗

⎞
⎠

2

− 1

2

N/2∑
j=1

|A(j )|4 + 2A∗
110A

∗
11̄0A101A101̄

+ 2A110A11̄0A
∗
101A

∗
101̄ + 2A11̄0A011A011̄A

∗
110 + 2A∗

11̄0A
∗
011A

∗
011̄A110 + 2A011̄A

∗
101̄A101A

∗
011 + 2A∗

011̄A101̄A
∗
101A011

⎫⎪⎬
⎪⎭

− 1

8
(A∗

011A101A
∗
11̄0 + A011A

∗
101A11̄0 + A∗

011A110A
∗
101̄ + A011A

∗
110A101̄ + A∗

011̄A110A
∗
101 + A011̄A

∗
110A101

+A∗
011̄A101̄A

∗
11̄0 + A011̄A

∗
101̄A11̄0)

⎤
⎥⎦ + FT , (35)

where �j is defined in Eq. (43) and where we have introduced
rescaled amplitudes

A(j ) = u(j )/us (36)

and a dimensionless “slow” scale �R which is introduced below.
In a more general context the above expression can be

derived from classical DFT and yields

FAE = n0kBT

2

∫
d�r

⎛
⎝∑

j

[
u(j )u(j )∗

S(q0)
− C ′′(q0)

2
|�ju

(j )|2
]

+ f ({u(j )},T )

⎞
⎠ , (37)

where the function f ({u(j )},T ) contains the higher order non-
linear terms in the amplitudes u(j ) and an explicit dependence
on the temperature T . The form of these nonlinearities depends
slightly on the underlying model: Above, it is given for a
PFC model, and there are some differences if these terms are
derived from DFT using an equal-weight ansatz. However, the
differences are small and lead, e.g., only to tiny changes of the
anisotropy of the surface energy, as had been investigated in
Ref. 44. Furthermore, n0 is the density in the liquid state, and
C(r) is the direct correlation function with Fourier transform

C(q) = n0

∫
d�r C(r) exp(−i �K · �r) (38)

with r = |�r| and q = | �K|; it is related to the liquid structure
factor by

S(q) = 1

1 − C(q)
. (39)

Here, all quantities are evaluated at the (first) peak of the
structure factor q0. We introduce a (dimensionless) length scale

�R = ε̃1/2q0�r (40)

with

ε̃ = − 24

S(q0)C ′′(q0)q2
0

= 96

103
ε. (41)

This allows the identity

F0 = −n0kBT

2
C ′′(q0)q−1

0 u2
s ε̃

−1/2. (42)

The differential operator �j is given by

�j = k̂(j ) · ∇ − iε̃1/2

2
∇2, (43)

where the nabla operator acts on the slow scale �R, and the
vectors k̂(j ) are the normalized principal RLVs. The second
term in the operator preserves the rotational invariance of the
equations and is related to the use of the nonlinear strain tensor
in elasticity.
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The thermal tilt

FT = L
T − TM

TM

ε̃−3/2q−3
0

∫
d �R φ({A(j )}) (44)

is added phenomenologically to the model. Here, TM is the
melting temperature, L the latent heat, and φ is an “order
parameter” which discriminates between solid and liquid, with

φ({A(j )}) = 2

N

N/2∑
j=1

√
A(j )A(j )∗. (45)

We note that this expression is invariant under elastic defor-
mations and lattice rotations, which affect the complex phases
of the amplitudes. The choice of the coupling function and its
implications are discussed in more detail in Ref. 72.

Thermodynamic equilibrium corresponds to a stationary
state of the free-energy functional, and we use relaxation
dynamics according to

∂A(j )

∂t
= −Kj

δF

δA(j )∗ . (46)

Since we focus here exclusively on static situations, the choice
of the kinetic coefficients Kj is arbitrary.

This description predicts the correct anisotropy of surfaces
energies54 and elastic properties and contains naturally the lin-
ear theory of elasticity. The above Ginzburg-Landau model for
crystals is conceptually close to theories of superconductivity
and pattern formation in hydrodynamics.66

IV. GRAIN BOUNDARY PREMELTING: METHODOLOGY

A. Disjoining potentials without noise

While the definition of the disjoining potential in the
introduction of this paper is framed in terms of a Gibbs
ensemble (constant T , p, and N ), it is easier in the PFC
model to conduct simulations in the grand canonical ensemble
(constant T , μ, and V ). As is discussed in Ref. 29, studying
grain-boundary behavior as a function of μ − μeq is equivalent
to using T − TM . In the spirit of Eq. (1) we can define the
disjoining potential as the excess grand potential energy in the
system,

�(μ) = LyLz[(Lx − W (μ))ωs(μ) + W (μ)ωl(μ)

+ 2γsl + V (W )], (47)

where ωs(l)(μ) are the grand potential densities of of the solid
(liquid) respectively, W is the width of the liquid layer, LyLz

is the area of the grain boundary and Lx is the length of the
system perpendicular to the boundary.

We can then define the grain boundary energy

γgb(μ) = �(μ) − LxLyLzωs(μ)

LyLz

= [ωl(μ) − ωs(μ)]W (μ) + 2γsl + V [W (μ)].

(48)

In order to calculate the liquid layer width W , we relate it to
the excess mass in the system due to the presence of a grain
boundary. We define an excess mass per unit area of the grain
boundary by comparing the mass of two systems at the same

-0.019496

-0.019494

-0.019492

-0.019490

-0.019488

-0.019486

 0  0.0005  0.001  0.0015  0.002  0.0025

ω

1/Lx

FIG. 1. Grand potential energy density ω at a constant chemical
potential μ = −0.19609 for three different inverse system sizes 1/Lx

perpendicular to the grain boundary for a misorientation of θ = 18.9◦.
The intercept is twice the grain boundary energy due to periodicity.

chemical potential, one a perfect solid and one containing a
grain boundary,

ψexc(μ) = Lx[ψ̄(μ) − ψ̄s(μ)]. (49)

By also obtaining the liquid density at the same chemical
potential we can say that the excess mass must be equal to the
liquid thickness times the difference in densities of the liquid
and solid phases,

W [ψ̄l(μ) − ψ̄s(μ)] = ψexc(μ). (50)

Combining the two equations gives a definition for the liquid
layer W (μ),

W (μ) = Lx

ψ̄(μ) − ψ̄s(μ)

ψ̄l(μ) − ψ̄s(μ)
. (51)

In order to calculate the disjoining potential from Eq. (48),
we need a way to calculate the grain boundary energy γgb. By
dividing Eq. (47) by LxLyLz and using Eq. (48), we see that

ω = ωs(μ) + γgb(μ)/Lx. (52)

As seen in Fig. 1 we can then obtain the grain boundary
energy by running a series of simulations at fixed chemical
potential and varying system size. Plotting ω as a function
of the inverse system size, we see a clear linear relationship,
and are able to extract γgb. We should also note that as the
system is periodic we have two identical grain boundaries,
and the resulting energy should be divided by 2. Theoretically,
all that is needed to compute the disjoining potential is to
calculate the grain boundary energy for a whole range of
chemical potentials, and then use Eq. (48) to extract the
disjoining potential for each μ. However, in practice this is
computationally unfeasible. Instead we choose an alternate
route and define the disjoining pressure �,

� = − 1

LyLz

∂�

∂W
= ωs − ωl − V ′(W ). (53)

We also recognize that the grand potential densities ω can be
expanded as a function of μ,

ωs − ωl ≈ −(
ψ̄eq

s − ψ̄
eq

l

)
(μ − μeq). (54)

When the system is at equilibrium � is equal to zero and

V ′(W (μ)) = −(
ψ̄eq

s − ψ̄
eq

l

)
(μ − μeq). (55)
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As noted in Ref. 29, V ′(μ) is a known function of μ

which depends only on bulk thermodynamics. By conducting
simulations for a range of fixed chemical potentials, we
can obtain V ′(W ) which is then integrated to get V (W ) as
long as we know γgb for one particular μ [calculated from
Eq. (52)]. This method is far more computationally tractable
than calculating V (W ) directly from Eq. (48).

While this discussion as focused on undercooling as a
function of chemical potential μ, it is possible to relate this
quantity to undercooling as a function of temperature. As
derived in the supplementary material of Ref. 23, we relate
the energy difference between solid and liquid phases to the
difference in grand potential energy densities and expand
ω in μ,

L
T − TM

TM

= ωs − ωl ≈ −(
ψ̄eq

s − ψ̄
eq

l

)
(μ − μeq), (56)

where the latent heat of fusion for the MD Fe potential is L =
1.968 × 10−24 kJ/Å

3
. This allows us to present PFC results as

a function of temperature rather than chemical potential.
For the amplitude equations we use a similar approach to

define the melt layer thickness and the disjoining potential.
Here we focus on the case that the thermal tilt in the free energy
is a linear function in amplitudes, which has the consequence
that the bulk amplitudes in solid and liquid deviate from 0 and
1, respectively, which are the potential minima for T = TM .
In the bulk all amplitudes have the same magnitude A (they
differ only in phase due to the grain rotation), and therefore
the free energy density becomes

fAE(A,T ) = f0(A) + fT

= F0ε̃
3/2q3

0

(
1

2
A2 − A3 + 1

2
A4

)
+ AL

T − TM

TM

.

Notice that in the bulk the gradient square term does not appear
despite the spatial variations due of the complex phases; this is
a property of the box operator, as discussed in detail in Ref. 63.
The minimum positions of the bulk free energy density can be
found as the roots of the cubic equation f ′

0(A) + f ′
T (A) = 0,

and we denote them by Al(T ) and As(T ) (the third root is the
maximum in between these two minima). We define the melt
layer thickness for a three-dimensional system as

W = q−1
0 ε̃−1/2 1

NLyLz

N∑
j=1

∫
d �R |A(j )( �R)| − As

Al − As

, (57)

where the interface area LyLz is measured on the slow
dimensionless scale. The prefactor q−1

0 ε̃−1/2 stems from the
conversion of W to the dimensional “short” scale. We let the
simulations relax towards equilibrium with the bias potential
FT , which does not enter into the expression of the disjoining
potential V (W ). The latter is calculated as

V (W ) = F0q
2
0 ε̃

LyLz

[ ∫
d �Rf − LyLzWf (Al)

+LyLz(Lx − W )f (As)

]
− 2γsl, (58)

in analogy to Eq. (47) above.
By tuning the bias potential FT we can therefore extract

the convex parts of the disjoining potential, as before for

the PFC simulations; this approach is only possible in the
convex regions, V ′′(W ) > 0, otherwise the equilibrium state
is unstable. To also get estimates for the concave parts for the
attractive potentials we instead do dynamical runs at T = TM ,
starting with a rather wide liquid layer. Due to the attractive
interaction the melt starts to solidify, and we measure W

and F as functions of time. Although the system is not in
full equilibrium during this evolution, the extracted disjoining
potential V (W ) matches well to the static results which were
obtained by the above method.

B. Thermal fluctuations

Calculating the disjoining potential from a fluctuating
interface requires a different technique then presented above
for PFC without noise. Instead we follow the approach of
Hoyt et al.,21,22 which relates the excess interfacial free
energy to fluctuations of the liquid layer width as a function
of undercooling. The grain boundary free energy γgb(μ) is
defined as above in Eq. (17), allowing us to easily write the
probability of observing a liquid layer width W as

P (W,T ) = C exp[−Aγgb(T )/kBT ], (59)

where A is the interface area, C is a temperature-dependent
normalization constant, and we have used Eq. (56) to convert
from μ to T . We obtain these probability distributions by
conducting simulations with noise for various undercoolings
and plotting the resulting histograms, as seen in Fig. 16.
The inclusion of noise prevents us from using the method
presented above to calculate the liquid layer width, due to the
large fluctuations in average density ψ̄ . Therefore we use the
procedure presented below in Appendix B to define the width
W . Once we have the width histograms we can extract the
disjoining potential by writing

V (W ) = − (kBT /A) ln P (W,Ti) − �ωf W − 2γsl + ai, (60)

where i enumerates simulations run at different temperatures
Ti , �ωf is the bulk grand potential energy density difference
between solid and liquid for a particular undercooling, and the
ai are free constants. The ai are then used to match the various
disjoining potential curves (from different undercoolings) into
one continuous disjoining potential as seen in Fig. 17.

C. Molecular dynamics simulations

For the purpose of comparing with PFC and AE predictions,
MD calculations of disjoining potentials have been undertaken
for bcc Fe using the method described in Refs. 21 and 22. This
approach for computing V (W ) by MD involves the use of
equilibrium MD simulations to compute the grain-boundary
width histograms, from which the disjoining potential can be
extracted using equations analogous to Eqs. (59) and (60) (see
Ref. 21 for details). In the current application of this approach
we performed MD simulations using the LAMMPS code.81

The simulations were performed in the NPzAT ensemble,
corresponding to fixed particle number N and cross-sectional
area A, with the temperature T and pressure normal to
the grain boundary Pz = 0 controlled by a Nosé-Hoover
thermostat and barostat.82 Use was made of periodic boundary
conditions, such that the simulation system contained two
identical symmetry tilt boundaries. Interatomic interactions
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were modeled by the embedded-atom-method potential given
in Ref. 55. Width histograms were computed from snapshots
of equilibrium MD simulations lasting at least 80 ns, at two or
more temperatures below, but within 10 K, of the melting point.
For each snapshot, the grain-boundary width was determined
through the use of a structural order parameter based on a
formulation due to Morris.83 Further details can be found in
the supplementary information to Ref. 23.

V. GRAIN BOUNDARY PREMELTING: RESULTS

In this section we discuss the results for grain boundary
premelting in the context of phase-field-crystal (PFC) and
amplitude equations (AE) modeling. In particular, we inspect
symmetric tilt grain boundaries in bcc δ iron for misoriented
[100] surfaces. The results are compared to MD simulations.

There are two relevant sets of information that are extracted
here.

First, the width of the melt layer W forming at the
grain boundary as function of temperature is discussed. In
thermodynamic equilibrium, an infinitely wide liquid phase
can coexist with the two grains, and in this limit interactions
between the grains with different orientation have decayed
completely. Therefore, the curves W (T ) must diverge at
T = TM . For a repulsive grain-grain interaction this leads to
monotonously increasing and diverging functions W (T ) from
below the melting point. For attractive grain boundaries, the
dependence is not unique, since the diverging branch is located
above the melting point and is unstable. Additionally, a stable
branch with finite melt layer thickness at T = TM exists with
lower W , and it merges with the unstable branch at a finite
overheating temperature To > TM . Above the melting point
this branch is only metastable, as from bulk thermodynamics
the system would reduce its total free energy by complete
melting. Here, we only track the (meta)stable branches of the
solution, as they can be obtained by simple gradient dynamics.
For a more extended discussion and the consideration of
unstable branches in the framework of phase field modeling
we refer to Ref. 27. In contrast to this kind of modeling,
which is characterized by a constant order parameter in each
bulk phase, we preserve in the PFC and AE simulations the
atomic structure, and therefore the interaction can be studied as
function of the grain misorientation, and one finds a transition
from attractive situations for low-angle grain boundaries to
repulsive interactions for high-angle boundaries.

Second, related to the W (T ) curves is the disjoining
potential V (W ), which describes the interaction between the
grains which are separated by the melt layer of thickness W .
The disjoining potential is normalized such that it decays to
zero for W → ∞, when the excess energy at the melting
point reduces to twice the solid-liquid interfacial energy
per unit area, γsl . A repulsive interaction corresponds to
V ′(W ) < 0, and an attractive case to V ′(W ) > 0. Typically,
an attractive situation at large distances still comes with a
repulsive interaction if the interfaces are very close to each
other.

In Sec. V A we present the deterministic results of the
continuum simulations, i.e., without thermal fluctuations. The
deviations from the MD results, which show a transition from
attraction to repulsion at lower angles, is interpreted as a

0
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FIG. 2. (Color online) Grain boundary liquid layer width as a
function of undercooling for various misorientations at a value of
ε = 0.0923. There is a transition from attractive to repulsive grain
boundaries at approximately θ = 37◦. Data are from PFC simulations.

different ratio of the solid-liquid interfacial energy γsl and
the grain boundary energy γgb. Therefore, in Sec. V B this
ratio is set to a similar value in the continuum theories, leading
to a shift of the curves in the right direction.

Finally, in Sec. V C the influence of thermal noise is studied
in the PFC model, which also leads to a shift of the disjoining
potential closer to the atomistic results.

A. AE, PFC without noise and MD results

The PFC results for liquid layer width as a function of
undercooling are presented in Fig. 2. As detailed above, for
each misorientation the system is relaxed at constant chemical
potential μ and the liquid layer width is measured. Then μ

is increased and the system is relaxed again, until the amount
of liquid diverges. PFC simulations are conducted with �t =
0.5, and �x ≈ aq0/8 where a is one lattice spacing. We note
that, unlike the limit of small �x that requires a cutoff, the
limit of vanishing �t is well posed mathematically with the
correct normalization of the Langevin noise strength given
by Eqs. (A29) and (A30) in Appendix A 1. Furthermore, the
results are reasonably well converged for the value of �t = 0.5
used in the PFC simulations with noise. In order to ensure
periodic simulation geometry for rotated bicrystals, we follow
the procedure set forth in Appendix B of Ref. 29. The system
size in the direction normal to the boundary (Lx ) is kept as close
to Lx ≈ 100a as possible given the constraints of periodicity,
while the system size along the boundary is set to the minimum
length allowed under periodicity and Lz = 2a.

There are qualitative similarities and differences to sharp
interface theory. Here we find that, for the repulsive bound-
aries, there is indeed a logarithmic divergence of the melt layer
thickness if the temperature reaches TM from below, which
indicates short-range interactions. For low temperatures, there
is no bridging temperature. Instead there is always a small
liquid layer in existence.

The disjoining potentials as integrated from Eq. (55) for
ε = 0.0923 are plotted in Fig. 3. Here we can easily see
the transition between repulsive and attractive disjoining
potentials at θ ≈ 37◦.

The corresponding results for AE are shown in Figs. 4 and 5.
Here we typically use a lattice spacing of �x ≈ 0.5 (measured
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FIG. 3. (Color online) Disjoining potential as a function of grain
boundary width for various misorientations and ε = 0.0923 from
PFC simulations. There is a transition from attractive to repulsive
disjoining potentials at approximately θ = 37◦.

on the dimensionless slow scale) in a spectral code. They show
a qualitatively similar behavior, and in particular the results of
this coarse-grained theory deliver results which are on the same
order of magnitude. The main difference is that the behavior
is already significantly more repulsive, and the transition
between attraction and repulsion occurs around θ = 25◦. We
also show here results of the concave parts of the disjoining
potential curves, V ′′(W ) < 0, which were obtained by using
dynamical simulations. As mentioned before, dynamic and
static simulations deliver comparable results in the range
where both of them apply; the small discrepancy can be seen
best for the 11.4◦ misorientation, where only a small mismatch
of the order of 1 mJ/m2 exists. Similarly to the stronger
repulsion, the overheating range, i.e., the temperatures up to
which a bicrystal is still thermodynamically metastable, is
lower accordingly. A detailed comparison of the disjoining
potentials, which were computed by these two continuum
models is shown in Fig. 6. It turns out that the positions of the
energetic minima are very similar, although the definition of
W is not the same in the two models, and therefore horizontal
shifts of the curves would be conceivable. Nevertheless, the
energy values, in particular in the minima, are still quite
different for low angle misorientations.
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FIG. 4. (Color online) Width of the melt layer as function of the
deviation from the melting temperature for ε = 0.0923, as obtained
from AE.
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FIG. 5. (Color online) Disjoining potential for inclined (100)
interfaces for ε = 0.0923, obtained from AE. Below a critical
misorientation θc ≈ 25◦ the interfaces attract each other, above this
value they are repulsive. The thin (concave) parts of the attractive
potentials are obtained by dynamical simulations.

We point out that this disagreement is not surprising, as
AE is derived from the PFC model by a multiscale expansion,
which assumes that the length scale over which the amplitudes
vary spatially is large compared to the lattice unit. This
assumption breaks down for a high-angle grain boundary,
which introduces a short-scale oscillation of the amplitudes,
and therefore discrepancies between the models have to be
expected, as discussed in detail in Ref. 63.

A comparison with the MD data in Fig. 7 shows that
the two continuum theory curves are very close together
for a high-angle misorientation of about 45◦, but are still
quantitatively different from the atomistic results. The reasons
for this disagreement will be elucidated in more detail in the
next section.

B. Rescaling of ε

As seen in Fig. 7, although qualitatively similar, there is a
large difference in the range of interaction between MD and
PFC.

Here we aim at a better matching of the continuum and
the atomistic simulations. To this end, we first investigate the
critical angle for the transition between attraction and repulsion
as function of the only free parameter, which appears in the
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FIG. 6. (Color online) Disjoining potential comparison for ε =
0.0923 for selected misorientations for PFC and AE data.
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FIG. 7. (Color online) A comparison of disjoining potentials
between PFC, AE, and MD for a misorientation of θ ≈ 44◦, with
ε = 0.0923 and ε = 0.0329. The MD results represent statistics
generated from three different undercoolings.

(rescaled) PFC and AE models, namely ε. This dependence is
shown in Fig. 8.

The observation is that for low values of ε the critical angle
scales as θc ∼ ε1/2 both for PFC and AE, and only for higher
angles do the results differ from each other. In particular,
there is no premelting transition in PFC for ε1/2 � 0.3, in
agreement with findings in Ref. 28. On the other hand, the
critical misorientation curves are two separate straight lines,
coming from (100) and (110) interfaces; this is a consequence
of the incorrect treatment of the (discrete) rotational invariance
of the model, as discussed in detail in Ref. 72.

The basic physical argument for the premelting transition
is that 2γsl = γgb. The scaling of the surface energy is

γsl ∼ n0kBT

(−C ′′(q0)

S(q0)

)1/2

u2
s . (61)

The grain-boundary energy, on the other hand, stems from
the elastic energy of the geometrically necessary dislocations
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FIG. 8. Plot of critical angle θc as a function of ε1/2 for both PFC
and AE. Disjoining potentials are repulsive (attractive) below (above)
those lines. The range of misorientation between triangles where GBs
are observed to form a liquid-like layer in MD simulations (Ref. 23)
is in good quantitative agreement with the range predicted by PFC
and AE for the value of ε that matches the ratio of bulk modulus
and solid-liquid interfacial free energy in MD simulations. The AE
theory predicts the asymptotic form θc ∼ ε1/2 (also π − θc ∼ ε1/2 for
misorientations close to 900) for ε � 1.

at the grain boundary. For fixed misorientation the strain is
therefore fixed, and the elastic energy scales with the elastic
constants. Thus we obtain

B ∼ n0kBT ( − C ′′(q0))q2
0u2

s , (62)

with B being the bulk modulus. The ratio of these two
parameters therefore scales as

B

γsl

∼ q0ε
−1/2. (63)

For low misorientations the grain-boundary energy depends
on θ as given by the Read-Shockley law,

γgb = γ0θ (A − ln θ ) ∼ γ0θ, (64)

where γ0 and A depend on the elastic constants, the Burgers
vector, and the dislocation core radius; the second relation is
the asymptotic behavior for small misorientations. Comparing
this to Eq. (63) therefore implies, for the critical misorientation
with γgb ∼ 2γsl ,

θc ∼ ε1/2 for ε � 1. (65)

A more geometrical interpretation of the transition between
attraction and repulsion stems from a length-scale compar-
ison. For low-angle grain boundaries, the spacing between
neighboring dislocations scales as 1/q0θ . On the other hand,
a dislocation is a defect, which corresponds to a singularity
in the continuum theories. For a Burger’s circuit around the
dislocation line the phase of the complex amplitudes increases
by a multiple of 2π , and at the same time density and the
magnitude of the amplitudes tend toward zero inside the
dislocation (or at least they become small). Therefore, a
dislocation core is similar to a solid-liquid interface, and its
diameter is therefore proportional to the extent of a solid-liquid
interface, i.e., q−1

0 ε−1/2. The transition between attraction
and repulsion happens when the dislocation spacing becomes
comparable to the dislocation core size, thus θc ∼ ε1/2.

In AE, which is derived from the PFC model in the limit of
small values of ε, the scaling θc ∼ ε1/2 can also be inspected
from another perspective. For small ε the correction term in
the box operator becomes negligible, and therefore ε drops
out of the dimensionless bulk equations. It only enters into the
problem by the geometrical setup of the grain boundary, which
requires the rotation of the crystals. This leads to amplitudes

Aj = exp[i�k†j (R − 1) �R/ε̃1/2] (66)

on the slow scale �R, with the unity matrix 1 and the usual
rotation matrix

R =
(

cos � ± sin �

∓ sin � cos �

)
(67)

with � = θ/2. For low angles the argument of the exponential
becomes

i�k†j
(

0 ±�/ε1/2

∓�/ε1/2 0

)
�R. (68)

Hence the misorientation and ε enter in this limit into the
problem only in the combination θ/ε1/2, therefore also the
critical misorientation scales as θc ∼ ε1/2.

As shown in Fig. 8, the range of repulsion is very narrow
in PFC for ε = 0.0923, which corresponds to ε1/2 = 0.304,
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TABLE II. Comparison of elastic constants and solid-liquid
interfacial energies at the melting point predicted by the PFC model
for ε = 0.0923, AE, and MD simulations for bcc Fe (Refs. 44,45,54,
and 84). Note that the elastic constants for PFC and AE are the same.

Quantity PFC bcc AE bcc MD bcc

C11 (GPa) 90.0 90.0 128.0
C12 (GPa) 45.0 45.0 103.4
C44 (GPa) 45.0 45.0 63.9

Bulk modulus (GPa) 60.0 60.0 111.6
(C11 + 2C12)/3
γsl (mJ/m2) 160.47 144.26 177.0

differing from MD as seen in Fig. 8. This result can be inter-
preted through the ratio of γsl/γgb. A system with a larger ratio
prefers grain boundaries to solid-liquid interfaces, narrowing
the premelting range, while smaller ratios increase the range
of misorientations that premelt. With this understanding, in
order to obtain the same repulsive range of misorientations
as exhibited in MD, we have to adjust ε to decrease the PFC
ratio to that of MD. Based on the analysis above, the material
parameters for MD and PFC for ε = 0.0923 are summarized
in Table II.

These values are calculated using the procedure put forth
in Ref. 45, exhibiting the discrepancy between PFC and MD.
In PFC γsl/B = 2.67 whereas in MD γsl/B = 1.59, where B

denotes the bulk modulus. Based on the analysis in Eq. (63)
above we can adjust this ratio in PFC by choosing ε = 0.0329.
In the dimensional units this is achieved by renormalizing
S(q0) = 5.04 and C ′′(q0) = −17.43 Å

2
in comparison to the

previous values 3.01 and −10.4 Å
2

respectively, thereby
leaving their ratio constant, which keeps the value of γsl

unchanged; see Eq. (61).
As seen in Figs. 9 and 10, for the new value of ε the critical

angle has shifted to a value of θ ≈ 15◦. The corresponding
results for AE are shown in Figs. 11 and 12. Since the value
of ε is smaller here, the agreement between AE and PFC
is significantly better than for the higher ε value. A direct
comparison is shown in Fig. 13. The logarithmic plot Fig. 14
shows that the decay ranges are very much comparable for AE
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FIG. 9. (Color online) Liquid layer width as a function of grain
boundary width for various misorientations and ε = 0.0329, obtained
from PFC simulations. There is a transition from attractive to
repulsive disjoining potentials at approximately θ = 15◦.
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FIG. 10. (Color online) Disjoining potential as a function of
grain boundary width for various misorientations and ε = 0.0329,
obtained from PFC simulations. There is a transition from attractive
to repulsive disjoining potentials at approximately θ = 15◦.

and PFC. As demonstrated in Ref. 72, the decay length also
agrees with analytical predictions.

In Fig. 15 we also present three different MD disjoining
potentials, over a similar range of angles as PFC and AE. We
see that the range of of the interaction for PFC and AE is now
comparable to the range of interaction in MD.

C. Fluctuation effects

As seen in Fig. 7 there is a profound difference in the
range of the disjoining potential for MD and PFC with
ε = 0.0923. Above, we attempted to fix this difference through
a rescaling of the parameter ε. Another possible route is
to look at the role of fluctuations in PFC. Intuitively put,
the underlying idea is that the thermal fluctuations lead to
a broadening of the melt layer due to the asymmetric nature of
the disjoining potential V (W ). We quantitatively incorporate
fluctuations into our calculation of the disjoining potential
for one high-angle boundary. As discussed above in Sec. II B
we choose to cut off the noise on the scale of one unit cell.
In Fig. 16 histograms of the width distributions for three
different undercoolings for a misorientation of θ = 43.6◦ are
shown. Using the procedure presented above in Sec. IV B,
we can extract the disjoining potential. Figure 17 shows a
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FIG. 11. (Color online) Melt layer thickness for ε = 0.0329, as
computed from AE. There is a transition from attractive to repulsive
disjoining potentials at approximately θ = 14◦.
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FIG. 12. (Color online) Disjoining potential for ε = 0.0329, as
computed from AE. There is a transition from attractive to repulsive
disjoining potentials at approximately θ = 14◦.

comparison of MD disjoining potentials, PFC without noise,
and noise-based PFC for two different values of λmin defined
by Eq. (32). Akin to renormalizing ε, the fluctuation effects
clearly increase the range of the disjoining potential. However,
the strength of this renormalization is dependent on λmin.

The introduction of fluctuations has the additional effect of
renormalizing the equilibrium chemical potential (μeq). With-
out noise ε = 0.0923 and μeq ≈ −0.19609. The renormalized
value of the equilibrium chemical potential is calculated
by running cyrstal-liquid coexistence simulations, and we
determine that for λmin = a, μeq ≈ −0.18721 and for λmin =
2a, μeq ≈ −0.19565, where a is one lattice spacing.

D. Summary

All the essential data are summarized in Figs. 18 and 19.
The plots show that the rescaling of ε has a similar effect as
the inclusion of thermal fluctuations, bringing the PFC and the
MD results closer together. The logarithmic plot shows that the
interaction is indeed short-ranged and decays exponentially
for all simulation techniques. Nevertheless, there is still a
significant difference in the slopes, i.e., the range of the
interaction, between MD and the deterministic calculations.
In comparison, the simulations with fluctuations exhibit a very
similar behavior for short distances, because there the thermal
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FIG. 13. (Color online) Disjoining potential comparison between
PFC and AE for ε = 0.0329 for selected misorientations.
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FIG. 14. (Color online) Disjoining potential comparison for ε =
0.0329 for selected misorientations. The exponential decay for the
corresponding angles is similar for PFC and AE.

fluctuations cannot compete with the overall strength of the
repulsion. At larger grain separations, W > 1.5 nm, the data
scatter becomes larger, and the change of slope may also be
due to insufficient knowledge of the solid-liquid interfacial
energy. Nevertheless, there is a clear tendency that, (i) by
better matching of the elastic constants and (ii) incorporation of
thermal fluctuations, a better agreement of continuum methods
and MD simulation results can be achieved.

Finally, the plot also demonstrates that at the relevant
length scales the structural short-range forces are substantially
larger than London forces. Nonretarded dispersion forces
between planar interfaces are asymptotically described by the
interaction potential

Vd � H

12πW 2
, (69)

with the Hamaker constant H . For a characteristic value
H = 10−21 J (see Ref. 85) the dispersion forces are of the
order Vd ∼ 10−2 mJ/m2 at distances W ∼ 1 nm, showing that
their contribution is negligible. We also note that additional
repulsive entropic forces are completely negligible in compar-
ison to the short-range structural forces computed here; see
also the discussion in Ref. 21.
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FIG. 16. (Color online) Histograms of PFC with noise grain-
boundary liquid layer width as a function of three different under-
coolings for a misorientation of 43.6◦, ε = 0.0923, and a cutoff of
the noise at the scale of one unit cell (λmin = a).

VI. GRAIN-BOUNDARY SHEARING

In this section we use PFC to explore the relationship
between premelting and the response of grain boundaries to
shear stress. Dry symmetric tilt grain boundaries, or in PFC
boundaries which are sufficiently undercooled, are known to
follow a strict geometrical relationship between the velocity of
the applied shear parallel to the boundary (v||) and its motion
normal to itself (vn).32,33 This geometric model of coupling
predicts two different branches of motion, β〈100〉 and β〈110〉,
where

v|| = βvn, (70)

β〈100〉 = 2 tan

(
θ

2

)
, (71)

β〈110〉 = −2 tan

(
π

4
− θ

2

)
, (72)

where θ is the angle of total misorientation. Which coupling
branch is preferred depends on the Burgers vector content
of the grain boundary. For bcc low-angle misorientaions
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FIG. 17. (Color online) A comparison of PFC disjoining poten-
tials with and without noise with an MD disjoining potential. The PFC
results are for θ = 43.6◦ and ε = 0.0923 for two different values of
λmin, where λmin is defined by Eq. (32), while the MD results are for
θ = 46.4◦ and are for three different undercoolings.
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FIG. 18. (Color online) Comparison of results for PFC and AE
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have a misorientation but which are just shifted against each other
by half a lattice unit, are shown. This curve is for a normal direction
21.8◦ off [100], which is the same as for the symmetric tilt grain
boundaries, but here both grains are rotated in the same direction.

with normal near (100), �b = [100]a where a is the lattice
spacing. These boundaries couple with β = β〈100〉 (as seen
in Fig. 20). For low-angle misorientations with normal near
(110), �b = [110]a and β = β〈110〉. For misorientations where
the dislocations overlap, either coupling branch is accessible.
In order to confirm the coupling branches for PFC we shear
a bcc crystal with a symmetric tilt grain boundary using the
dynamics presented in Eq. (13). These dynamics quickly relax
elastic strain, allowing us to shear at a faster velocity without
deforming the crystal. To shear the crystal we add a term to
the free-energy functional of the form

F ′ = F + ∫
d �V g(x)(ψ − ψ0)2 = ∫

d �V f ′, (73)

where g(x) is a normalized Gaussian of the form

g(x) = 1√
2πσ 2

e− 1
2 ( x−xc

σ
)2
,

with σ = a (one unit cell) and where

ψ0 = ψf (x,y ± vt,z). (74)
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FIG. 19. (Color online) The same as Fig. 18, but on a logarithmic
scale, to show the interaction range for the different models.
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FIG. 20. (Color online) An example of β〈100〉 symmetric tilt grain-
boundary coupling. The grain on the right is being sheared downwards
with velocity v = −0.00025, while the grain on the left is being
sheared upwards with velocity v = 0.00025. The green atom starts
in the right crystal, but due to the rightward motion of the boundary
becomes attached to both crystals. It will eventually follow the pink
atom and join a (100) plane of the left crystal.

The expression ψf is calculated using Eq. (26). The added term
to the free energy effectively drags a strip of the crystal with a
constant velocity of ±v. In our systems we place one Gaussian
strip to the right of the grain boundary shearing downwards,
and one strip to the left of the grain boundary shearing upwards.
We perform simulations for a full range of misorientations θ

with renormalized ε = 0.0329 in order to better compare to
MD results and at an undercooling which ensures the physical
contact of the two sides of the grain boundary (meaning
a negligible liquid layer), and a net shearing velocity of
v|| = 0.0005. In Fig. 21 we see that, for low temperature,
PFC does reproduce the predicted ideal coupling, switching
between the two branches at θ = 45◦. While the steady-state
results studied earlier in the paper do not depend on our
choice of dynamics (conserved or nonconserved), we note
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FIG. 21. (Color online) Observed β as a function of misorienta-
tion θ for ε = 0.0329, and the ideal β factors for (100) and (110)
coupling. These simulations were conducted at T/TM ≈ 0.7, and a
net shearing velocity of v|| = 0.0005.

FIG. 22. (Color online) Observed β as a function of misorienta-
tion θ and homologous temperature for ε = 0.0329. We shear with
a net velocity v|| = 0.0005. βideal is defined using Eqs. (71) and (72)
(depending on the direction of coupling).

here that for nonequilibrium behavior this may not hold true.
However, we have checked that for conserved dynamics PFC
still reproduces ideal coupling with a transition between the
two branches at θ = 45◦.

A recent study23 explored the existence of an alternative
grain-boundary structure for low-angle misorientations with
normal near (110). This “unpaired” structure splits the [022]a
dislocations into pairs of [1̄11]a/2 and [111]a/2 dislocations.
Simulations performed with this unpaired grain-boundary
structure exhibited the same observed coupling factor as the
paired grain boundary. This is easily understood as the net
Burgers vector content of the two boundaries is the same. It is
also possible at temperatures closer to TM , where the atoms on
either side of the grain boundary are no longer in immediate
contact, to observe behaviors other then pure coupling. An
MD study of Ni (Ref. 33) observed pure sliding for some
misorientations as the melting temperature was approached
from below. In order to delineate these regions we perform
a series of simulations over the full range of misorientations,
and over a temperature range extending from an undercooling
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FIG. 23. (Color online) The ratio of βideal to the observed β

as a function of misorientation for an undercooling of 0.46 K
corresponding to the top row of Fig. 22. Simulations are performed
with v|| = 0.0005 and ε = 0.0329. There is a transition from ideal
coupling to something approaching pure sliding as a function of
misorientation. βideal is defined using Eqs. (71) and (72) (depending
on the direction of coupling).
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where we observe pure coupling at all θ up to temperatures
1 K below TM .

We see in Fig. 22 that for temperatures closer to the melting
temperature we observe coupling modes other than ideal
coupling. There is a “v” shaped region where the observed
β is larger than βideal.

In Fig. 23 we examine the observed coupling factor close
to TM . For low-angle misorientations, where the liquid layer
width is smaller, we still observe pure coupling. High-angle
misorientations, however, have coupling factors much larger
than ideal.

VII. CONCLUSIONS

We have used the PFC and AE methods to investigate the
equilibrium premelting and nonequilibrium shearing behav-
iors of [001] symmetric tilt grain boundaries (GBs) at high
homologous temperature in classical models of bcc Fe, and
also compared our equilibrium results to MD simulations.

At a qualitative level, our findings are consistent with the
findings of previous PFC29 and MD21,22 studies. We find
that the disjoining potential can be either repulsive over an
intermediate range of misorientation (θmin < θ < θmax), or
exhibit an attractive minimum outside this range (θ < θmin

or θmax < θ < 90◦). At a more quantitative level, we find that
the repulsive range of misorientation is not well predicted
by the PFC model for the value of ε matched to liquid
structure factor properties. The range predicted by PFC is
too narrow compared to MD.23 This disagreement stems from
the fact that the PFC model is too simplified to reproduce,
for the same value of ε, the correct liquid structure factor
properties, the correct solid-liquid interfacial free energy, and
the correct elastic moduli. However, if ε is chosen to have
a lower value so as to match the ratio of bulk modulus and
γsl in the MD simulations, the PFC model predicts accurately
the range of misorientation where GBs exhibit a diverging
layer width at the melting point. Since the elastic moduli are a
major determinant of the GB free energy at the melting point,
this result indicates that elastic properties and the solid-liquid
interfacial free energy play a dominant role in setting the range
of misorientation where GBs premelt. In the AE framework,
the range of misorientation where GBs remain dry, with a
minimum in the disjoining potential, is predicted to shrink to
zero in the small-ε limit with θmin and 90◦ − θmax both scaling
as ∼ε1/2.

Furthermore, we have found that with the lower value of ε,
which predicts the correct premelted range of misorientation,
the PFC model reproduces the expected GB shearing behavior
as a function of homologous temperature and misorientation.33

Namely, for low enough homologous temperature, GBs exhibit
pure coupled motion to a shear stress with a discontinuous
change of the coupling factor as a function of θ that reflects a
transition between two coupling modes. In contrast, for high
enough homologous temperature (T/TM � 0.8 in the PFC
model), partial sliding occurs, thereby causing the coupling
factor β to be lower than its ideal value. The range of
misorientation where β < βideal increases with temperature but
remains finite even at the melting point, since low-angle GBs
with well separated dislocations exhibit pure coupled motion
even when the dislocation cores are partially melted.

Those results support the view that, for symmetric tilt
GBs, partial sliding is primarily due to the formation of a
premelted layer at high homologous temperature. However
a recent combined PFC and MD study36 has shown that
asymmetrical tilt GBs can exhibit partial sliding even for
low temperatures where such a layer is absent. Therefore
further studies remain needed to obtain a more complete
understanding of GB sliding mechanisms as a function of
temperature and GB bicrystallography.
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APPENDIX A: INTEGRATION SCHEMES

1. PFC with noise

The evolution equations for nonconserved dynamics with
noise are given in Eq. (9). Due to the high-order derivative
terms, it is computationally more tractable to conduct the
simulations in reciprocal space. We apply a Fourier transform
as in the deterministic dynamics in the Appendix of Ref. 29:

∂t ψ̃k = L̂kψ̃k + g̃k, (A1)

L̂k = (ε − 1) + 2k2 − k4, (A2)

g̃k = −
∫

d�r(ψ3)ei�k·�r + μ̃k + η̃k (A3)

= f̃k + η̃k. (A4)

We can now proceed as in Ref. 29:

ψ̃k = u(t)eL̂kt , (A5)

∂t ψ̃k = L̂ke
L̂k tu(t) + g̃k, (A6)

∂tu(t) = e−L̂k t g̃k. (A7)

Integrating u(t) in time gives us the expression

u(t + �t) − u(t) =
∫ t+�t

t

dt ′ exp(−L̂kt)g̃k(t ′), (A8)

where f̃k(t ′) can be expanded around t ′ = t . Since the term η̃k

is an instantaneous value over the interval �t , it can be treated
as a constant during integration. Our final expression for the
dynamics in a continuous case is then

ψ̃k(t + �t) = eL̂k�t ψ̃k(t) + eL̂k(t+�t)
∫ t+�t

t

dt ′e−L̂k t
′

×
[
f̃k(t) + f̃k(t) − f̃k(t − �t)

�t
(t ′ − t) + η̃k

]
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= eL̂k�t ψ̃k(t) + f̃k(t)

L̂k

(eL̂k�t − 1)

+ f̃k(t) − f̃k(t − �t)

�tL̂2
k

(eL̂k�t − 1 − �tL̂k)

− 1 − eL̂k�t

L̂k

η̃k. (A9)

Special care must be taken to properly normalize the noise in
spectral space. In real space the average noise and two-point
correlation function of the noise are

〈η(�r,t)〉 = 0, (A10)

〈η(�r,t)η′(�r ′,t ′)〉 = 2kBT g

λ2q5
0

δ(�r − �r ′)δ(t − t ′). (A11)

The last equation includes the strength of the Gaussian noise
(2kBT ) converted into PFC dimensionless units. While these
equations accurately describe the addition of noise for a
continuous system in real space, care must be taken to
normalize the noise properly in a discretized spectral space,
specifically for the fast Fourier transform which we use in this
study. We start for simplicity in one dimension where

〈η(x,t)η′(x ′,t ′)〉 = 2kBT g

λ2q5
0

δ(x − x ′)δ(t − t ′). (A12)

For a discretized system we write

〈
ηn

j η
m
l

〉 = 2kBT g

λ2q5
0

δjl

�x

δnm

�t
, (A13)

where j,l,m,n are integers, x(x ′) = j (l)�x, and t(t ′) =
n(m)�t . We then define the discretized Fourier transform of
the noise to be

η̃n
r =

N−1∑
j=0

e−2πijr/Nηn
j , η̃m

s =
N−1∑
l=0

e−2πils/Nηm
l , (A14)

where N is the number of points in the system and r(s)
is an integer that takes on all values from −N/2 + 1 to
N/2 inclusive. r can be related to the frequency through the
formula k = 2πr/(N�x). The noise in Fourier space must be
normalized separately for both real and imaginary parts,

η̃n
r = η̃n,R

r − iη̃n,I
r , (A15)

where

η̃n,R
r =

N−1∑
j=0

cos
2πjr

N
ηn

j , (A16)

η̃n,I
r =

N−1∑
j=0

sin
2πjr

N
ηn

j , (A17)

〈
η̃n

r η̃
m
s

〉 = 〈
η̃n,R

r η̃m,R
s

〉 − 〈
η̃n,I

r η̃m,I
s

〉 − i
〈
η̃n,R

r η̃m,I
s

〉
− i

〈
η̃n,I

r η̃m,R
s

〉
. (A18)

It can easily be seen that the two cross-terms do not contribute
to the overall noise,

〈
η̃n,R

s η̃m,I
s

〉 = 2kBT g

λ2q5
0

δnm

�t

N−1∑
j,l=0

δjl

�x
cos

2πjr

N
sin

2πls

N

(A19)

= 2kBT g

λ2q5
0

δnm

�t�x

N−1∑
j=0

cos
2πjr

N
sin

2πjs

N
,

(A20)

which is equal to zero for all integers r and s. The other two
terms do contribute to the noise,

〈
η̃n,R

r η̃m,R
s

〉 = 2kBT g

λ2q5
0

δnm

�t

N−1∑
j,l=0

δjl

�x
cos

2πjr

N
cos

2πls

N

(A21)

= 2kBT g

λ2q5
0

δmn

�t�x

N−1∑
j=0

cos
2πjr

N
cos

2πjs

N
(A22)

= 2kBT gδmn

λ2q5
0�x�t

δrs

(
N

2
+ N

2
(δr0 + δrN/2)

)
, (A23)

and

〈
η̃n,I

r η̃m,I
s

〉 = 2kBT g

λ2q5
0

δmn

�t

N−1∑
j,l=0

δjl

�x
sin

2πjr

N
sin

2πls

N
(A24)

= 2kBT g

λ2q5
0

δnm

�t�x

N−1∑
j=0

sin
2πjr

N
sin

2πjs

N
(A25)

= 2kBT gδmn

λ2q5
0�x�t

δrs

(
N

2
− N

2
(δr0 + δrN/2)

)
. (A26)

As can be seen, both the imaginary and real terms contribute
equally for r,s �= 0, but the r,s = 0 and r,s = N/2 terms have
the full magnitude only on the real part of the dynamics, and
are zero for the imaginary part. As presented in Sec. II B, in
order to ensure that the noise-based contribution to the free
energy is less than the free energy of a noiseless system we
must cut off the noise at a length scale close to one lattice
spacing. We choose the following form for our cutoff:

η̃n,R
r = G

√
�N

�x�t

(
1

2
+ 1

2
(δr0 + δrN/2)

)

×
(

1

2
+ 1

2
tanh

λ̃ − λ̃min

ξ

)
, (A27)

η̃n,I
r = G

√
�N

�x�t

(
1

2
− 1

2
(δr0 + δrN/2)

)

×
(

1

2
+ 1

2
tanh

λ̃ − λ̃min

ξ

)
, (A28)

where λ̃ = 2π/k = N�x/r is the dimensionless wavelength
of the discrete Fourier mode and, following Eq. (32), λ̃min =
q0λmin = 2π/kmax is its cutoff value. Also, ξ controls the width
of the cutoff and G are random numbers drawn from a Gaussian
distribution with variance unity.
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The result extends easily to three dimensions with N/�x replaced by (NxNyNz)/(�x�y�z) and where the wave vector �k
has components ( 2πrx

Nx�x
,

2πry

Ny�y
,

2πrz

Nz�z
). It follows that the noise for each �k mode is

η̃n,R
rx ,ry ,rz

= G

√
�NxNyNz

�x�y�z�t

√(
1

2
+ 1

2

(
δrx0 + δrxNx/2

)(
δry0 + δryNy/2

)(
δrz0 + δrzNz/2)

)(
1

2
+ 1

2
tanh

λ̃ − λ̃min

ξ

)
, (A29)

η̃n,I
rx ,ry ,rz

= G

√
�NxNyNz

�x�y�z�t

√(
1

2
− 1

2

(
δrx0 + δrxNx/2

)(
δry0 + δryNy/2

)(
δrz0 + δrzNz/2

))(
1

2
+ 1

2
tanh

λ̃ − λ̃min

ξ

)
, (A30)

where

λ̃ = 2π/k =
√

(Nx�x/rx)2+ (Ny�y/ry)2+ (Nz�z/rz)2,

λ̃min = q0λmin = 2π/kmax, and � = 2kBT g/(λ2q5
0 ). In simu-

lations we chose ξ = 0.1, and either λmin = a or λmin = 2a,
where a is the lattice spacing, corresponding to λ̃min = 2π

√
2

and λ̃min = 4π
√

2, respectively.

2. Wave dynamics

Here we present the algorithm used to implement the
modified PFC dynamics introduced in Ref. 73. We repeat
the free energy and dynamical equation for locally conserved
dynamics,

F =
∫

d�r
[
ψ

2
(−ε + (∇2 + 1)2)ψ + ψ4

4
+ ψ̇2

2

]
, (A31)

∂ttψ + α∂tψ = ∇2 δF

δψ
. (A32)

As in Ref. 29 we avoid calculating the gradient terms in real
space by solving the equation of motion in Fourier space. We
define a Fourier transform

ψ̃k =
∫

d�r ei�k·�rψ. (A33)

We multiply both sides of the dynamical equation by exp(i�k ·
�r) and integrate. The equation of motion in Fourier space is
now

∂tt ψ̃k + α∂t ψ̃k = L̂kψ̃k + f̃k, (A34)

where

L̂k = −k6 + 2k4 + (ε − 1)k2, (A35)

f̃k =
∫

d�rei�k·�r (∇2ψ3). (A36)

Following the methodology of Sec. 3 of Chapter II of Ref. 86,
we now choose to rewrite the dynamics as

˙̃ψk = ũk, (A37)

˙̃uk = −αũk + L̂kψ̃k + f̃k. (A38)

We now solve the homogenous form of Eq. (A34) by writing

ψ̃k = a1(t)eμ1t + a2(t)eμ2t , (A39)

where

μ1 = −α/2 +
√

α2/4 + L̂k, (A40)

μ2 = −α/2 −
√

α2/4 + L̂k, (A41)

and where a1 and a2 are functions of time and are restricted to
satisfy

da1

dt
eμ1t + da2

dt
eμ2t = 0. (A42)

Combining Eqs. (A39) and (A34), we derive the relation

μ1e
μ1t

da1

dt
+ μ2e

μ2t
da2

dt
= f̃k. (A43)

Additionally combining Eqs. (A42) and (A43) and integrating
over one time step, we obtain

a1 = 1

μ1 − μ2

∫ �t

0
e−μ1t

′
f̃k(t ′)dt ′ + a10, (A44)

a2 = −1

μ1 − μ2

∫ �t

0
e−μ2t

′
f̃k(t ′)dt ′ + a20, (A45)

where a10 and a20 are integration constants. Now combining
everything,

ψ̃k(t + �t) = 1

μ1 − μ2

[
eμ1(t+�t)

∫ t+�t

t

e−μ1t
′
f̃k(t ′)dt ′

− eμ2(t+�t)
∫ t+�t

t

e−μ2t
′
f̃k(t ′)dt ′

]
+ a10e

μ1(t+�t) + a20e
μ2(t+�t), (A46)

ũk(t + �t) = 1

μ1 − μ2

[
μ1e

μ1(t+�t)
∫ t+�t

t

e−μ1t
′
f̃k(t ′)dt ′

−μ2e
μ2(t+�t)

∫ t+�t

t

e−μ2t
′
f̃k(t ′)dt ′

]
+μ1a10e

μ1(t+�t) + μ2a20e
μ2(t+�t). (A47)

We integrate over the range t = 0 to t = �t and require that
at time t = 0

ψ̃k(t = 0) = ψ̃k0 = a10 + a20, (A48)

ũk(t = 0) = ũk0 = μ1a10 + μ2a20. (A49)

Solving for the integration constants a10 and a20,

a10 = (ũk0 − μ2ψ̃k0)

μ1 − μ2
, (A50)

a20 = −(ũk0 − μ1ψ̃k0)

μ1 − μ2
. (A51)

To calculate the integral terms we use the approach pre-
sented in the Appendix of Ref. 29 by expanding f̃k
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around t ′ = t :

eμ1(t+�t)

μ1 − μ2

∫ t+�t

t

e−μ1t
′
f̃k(t ′)dt ′ = eμ1(t+�t)

μ1 − μ2

∫ t+�t

t

dt ′e−μ1t
′ ×

(
f̃k(t) + f̃k(t) − f̃k(t − �t)

�t
(t ′ − t)

)
. (A52)

Integrating the first term in the integral,

eμ1(t+�t)

μ1 − μ2

∫ t+�t

t

dt ′e−μ1t
′
f̃k(t) = −e−μ1(t+�t) + e−μ1t

μ1(μ1 − μ2)
f̃ke

μ1(t+�t) = (eμ1�t − 1)

μ1(μ1 − μ2)
f̃k(t). (A53)

Integrating the second term in the integral we see

eμ1(t+�t)

μ1 − μ2

∫ t+�t

t

dt ′e−μ1t
′ f̃k(t) − f̃k(t − �t)

�t
(t ′ − t) = (f̃k(t) − f̃k(t − �t))

μ1(μ1 − μ2)

(
eμ1�t

μ1�t
− 1

μ1�t
− 1

)
. (A54)

The full dynamics then take on the form

ψ̃k(t + �t) = 1

μ1 − μ2
(−[ψ̃k(t)μ2 − ũk(t)]eμ1�t + [ψ̃k(t)μ1 − ũk(t)]eμ2�t ) + f̃k(t)

μ1(μ1 − μ2)
(eμ1�t − 1)

+ [f̃k(t) − f̃k(t − �t)]

μ1(μ1 − μ2)

(
eμ1�t

μ1�t
− 1

μ1�t
− 1

)
− f̃k(t)

μ2(μ1 − μ2)
(eμ2�t − 1)

− [f̃k(t) − f̃k(t − �t)]

μ2(μ1 − μ2)

(
eμ2�t

μ2�t
− 1

μ2�t
− 1

)
, (A55)

ũk(t + �t) = 1

μ1 − μ2
(−μ1[ψ̃k(t)μ2 − ũk(t)]eμ1�t + μ2[ψ̃k(t)μ1 − ũk(t)]eμ2�t )

+ f̃k(t)

(μ1 − μ2)
(eμ1�t − 1) + [f̃k(t) − f̃k(t − �t)]

(μ1 − μ2)

(
eμ1�t

μ1�t
− 1

μ1�t
− 1

)

− f̃k(t)

(μ1 − μ2)
(eμ2�t − 1) − [f̃k(t) − f̃k(t − �t)]

(μ1 − μ2)

(
eμ2�t

μ2�t
− 1

μ2�t
− 1

)
. (A56)

The nonconserved dynamics take on a similar form,

∂ttψ + α∂tψ = − δF

δψ
+ μ, (A57)

where μ is an externally imposed chemical potential. The
only changes to the dynamics are in the operator L̂k and the
nonlinear term f̃k ,

L̂k = −k4 + 2k2 + (ε − 1), (A58)

f̃k =
∫

d�rei�k·�r (−ψ3 + μ). (A59)

APPENDIX B: LIQUID LAYER WIDTH
FOR PFC WITH NOISE

The inclusion of noise in the PFC model demands an
alternative definition of the melt layer thickness W . The
method of calculating the liquid layer width for PFC without
noise by using the excess mass no longer works once we have
added noise. This is due to the relatively large instantaneous
fluctuations in the amount of mass in the system. Instead
we introduce a wavelet transform with methodology similar
to a transform used to measure the local orientation of a

two-dimensional PFC hexagonal crystal.87 In our case we
extract an orientation-independent field which differentiates
continuously between solid and liquid. We define a convolution
of the square of the gradient of the density field ψ with a
normalized Gaussian function,

ρ̃(�r) =
∫

G(|�r − �r ′|)|∇ψ(�r ′)|2d�r ′, (B1)

where

G = 1√
πσ2

e−(x2+y2+z2)/2σ2 , (B2)

and σ2 = 2.5a where a is one lattice spacing. The convolution
returns an orientation-independent field whose amplitude
depends on how close to a perfect solid the crystal is. As seen
in Fig. 24 this results in a smooth transition from the solid to
the liquid through a solid-liquid interface in the deterministic
case. The behavior of the order parameter is different for a
grain-boundary interface in the deterministic case, as seen in
Fig. 25. ρ̃ never reaches its minimum value of 0 in between the
two solid regions. This behavior is consistent with an interface
where the two grains are not well separated.

The behavior of the order parameter when including noise
is more complicated, as seen in Fig. 26. Instead of attempting
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FIG. 24. Surface plot of the order parameter ρ̃(�r) defined in
Eq. (B2) through a solid-liquid interface for PFC without noise. The
graph shows the order parameter plotted for a single slice in the x-y
plane (for a single value of z). In the solid we see ρ̃s ≈ 1.22 while
in the liquid ρ̃l = 0, with a tanh-like interpolation between the two
values. a is one lattice spacing.

to determine the liquid layer width W in one calculation,
we separate the order parameter into an array of functions
ρ̃(x,y0,z0), where x takes on its full range of values and y0

and z0 refer to a particular point in the y-z plane. We then fit
the equation

ρ̃l(y0,z0) + ρ̃s(y0,z0) − ρ̃l(y0,z0)

2
[1 − tanh (bl(x − xl))]

+ ρ̃s(y0,z0) − ρ̃l(y0,z0)

2
[1 + tanh (br (x − xr ))], (B3)

to ρ̃(x,y0,z0) for each combination of y0 and z0. bl , br , xl ,
and xr are fit parameters while ρ̃s(y0,z0) is the value of the
order parameter in the solid and is obtained by averaging
ρ̃(x,y0,z0) over five different values of x, where x is several
lattice spacings away from the interface. ρ̃l(y0,z0) is defined
as the average of the two smallest values of ρ̃(x,y0,z0).

W (y0,z0), the liquid layer width for each set y0,z0, is defined
as xr − xl . The total liquid layer width W is then the average
of W (y0,z0) over all y0,z0.

APPENDIX C: LINKING PFC AND DFT

To obtain the value of the only adjustable parameter, ε,
we derive an expression to relate ε to material parameters
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FIG. 25. Surface plot of the order parameter ρ̃(�r) defined in
Eq. (B2) through a grain-boundary interface for PFC without noise.
The graph shows the order parameter plotted for a single slice in the
x-y plane (for a single value of z). In the solid we see ρ̃s ≈ 1.22;
however, the order parameter does not take on its minimum value of
ρ̃ = 0 between the two crystals. This is consistent with an interface
where the two grains are not well separated. a is one lattice spacing.
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FIG. 26. Surface plot of the order parameter ρ̃(�r) defined in
Eq. (B2) through a grain-boundary interface for PFC with noise.
The graph shows the order parameter plotted for a single slice in the
x-y plane (for a single value of z). As compared to the deterministic
case, there is more variation in the order parameter in the solid and
the central liquid-like region. This makes it necessary to average over
several points to identify the liquid and solid values of the order
parameter, as detailed in the text. a is one lattice spacing.

taken from MD simulations, namely the peak and curvature at
the peak of the liquid structure factor. While already derived
in Ref. 44, we use the method presented in Ref. 45 for
the two-mode PFC model that more directly relates these
quantities to classical DFT.48–53,88 We vary ψ around its liquid
value ψ = ψ̄l + δψ , where ψ̄l is the density in the liquid, as
determined from the phase coexistence conditions between
solid and liquid, and substitute into Eq. (8). We see that
(dropping terms of δψ higher than quadratic order)

�F = λq4
0

g

∫
d�r

[
δψ

2

[
ā + 3ψ̄2

l λq4
0 + λ

(∇2 + q2
0

)2]
δψ

]
.

(C1)

Defining the Fourier transform,

δψ =
∫

d�k
(2π )3/2

δψke
i�k·�r , (C2)

and substituting this definition into Eq. (C1),

�F = λq4
0

g

∫∫
d�k d�k′

(2π )3

δψkδψk′

2

[[
ā + 3ψ̄2

l λq4
0

+ λ
( − k2 + q2

0

)2] ∫
d�r ei(�k+�k′)·�r

]

= λq4
0

g(2π )3/2

∫
d�k δψkδψ−k

2

[
ā + 3ψ̄2

l λq4
0

+ λ
(−k2 + q2

0

)2]
. (C3)

We can compare this equation to a standard formulation from
classical DFT,

�FDFT = kBT

2

∫∫
d�r d�r ′

× δn(�r)

[
δ(�r − �r ′)

n0
− C(|�r − �r ′|)

]
δn(�r ′), (C4)

where the density variations δn(�r) are related to the PFC order
parameter via Eq. (6)

δn(�r) = n(�r) − n0 = δφ(�r) =
√

λq4
0

g
δψ(�r), (C5)
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and

C(k) = n0

∫
d�rC(|�r|)e−i�k·�r (C6)

is the Fourier transform of the direct correlation function.
Substituting in the Fourier transforms as before,

�FDFT = λq4
0

g

kBT

2n0(2π )3/2

∫
d�k δψkδψ−k[1 − C(k)]. (C7)

Equating the two free-energy densities and using the expres-
sion for the liquid structure factor S(k) = 1/[1 − C(k)], we
see that

S(k) = kBT

n0
{
ā + 3λq4

0 ψ̄2
l + λ

( − k2 + q2
0

)2} . (C8)

Evaluated at the peak of the structure factor (k = q0), we see

ā + 3λq4
0 ψ̄2

l = kBT

n0S(q0)
. (C9)

The multiscale expansion using ε1/2 as small parameter is
discussed in Ref. 54 in detail, and we repeat only the results
here. To this end the density field is ψ in expanded in powers
of ε1/2,

ψ(�r) = ψ0(�r)ε1/2 + ψ1(�r)ε + ψ2(�r)ε3/2 + · · · , (C10)

and we can expand the average solid and liquid densities in
the same way:

ψ̄s = ψs0ε
1/2 + ψs1ε + ψs2ε

3/2 + · · · , (C11)

ψ̄l = ψl0ε
1/2 + ψl1ε + ψl2ε

3/2 + · · · . (C12)

From the common tangent construction one obtains at the
different powers of ε

ψs0 = ψl0 ≡ ψc = −
√

45

103
, (C13)

ψs1 = ψl1 = 0. (C14)

We see that in the small-ε limit the size of the solid-liquid
coexistence region �ψ̄ = ψ̄s − ψ̄l ≈ (ψs2 − ψl2)ε3/2 is much

smaller than the average density which scales like ε1/2,
justifying our dropping of higher order terms in the small-ε
regime.

Using Eq. (4) to substitute for a and the small-ε justification
for dropping higher order terms to define ψ̄l = ψcε

1/2,
we get

ε = −kBT

n0S(q0)λq4
0

(
1 − 3ψ2

c

) . (C15)

Taking the second derivative of C(k) and evaluating at k = q0,
we obtain a value for λ,

λ = −kBT C ′′(q0)

8q2
0n0

, (C16)

see also Eq. (41), and we thus get

ε = 8(
1 − 3ψ2

c

)
q2

0S(q0)C ′′(q0)
, (C17)

which matches an expression originally derived in Ref. 44.
Using the values for ψc, S(q0) and C ′′(q0) reported in Ref. 44
(see also Table I) we get ε = 0.0923.

In order to convert the dimensionless PFC results back into
dimensional units we must also define a, λ, and g. a and λ

can be defined through Eqs. (C9) and (C16) respectively. To
calculate g we first recognize that

n0ui =
√

λq4
0

g
ε1/2A0

i , (C18)

where ui are the dimensional amplitudes (as opposed to the
dimensionless amplitudes Ai) and A0

i = ε−1/2As . Substituting
ui = us , which can be obtained from MD simulations,54 we
obtain

g = λq4
0ε

(
− 2

15
ψc + 1

15

√
5 − 11ψ2

c

)2/(
n2

0u
2
s

)
. (C19)

This is a correction from the expression first presented in
Ref. 44.
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