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Structural short-range forces between solid-melt interfaces
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We predict the structural interaction of crystalline solid-melt interfaces using amplitude equations which are
derived from classical density functional theory or phase field crystal modeling. The solid ordering decays
exponentially on the scale of the interface thickness at solid-melt interfaces; the overlap of two such profiles leads
to a short-range interaction, which is mainly carried by the longest-range density waves, which can facilitate
grain boundary premelting. We calculate the tail of these interactions, depending on the relative translation of
the two crystals, fully analytically and predict the interaction potential, and compare it to numerical simulations.
For grain boundaries the interaction is predicted to decay twice as fast as for two crystals without misorientation.
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I. INTRODUCTION

It is a well-known fact that grain boundaries (GBs)
are essential for many properties of materials, including in
particular the mechanical behavior. As a consequence, there
is a long-standing history of studies on their properties, both
experimentally' and computationally.? In this work we focus
on the behavior of GBs at high temperatures, in particular
very close to the melting point. When the temperature is
increased from below towards this regime, the GBs can
become disordered and form nanometer-scale intergranular
films with liquid-like properties. This phenomenon, known
as GB premelting, can result in a dramatic reduction of the
shear resistance and hence to material failure, e.g., during hot
cracking in the late stages of solidification.>=

This has triggered many experimental®'® and theoretical
investigations of GB premelting. On the theoretical side we
mention in particular discrete lattice models!” as well as molec-
ular dynamics (MD) simulations.'®23 Several continuum
descriptions have been pushed forward, including those based
on phase field models®*?’ with either an orientational order
parameter’*?> or multiorder parameter models;**?’ these order
parameters are needed to distinguish between the different
grain orientations. More recently, the phase field crystal (PFC)
method has been introduced,?®? allowing one to describe the
atomic structure and thus the local lattice orientation via the
crystal density field. GB premelting studies using these models
have been performed in Refs. 30 and 31.

For a quantitative analysis of grain boundary premelting the
width W of the premelted layer is of central interest. It is the re-
sult of a bulk thermodynamic force which favors solidification
below the melting temperature, and a short-range interaction
between adjacent solid-melt interfaces. The analysis and
prediction of these interaction forces is therefore the goal of the
investigations. Experimentally, these quantities are difficult to
access, as grain boundaries are hidden inside the material. A
few observations support the existence of a nanometer-thick
premelted layer in pure materials a few degrees below the bulk
melting point, and significantly more evidence is available
for alloys. Hence complementary theoretical investigations as
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based on PFC?' and MD simulations®'??> are essential for
a thorough understanding of the structural forces between
solid-melt interfaces, which are responsible for GB premelting.

These forces are quantified by the introduction of the
“disjoining potential” V (W), which is defined via the excess
Gibbs free energy per unit of grain boundary area

Gexe(W.T) = AG(THW + 2y + V(W), (1)

where AG = G, — Gj is the bulk Gibbs free energy difference
between liquid [G;(T)] and solid [G4(T)] and y, is the
solid-liquid interfacial free energy. Based on this definition,
V(W) represents the part of this excess due to the overlap
of crystal density waves from the two grains on each side of
the GB (see Fig. 1). The ordering of the solid phases extends
also into the melt on the range of the interface thickness &;
thus the crystals start to interact with each other as soon as
their separation W is of the order of the interface thickness.
Depending on the alignment of the crystals their structures
may match—which leads to an attractive interaction—or are
locally displaced such that the energy of the system is increased
by the overlap, which leads to a repulsive interaction. Hence
the derivative —dV(W)/dW expresses the force between
crystal-melt interfaces due to this overlap, which can be
either repulsive or attractive depending on whether the sign of
—dV(W)/dW is positive or negative, respectively. So far, there
is little analytical knowledge on the short-range contributions
to these forces, with the exception of phase field models,?’
which are based on phenomenological models that do not
consider atomic structures, dislocation formation, and elastic
interactions. The purpose of the present article is therefore to
gain analytical insights into the nature of these forces, based
on a complex Ginzburg-Landau description. Additionally,
V(W) also contains attractive contributions due to London
dispersion forces that are neither accounted for in PFC and
MD simulations nor in the short-range forces analyzed here,
but play an important role in other systems such as ceramic
materials.>> However, in metallic systems, dispersion forces
can be estimated to only contribute an attractive tail to V(W)
whose magnitude is less than a mJ/m? for W on the nanometer
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FIG. 1. Sketch of the atomic density profile at two adjacent solid-
melt interfaces and the corresponding amplitude.
scale. In contrast, MD computations of V(W) in pure Ni?!:*?
show that V(W) has a magnitude of tens of mJ/m? for W in
this same range.

A major outcome of this work is that the structural
interaction can be calculated analytically in the case of
zero misorientation between the grains, which only have a
translational misfit. The range of the interaction can still
be computed also for the more general case of misoriented
crystals. The results therefore offer new insights into the
phenomenon of GB premelting, as they show which quantities
and ingredients are essential for the structural interactions.
This paper therefore complements the numerical results in
Ref. 33, which compare PFC and amplitude equations results
with MD data.

The structure of the article is as follows: In Sec. II the
underlying model is summarized, which is then used in Sec. I1I
to investigate the properties of single solid-melt interfaces.
There, in particular, the decay of the density waves into the
melt is analyzed, since this turns out to be the key parameter
for the interaction of two solid-melt interfaces. First, in
Sec. IV the special case of crystals without misorientation but
with translational misfit is considered, as here the asymptotics
of the interaction can be calculated fully analytically, which is
demonstrated for several interface orientations. In Sec. V grain
boundaries are considered; although a full analytical treatment
is not possible here, still the range of the interaction can be
predicted.

II. AMPLITUDE EQUATIONS

From the classical density functional theory of freezing
(DFT) a functional can be derived which expresses an
emerging solid phase as density fluctuations appearing from
the liquid state, whereas the (time-averaged) density is spa-
tially constant in the melt phase.’**? To this end the spatial
variations of the density field 81/ (¥) are expanded as a sum of
density waves

N
(SI//(?) — Z u(j)eik(f).f’ (2)

j=1

where each k) is one of the N different reciprocal lattice
vectors (RLVs) and u'”) are the corresponding amplitudes.
In a solid phase without elastic deformations and defects, all
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amplitudes are constant and equal with the same magnitude
|u”| = uy, whereas they all decay to zero in the melt, where
the long-range ordering is lost. The associated free-energy
deviation from the liquid state is

N . .
knT () C* " .
P /d7<ﬂ() B Z |:M ul>* C (q0)|Dqu)|2i|
2 S(qo) 2

j=1

+ f({u“')},T)), A3)

which contains in particular the differential operator [1; which
will be introduced below. The function f({u’},T) contains
higher order nonlinear terms in the amplitudes u' and also
the dependence on the local temperature T'; ng is the density
in the liquid state and C(r) is the direct correlation function.
Its Fourier transform is

C(q) = no / d7 C(r)exp(—ik - F) )

withr = |F| and ¢ = |12|. This quantity is related to the liquid
structure factor by

S(q) = o)

1-C(g)
which is evaluated at the (first) peak of the structure factor
qo- We consider here a simplified model which—in contrast
to many classical DFT models—truncates the summation
in Eq. (3) to a small set of reciprocal lattice vectors. For
the particular case of bec structures, the following N = 12
principal reciprocal lattice vectors are sufficient:

[110],[101],[011],[1101,[101],[011],

6
[110],[101],[011],[110],[101],[011]. ©

Since the density field ¢ is real, not all the amplitudes
are independent. In fact, the density wave amplitudes for
antiparallel RLVs are complex conjugate to each other (we
use a star for complex conjugation). Here, instead we use only
the first row of the RLVs (6), but with real and imaginary parts
being independent.

The differential operator [J; is given by**~**

Ry

—V, (N
240

where the vectors k) are the normalized principal RLVs. The
second term in the operator is responsible for the rotational
invariance of the equations. We note that from the point of
view of theory of elasticity it is responsible for the appearance
of the nonlinear strain tensor. Below we refer to this second
term as the higher order correction term in the box operator,
since it is vanishingly small for rough interfaces.

For most of the present analysis the precise form of the
higher order nonlinearities is not important, as they enter the
expressions for the interface interaction only as prefactors in
terms of matching constants. However, to complete the model,
we use here amplitude equations which are derived via a
multiscale expansion*? from the three-dimensional phase field
crystal model,*%%°

}'=/d? (%{—e+<v2+1>21w+%w4). ®)

O, (D .v =
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Here, € is used as a small parameter in the regime of the phase
diagram which describes the coexistence between the bce and
the homogeneous (melt) phase. The parameter € is related to
the physical parameters via

103
€= 96 ©)
with another (small) dimensionless parameter é
. 24
E=———"—— (10)

5(q0)C"(q0)q3’

which turns out to be more useful in the context of the
amplitude equations; both parameters characterize the ratio
between the square of the atomic spacing and the solid-liquid
interface thickness. We note that € is commonly used in
phase field crystals models. The definition of € is used for
convenience in the amplitude equations formulation, as this
removes unpleasant numerical factors, as discussed in detail
in Ref. 42.
In equilibrium the chemical potential
8F 2

H=3 v ey + (V- +
is spatially constant. A detailed derivation of the amplitude
equations, which describe the evolution of the fields '/, has
been given in Refs. 40 and 42, and therefore we only give
the resulting expressions here. The evolution equations can be
derived from a free-energy functional, which reads

D>y + ¢ (an

N/2 N/2
F = FO/dR Z|DjA(j)|2+ ZA(J)A(D*
i=1
N/2 2 N/2

1 . .
— AW AW

+2A70AT0A 101 A 101 + 2A110A110AT01 ATo1
+2A110A011 Ag1i Ao + 2AT10A011 Agi7AT10

1 .
-5 Z |A(./)|4

j=1

110 011

+2A011A71A101 40, + 245,71 A101ATo1 Aot

1 * * * * *
- g(AouAlolAno + Ao11 AT Ario + Agr Ao Al
+ Ao11 AT 0 A o1 + A1 A110AT + Aot AT g A0l

+A311A101A110+A011A101A1T0) + Fr. 12)

Here, we have introduced rescaled amplitudes
AD = 4Dy (13)
Also, we have introduced a dimensionless length scale
R = &'2¢,7. (14)
In these rescaled coordinates the box operator becomes
R g2 02
) ,

0; = kY (15)
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and the prefactor Fj is

k
Fo=— ”023 C"(qo)gy ue 2. (16)
Finally, the thermal tilt F7 is added phenomenologically,
T —
Fr=¢&3? ’3/dRL ¢({A<f>}) 17)

to favor either the solid or liquid state. Here, Ty is the melting
temperature, L is the latent heat, and ¢ is an “order parameter”
which discriminates between solid and liquid,

N/2
P((AV) = Zh(|A<”| ) (18)

with
h(x) = x>(3 — 2x). (19)

Alternatively, the tilt can be chosen such that it reproduces
the PFC results, and then the coupling function is chosen to be

5 N2

d({AD)) = Z VA AG*, (20)

We note that this expression is invariant under elastic deforma-
tions and lattice rotations, which affect the complex phases of
the amplitudes. In the original DFT formulation the coupling
therefore reads

Fr =

T TM/d %za/uu)um; on

‘We note that the two above coupling functions (18) and (20)
are substantially different: The first is quartic in the amplitude
variations in the solid and liquid state, and therefore the minima
of the functional remain at A = 0 and AY) = 1 for T # Ty;.
This is not the case for the second coupling, which is linear
in the amplitudes; therefore here the bulk values depend on
the temperature. We will discuss the implications of these two
different couplings in Appendix A.

Thermodynamic equilibrium corresponds to a stationary
state of the free-energy functional, and we use relaxation
dynamics according to

AW SF
=-K vt
ot SAD=
Since we focus here exclusively on static situations, the choice
of the kinetic coefficients K ; is arbitrary.

This description predicts the correct anisotropy of surface
energies® and elastic properties and contains naturally the
linear theory of elasticity.*> The form of these nonlinearities
depends slightly on the underlying model: Above it is given
for a PFC model, and there are some differences if these terms
are derived from DFT using an equal weight ansatz. However,
the differences are small and lead, e.g., only to tiny changes of
the anisotropy of the surface energy, as had been investigated
in Ref. 41. Also, we point out that—as will be shown in
the following sections—the higher order nonlinearities do not
contribute to the short-range interaction tail for shifted crystals.

(22)
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Finally, we note that this amplitude equation model for crystals
is conceptually close to theories of superconductivity and
pattern formation in hydrodynamics.*

III. SOLID-LIQUID INTERFACES

Properties of solid-melt interfaces, in particular interfacial
energies and their anisotropy, were discussed in detail in
Ref. 40 and 41. Here we concentrate on specific properties
that are relevant for the understanding of interface interactions
in the next section.

In the melt region sufficiently far away from the interface,
the amplitudes of the density waves have decayed and can
be well described by the linearized equilibrium conditions or,
equivalently, the free-energy density with the local terms up
to second order in the amplitudes. It is worthwhile to mention
that the free-energy functionals, as derived from PFC and DFT,
agree up to this order, and therefore the following results are
generic.

Let the interface normal 7 be the z direction of a straight
solid-liquid interface, and all density wave amplitudes depend
then only on this coordinate. In the liquid, where the solid
ordering has decayed almost completely, the equilibrium
conditions decouple and are given by

1

S(qo)

where we ignore for the moment the higher order corrections
of the box operator. For reasons that will become more
obvious later, we denote here derivatives with respect to z
by a dot. Although we consider a three-dimensional situation,
the amplitudes depend only on z. We focus here on stationary
states; therefore time derivatives do not appear. Obviously,
(stationary) coexistence between solid and liquid bulk phases
with a planar interface is only possible for T = T),. Here
we note that density differences between the solid and the
melt are not considered in the model, which could allow
for phase coexistence also at other temperatures due to the
Clausius-Clapeyron effect.

The general solution of this linearized equilibrium condi-
tion is a superposition of two exponentials,

. 1 JUF .
M(J) — —EC”((]())(/C(D . n)zzi(j), (23)

u) = Cjin €Xp(—A;2) + ¢ our €Xp(X;2) (24)
with the inverse decay length
) 172
A = ( _ ) | (25)
5(q0)C"(qo) (kD) - )*
We also define the characteristic scale Ag ~ 1/&
) 1/2
Ao = <—> . (26)
S(g0)C"(qo)

Since we consider only a single interface, with the solid phase
being located at z — —o0, the growing exponential cannot be
present (¢; .., = 0). We note that a shift of the interface by Az
leads to a change of the remaining exponential prefactor c; ;,
by a factor exp(—A;Az).

Since the problem is one dimensional, it is straightforward
and fast to solve the full set of amplitude equations (not only
in the linearized region) using a real-space implementation via
the relaxation scheme (22) at T = T}, until an equilibrium
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FIG. 2. Determination of the interface position. The solid phase is
located in the right, the liquid in the left half of the system. The amount
of melt is defined through the measure (27). For sufficiently large
systems, this expression becomes asymptotically equal to L, — zo,
where L, is the system length and z, the interface position. Results
are shown here for a (100) interface at T = T),. In the present case,
the interface is located at zoAo = 21.7.

solid-liquid interface is established. The grid spacing is chosen
to be much smaller than the interface thickness, A;dz < 1,
to obtain results which do not depend on the discretization.
Corresponding to the analytical investigation we do not take
into account the higher order term in the box operator; thus
the equilibrium profile is described by a second-order ordinary
differential equation. From the equilibrium profile the solid-
liquid interfacial energy y;; is also computed. To obtain a
numerical value for the prefactor c;;, we have to match it
to the full solution of the nonlinear problem §F/su® = 0.
Therefore, we set the origin z = 0 exactly at the location of
the interface. Since the interface is smooth, the position of
it requires a precise definition. The choice of this measure
is not critical, since another definition only leads to slightly
different values for the exponential prefactors, and later on in
the following sections, to a horizontal shift of the disjoining
potential. We use an integral measure for the amount of liquid
per unit area of the interface

N

L;
Wity = [ dz S I-nPad) e
0

Jj=1

where we use the “coupling function” (19), h(x) = x>(3 —
2x), to interpolate between solid and liquid. Notice that in the
liquid the amplitudes have decayed to zero, whereas in the
solid all of them have the value |u’| = u.

For a single solid-liquid interface, the amount of liquid
depends of course on the system size, i.e., the length of
the integration interval L,. For L, > z¢ (z¢ is the interface
position), W becomes a linear function of L,, W >~ L, — z,.
We can extrapolate this linear function to the value 0, which
then defines the location of the interface, and this is shown in
Fig. 2.

In the next step, we plot the amplitudes as a function of
the distance from the interface, z — zo. For z 3> z they decay
exponentially on the scale 1/A;, and we can determine the
exponential prefactors as shown in Fig. 3. We note that for a
single interface all amplitudes can be chosen to be purely real
(as long as the correction from the box operator is suppressed).
For a (100) surface, only the density waves [110], [110],
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FIG. 3. Matching of the exponential decay of the amplitudes. For
a (100) surface, the amplitudes group into two classes. The matching
constants are determined such that the curves for the slowest decaying
density wave amplitudes (solid curve) agree with the exponential
solution of the linearized equations (dotted line).

[101], [101] (plus complex conjugates) follow the exponential
decay given above, since for the others the interface normal is
perpendicular to the principal reciprocal lattice vectors, & - i =
0. This means that they decay faster, as they are “slaved” by
the other fields (see Fig. 3). As explained in Ref. 40 the density
waves can therefore be grouped into two classes. The matching
constant for the slowly decaying fields is then determined
numerically as 6(111%0) = c%%o) = c(lg)lo) = c(lg%o) = 0.165 for the
definition of the interface position given above (the subscript
denotes the density wave, the superscript the interface normal).

The same procedure can be repeated for any other interface,
and in general all matching constant are different (they
are only pairwise equal for complex conjugate fields). The
corresponding plot for a (110) surface is shown in Fig. 4. The
obtained matching constants are 0(1111)0) =0.116 and 0(11)110) =

(11)110) = C(()11110) = c(()lllio) = 0.372; the remaining field u;jq is
slaved by the others and decays faster.

Finally, for a (310) interface (as a representative for an
arbitrary interface normal direction), the numerical matching
givescfyy = 0.128, ¢y = 0 = 0.18,¢\3” = 0.425. We
note that the fields u¢;; and ug,7, which are expected to have
a decay according to Eq. (25), turn out to behave differently;
they decay more slowly than anticipated, because, e.g., for

uo11 a forcing term of the structure ~u; 10“Toi from the cubic

10°
-2 -
10 I Te .~:~ -~ ———
-4 S ~—.
o 107 [ .. ~—
E ~ Sy
= -6 ~ .
= 107 ¢ . ]
-8 . [110] e .
10° [101], [101], [011], [017] mm mem oo |
[170] = = = .
-10 R [110] (matching) ssssus «
10 [ [101], [101], [011], [011] (matching) — - — 1

0 1 2 3 4 5 6
(z-zg)g

FIG. 4. Matching of the exponential decay of the amplitudes. For
a (110) surface, the amplitudes group into three classes: [110] has
the longest range; the second group is [101],[101],[011],[011]. The
shortest range density wave is related to the wave vector [1 10].
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FIG. 5. Matching of the exponential decay of the amplitudes for
a (310) solid-liquid interface. The range of the fastest decaying field
uoy; is not determined by quadratic but cubic interactions.

terms in the free-energy functional leads to a longer range
of the density wave than the anticipated quadratic term; in
fact, for the given inclination )Lgl]lo) > A(1311()0) + )L(I%ITO), with the
right-hand side being the inverse decay length of the slaved
field. In general, it means that also density wave amplitudes
with k - 4 % 0 can be slaved by other terms, and their decay
is then determined by the higher order nonlinearities. The
range of these slaved fields is very short, and therefore they
do not contribute significantly to the interaction potentials
derived below. The decay of all amplitudes, together with the
exponential fits, is shown in Fig. 5.

Let us briefly discuss the relevance of the box operator
corrections to the preceding results. So far, a single straight
interface is in principle described by a real density wave ampli-
tude, or at least by a constant complex phase. The box operator
explicitly introduces an imaginary factor, and therefore the
amplitudes pick up a small and slow oscillatory contribution.
Also, the results without the higher order corrections (as given
on the slow scale) do not yet depend on the value of €, which
is only reintroduced when the density profile is reconstructed
from the amplitudes. With the correction terms, € appears also
explicitly in the amplitude equations. The linearized equations
in the liquid region become

1 ; 1 .
WDy Zc” Py =0, 28
s+ € @ 28)

and in one dimension
. ~rs . i ;
0 ,u(J) N (k(_/) . ﬁ)u(” _ ﬁ_ﬁ(_/{ (29)
/ 21k
The general solution of the linearized problem then becomes
u) = Cia exp(k;az) +cjy eXp(k;bz)
+ c;fa exp()»;az) + c;fb exp()\;sz), (30)

with four independent solutions, since the equation is now of
fourth order. The new decay scales are given by

+ 2 A
W, = —ikD - kD)

S 172
8k
M) , (3D

=9 p2ED12 4
(( ) IK o
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)‘Ib — _i(k(j) . ﬁ)|k(/)|

N 1)2
o o, 81k
+ (—(km CAPIRDR — iM> .32

/_SC//

)‘;a — _i(lg(j) ,ﬁ)|]_é(j)|
o\ 12
(- apop - ) )
V=sc”
)‘;b — _i(lz(j) . ﬁ)|]€(j)|
IWH
kD . 7)? k(]) 2 , 34
( ( )7k + «/T (34)

with the abbreviations C” = C"(g¢) and S = S(go). Hence
we have for the real parts the relation ER()L;H) = E)'t()tzb) =
—S)t(k;a) = —m()t;b) > 0, which means that the solutions
with superscript + are growing solutions and the ones
with — are decaying solutions, all with the same range.
Notice that they all also have oscillatory contributions, i.e.,
a nonvanishing imaginary part, J(A)# 0. We also have
obviously A7, = =177 and A7, = —A7 ;. These relations are
important for the proper matchlng of i 1ncom1ng and outgoing
waves in the interface region between the two grains. They
imply ms()ﬁ ) =3(},) and o()ﬁb) = (1} ,); therefore the
oscillation frequency is equal for correspondmg decaying and
growing solutions. Also, the growth rates )\jfa are only weakly

imaginary in contrast to A . It is therefore not surprising
that we find numerically that amplltudes of the strongly
oscillatory solutions are very small, |c ,,b| < e j’al since an
interface should mainly be a decay and not an oscillation of the
density waves—the latter corresponds to a local change of the
lattice spacing; the oscillatory modes can therefore safely be
neglected. For § iron we have € = 0.0860 (i.e., ¢ = 0.0923),
and for this value X is only very slightly changed, and the
amplitudes almost undistinguishable. Notice, however, that A
formally becomes complex and that the decay rates Ji(1) for
the incoming and outgoing waves are slightly different, but for
present small values of € this difference can be neglected.

IV. INTERFACE INTERACTION

A. General framework

The simplest case of interacting solids is that of two lattices
of the same material and with the same structure that are
perfectly aligned up to a translation in the contact plane,
i.e., without misorientation between them (see Fig. 6). If
the crystals are fully aligned, which means that the atomic
planes match, the interaction between the solid-melt interfaces
is attractive, because exactly at the melting point (T = Ty)
merging of the crystals removes two solid-melt interfaces,
which reduces the total energy. On the other hand, the situation
is more complicated if the crystals are shifted against each
other, which implies elastic deformations of the lattices close
to the grain interface. As we will show, a sufficiently large
mismatch can lead to repulsive interactions.

It is quite remarkable that the asymptote of this structural
interaction between the crystals can be calculated fully
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FIG. 6. Sketch of the geometry for shifted crystals. The displace-
ment in the out-of-plane direction, Ay, is not shown. We assume that
in the normal direction the crystals are not shifted, as illustrated by
the dotted circles.

analytically from the free-energy expression. The procedure
is as follows: We assume two parallel crystal surfaces (see
Fig. 6), which are separated by a melt layer of thickness W. For
large W, the density wave amplitudes are almost decayed in the
center of the melt, and it is therefore sufficient to consider only
the free-energy terms up to quadratic order in the amplitudes.
The related equilibrium equations are therefore linear and can
be solved easily, and the corresponding (approximate) solution
has to be matched to the exact solution of the full problem of a
localized interface at z £ W /2. By the means of this matching,
we get an analytical expression for the disjoining potential.

We start the analysis with the derivation of a conservation
law. As before, we first ignore the higher order correction
that stems from the box operator. The full free-energy
expressions (3) and (12) have the structure

F=/m+ﬁm, (35)

where f, depends only on local terms (no gradients of the
amplitudes), whereas f; contains only first-order-derivative
terms. Notice that due to the parallel structure, all amplitudes
depend only on the coordinate z perpendicular to the interfaces.
Equilibrium demands

oF

sul — (36)

for all fields u/(z).
For a solid-melt-solid layer system, the free energy is in the
spirit of Eq. (1)

F=—WAf + V(W) + 2y (37)

in the present case of the underlying NVT ensemble. The
bulk free energy density difference Af = L(T — Ty)/ Ty
for a temperature deviation from the melting temperature
Ty corresponds to —AG introduced in Eq. (1) and will be
discussed in detail below.

To emphasize the analogy to a problem in classical
mechanics, we use a dot for the spatial derivative in the z
direction. The “Hamiltonian,”

H = fi = fp (3%
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is then a “constant of motion”; i.e., it does not depend on the
z coordinate,

H=0. 39)
We note that we use here a different sign convention than in
classical mechanics, where the Hamiltonian is the sum of ki-
netic and potential difference, not their difference. The naming
is here chosen by the property that H is a conserved quantity.
Furthermore, the free energy density takes the role of the
“Lagrangian,” from which the “equations of motion” are
derived.

For interfaces that are far apart, the amplitudes have almost
decayed to zero in the melt region, and all contributions which
are higher than quadratic in the amplitudes give only negligible
corrections. Therefore, we get

N/2
1 N
H = —nokgT § : ( Uy D*
— \ 5(q0)

4 %C//(qo)(lz(j) . ﬁ)zll(j)ll(‘i)*>. (40)
The corresponding linearized “equations of motion” which
describe the small amplitudes in the liquid region are therefore
again given by Egs. (23)—(25), with the only difference that we
have here two interfaces, and therefore both exponentials are
present. From this solution we can calculate the Hamiltonian
in a quadratic approximation,

N/2
1
H = =210k T<— (€€} yur + C}inCirou)-  (41)
S(q0) %

We can choose the origin z =0 in the center between the
two interfaces, and then the exponential prefactors have the
same absolute value but can differ by their phase, ¢; o =
¢j.in €Xp(i¢;). Furthermore, from the general solution (24) itis
obvious that a translation of the interface position in the normal
direction increases or decreases the prefactors ¢; by an expo-
nential factor exp(A ; Az), where Az is the shift distance. There-
fore, we getc; i, = cjoexp(—A; W/2); the matching constants
¢j,0 were determined already in the previous section. Hence,

N/2

H = —4noksT > lejol*exp(—i;W)cos ;. (42)
J

S(q0)

In general, it is necessary to introduce a tilt term to favor either
the liquid or the solid state, because otherwise a repulsive or
attractive interaction between the interfaces would forbid the
existence of a stationary solution (stable or unstable) with a
specific melt layer thickness W. We therefore have to raise
or lower the free-energy density of the solid phase relative to
the liquidby Af = L(T — Ty)/ Tx. In particular, overheating
above the melting point corresponds to Af > 0. Notice that
for the following calculation of the asymptotic interface inter-
action the precise form of the coupling in f7 is not important,
and only the tilt Af enters into the result, provided that the
bulk states u) = 0and u"/) = u, are temperature independent.
This is the case, e.g., for the coupling function (19), or—more
generally—if the coupling function does not have a linear
term in the amplitude variation 8u"’) = ") — u; in the solid

PHYSICAL REVIEW B 87, 024109 (2013)

and §u”) = 4 in the melt phase. The case that a linear term
exists will be discussed in more detail below in Appendix A.

In the solid, the amplitudes are (up to a phase factor) all
equal to u,, the gradients vanish, and therefore the Hamiltonian
becomes

H = —Af. (43)

Comparing this exact value, calculated from the solid phase,
and the asymptotic value for large interface separations (42),
calculated from the liquid phase, using the conservation
law (39) we obtain an implicit relation for the (asymptotic)
width of the liquid layer W as function of the deviation from the
melting point, Af. Asymptotically, only the slowest decaying
density waves with the smallest inverse decay length A,
contribute to the Hamiltonian, and we get

4nokgT T—-T
- il |Cmin,0lzexp(_)‘minw) Cos¢min ~ —L M;
S(q0) Ty
thus
1 S L(T — T
W L (@) (T = Tw)\
)‘-min 4'nokBT|cmin,0|2 cos ¢min TM

(44)

This expression diverges logarithmically at the melting point,
where W = oo is the equilibrium solution. If cos @y, is
positive, we find an asymptotic solution only for 7 > T),. The
interfaces attract each other, and this has to be compensated by
overheating, i.e., favoring the liquid phase. On the other hand,
for cos ¢in < 0, we have repulsive solutions asymptotically
only below the melting point.

At shorter distances the other density waves also contribute,
and we therefore have to sum over all of them, which leads to
an implicit relation for the melt layer thickness as a function
of temperature,

N/2

1
4nokgT —— ) |cjol* exp(=1;W)cos¢p; ~ L
ORB S(qO)Z 7,0 p J J

T —Ty
Ty

b
J

(45)

which follows directly from Eqgs. (42) and (43). This expression
is valid as long as the overlap of the density waves is still small,
such that the nonlinear energy contributions can be neglected.
We can interpret the free-energy shift Af as the chemical
force that balances the interface interaction. In fact, for a single
interface it is the driving force for melting or solidification.
From the equilibrium condition F'(W) = 0 we get by means
of Eq. (37)
H=-V'(W)=-Af, (46)

where —V'(W) is the disjoining force, which is derived from
the disjoining potential V(W). Integrating therefore gives

—2C"(q0)
VW) ~ 2nokgT | ———
W)= =2moles T\ [ =50

N/2
x Y kD - illejol* cos gy exp(—a,; W), (47)

J
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where we normalized the potential such that it decays to
zero for infinitely far separated interfaces, in agreement with
Eq. (37). Equation (47) is the central result of this article.
Notice that the above expression of the disjoining potential
is valid asymptotically for W — oo. In this limit WA; > 1,
which means that the interface thickness is small in comparison
to the grain separation W. Then the interfaces are sharp, and
the melt layer thickness is (uniquely) well defined. For shorter
distances, we use the same measure for W as defined above in
Eq. (27), taking into account that for the shifted crystals the
interfaces remain planar (the amplitudes depend only on z).

The solution of the linear equations is only valid for
“nonslaved” fields, in particular those with k) -4 # 0, and
therefore these fields contribute differently to the disjoining
potential by higher order nonlinearities. However, in the above
expression (47), the fast-decaying and therefore negligible
fields do not contribute due to orthogonality, k&) - 4 = 0.

We can choose the origin of the coordinate system such
that the amplitudes of one crystal are purely real. We assume
that the other crystal is translated against it in the plane of
the grain boundary, so (for a three-dimensional system) we
have two translational degrees of freedom. The translation
vector A7 then obeys Ar - 4 = 0, so with A = Z we get AF =
AxX 4+ Ay3¥. The original nonshifted crystal is described by
the expression

sn(F) = no Y u (@) exp(ik? - 7), (48)
J
and a translation is therefore described by
sn(F) = no »_ u (@) explik? - (7 + AF)]
J
=ng Z uP () exp[ilz(j) - AF] exp(ilgm -F).
J

The complex shift factors are therefore given by
¢; =k - AR (49)

We define the lateral dependence of the disjoining potential
for the fields with equal decay length 2, or equivalently the
same value £ - 71, in agreement with Eq. (47)

N/2

> cose;. (50)

kD -A=k-A

flz-ﬁ(AxﬂAy) = -

where we sum over all amplitudes j with equal decay length.

All density waves with the same decay length, i.e., equal
value of & - /A and A j = A, have the same exponential decay,
and we can define

Vi a(W) = 2noksT Mm-mexp(—xwy 51
S(qo)

The disjoining potential therefore becomes a superposition
of terms which factorize into a interface separation and
translation part,

N
V(W,Ax,Ay) ~ 25(12 CAED R
J
x|cjol? fra(AX, AY)Vi (W), (52)
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FIG. 7. Absolute value of the density wave amplitudes for (100)
interfaces without lattice shift, ¥{"*” = y{'® = 0. The inset is a
magnification around the origin, showing that the absolute value of
the amplitudes varies smoothly there. The slaved fields decay quickly
and do not show a visible overlap of incoming and outgoing waves.

B. {100} surfaces

We consider two parallel (100) interfaces of bcc crystals
as a first example. Asymptotically, the interactions stem
exclusively from the density waves with the slowest decay,
i.e., with the highest directional cosine k) - . In this case,
the principal reciprocal lattice vectors [110],[101],[1 101,[101]
(and their inverses) have the same decay length, and the
remaining, [011],[011] (plus inverses) form a second group.
All density waves within the same group have the same
absolute value, but usually differ in phase; notice that the
amplitudes depend on the lattice shift. This is shown in Fig. 7,
where the absolute value of the density wave amplitudes is
plotted as function of the position normal to the interfaces
for a case without lattice shift. In the solid, all amplitudes
reach the same bulk value u; due to the crystallographic
symmetries.

In agreement with the notation of (100) interfaces, we use
a coordinate representation for 21°0 = 2109 = (1,0,0), and
hence the tangential vectors have the coordinate representation
2000 = (0,1,0) and )7(100) = (0,0,1). The translation is peri-
odic with respect to shifts by one lattice unit @ = 2+/27 /g in
each direction X and ¥ (the factor V2 comes from the fact that
the reciprocal lattice vectors point along the face diagonal
of the bcc crystal). We can therefore introduce rescaled
coordinates 1,0{100) = Ax qo/\/z and w;loo) = Ay qo/ﬁ; all
properties are then 2 periodic for this coordinate representa-
tion.

For the (100) interfaces, the phase shifts of the fields are
summarized in Table I together with the previously determined
matching constants, and we therefore obtain for the longest
range exponentials

(100)
f

0 ) = 2 (con ™+ cos g™, (53

which is plotted in Fig. 8. The disjoining potential for the
most attractive situation [matching lattices, (a)] and the most
repulsive case (b) are shown in Fig. 9. The predictions are
compared to numerical calculations, which were obtained
in a dynamical run at 7 = T),. This means that we set up
a solid-liquid-solid “sandwich” structure, with a phase shift
between the solid phases in the real-space implementation.
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TABLE 1. Matching and shift properties of the density wave
amplitudes for (100) interfaces.

kO k9 - a Phase shift ¢; Matching constant c; o
[110] 1/v/2 Y% 0.165
[101] 1/v/2 A 0.165
[170] 1/+/2 —y {10 0.165
[10T] 1/v/2 —y' 0.165
[011] 0 (slaved) (slaved)
[011] 0 (slaved) (slaved)

Due to the overlap of the interface profiles we have an
attractive or repulsive interaction between the interfaces; thus
the configuration is not in full equilibrium. During the time
evolution we numerically compute the melt layer thickness
W and the energy F according to Eq. (12), without the
correction term from the box operator. The dependence F(W)
is then plotted and compared to the analytical predictions. This
method is approximate in the sense that the system is not in full
equilibrium with AV’ /9t = 0. A more precise approach is to
balance the interaction with a thermal tilt T # Tj; and then
to calculate the energy for the relaxed solution F — Fr; this
approach is used for the interaction of misoriented crystals,
which are treated in Sec. V. As long as the interaction is weak,
both methods give the same results, and we have checked
that the present results are robust. Also, they agree very well
with the analytical predictions for the asymptotic interaction.
For the special case that the disjoining potential has a
minimum—a case that we will encounter later—the dynamical
runs converge to this point, where the interaction energy
therefore becomes exact.

In the liquid region, the density wave amplitudes are given
by the expression (24). It is instructive to look also at amplitude
and phase separately. With a real coefficient ¢; ;, and ¢; o,y =
cjin€xp(i¢;) we obtainat z =0

|u<j>|2 = 2cim(1 + cos¢;). 4

For the special case ¢; = 7 (the most repulsive case) the
amplitudes have a cusp there, and correspondingly the phase

3n/2 vo'%% = [001]

w19 = [010]

2n

FIG. 8. Lateral dependence f;_;oi))l I of the slowest decaying
contribution to the disjoining potential of two parallel (100) surfaces.
The interaction is repulsive for positive function value. The two

arrows mark the most attractive (a) and most repulsive situation (b).
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FIG. 9. The disjoining potential for the two cases (a) (solid
curve) and (b) (dashed curve) of (100) interfaces. For each case,
the squares show the result from the numerical simulation, the lines
the asymptotic prediction, taking into account the slowest decaying
density waves.

jumps discontinuously. Notice, however, that this singular
behavior appears only in the polar representation of the
complex amplitudes; in a complex sense they are smooth at
z = 0. This behavior is visualized in Fig. 10. We note that
a cusp in the “order parameter” was introduced phenomeno-
logically in Ref. 24. Here it is a natural consequence of the
description.

C. {110} surfaces

The situation immediately becomes more complex for the
next example of (110) interfaces; thus 2119 = (1,1,0)/«/5.

0.001

0 o o
-1 -0.5 0 0.5
[110], [101], [170], [101]

[011],[017] =====

|u(1)|/us

[110], [101], (110}, [101]
[ [011], [011] ==m==

2.5+

1.5

arg(u(j))

0.5 |

05 . . .
-10 -5 0 5 10
zZ

FIG. 10. Top: Absolute value of the density wave amplitudes for
(100) interfaces for crystals that are shifted by half a lattice unit,
100 — {19 — 7 The inset is a magnification around the origin,
showing that the absolute value of the amplitudes has a cusp there.
The slaved fields decay quickly and do not show a visible overlap of
incoming and outgoing waves. Bottom: Corresponding phases of the

amplitudes.
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The tangential vectors are here defined through the coordinate
representation £119 = (0,0,1) and M0 = (1, — 1,0)/+/2,
and the phase factors are wf”o) = Ax go/~/2 and %110) =
Ay qo/2, to recover the 2w periodicity. This means that
the axes in the interface plane are stretched differently, and
therefore the geometry loses its fourfold symmetry (it reduces
to a C, symmetry), in agreement with the fact that in the
interface plane the distances between the atoms are different
for the two perpendicular directions.

Here, the density wave which corresponds to the principal
reciprocal lattice vector k) = [110] has the longest range,
since its crystallographic ordering extends the farthest into the
melt, k&) - 4 = 1. Therefore, the longest-range interaction is
mediated by this density wave. Since it is a plane wave, it has no
lateral dependence, which means that the disjoining potential
does not depend on wf”o),wélw), and this contribution to
the interaction is always attractive. This implies that at large
distances we always find an attraction of crystals, irrespective
of the lattice shift; i.e.,

G- (55)

As soon as the interfaces come closer to each other, the
contribution from the next density waves becomes noticeable.
In this case, it comes from the density waves with reciprocal
vectors [101], [011], [101], [011] (and their inverse vectors),
which have all a directional cosine & - 4 = 1/2; thus the range
of their contribution to the interaction is only half of the range
of the leading term. The total lateral dependence from this
set of density waves,

f];'ﬁlﬁ)l/z = —4cos wl“ 9 cos w;no), (56)
is shown in Fig. 11. It has attractive and repulsive regions:
If the crystals are perfectly aligned, wl(”o) = 5”0) =0, the
interaction is of course attractive, because the interfacial
energy would vanish completely if the crystals merge. For
maximum mismatch, i.e., if the crystals are shifted by half a
lattice unit in one direction, the interaction has reached the
strongest repulsive situation. For a shift by half a lattice unit in
both directions we recover again the attractive case, because
then the crystallographic planes in the (110) surface match
again.

FIG. 11. Lateral dependence f]:]nlzo)l 2 of the second contribution to
the disjoining potential of two parallel (110) surfaces. The interaction
is repulsive for positive function value. The two arrows mark the most

attractive (a) and most repulsive situation (b).
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TABLE II. Matching and shift properties of the density wave
amplitudes for (110) interfaces.

kO k9 a Phase shift ¢; Matching constant c; g
[110] 1 0 0.116

[101] 1/2 O _ (1O 0372

[011] 12 YO oy MO 0372

[101] 1/2 —y 10—y {10 0.372

[011] 1/2 (10 (N0 0372

[110] 0 (slaved) (slaved)

The relevant data for the calculation of the asymptotic
disjoining potential is summarized in Table II, and the potential
is plotted in Fig. 12 for the case of no misfit (a) and the
most repulsive case (b) with wfno) = and wélm) =0, as
illustrated by the arrows in Fig. 11. As mentioned before, we
have a purely attractive behavior at large distances independent
of the lattice translation, and the agreement with the analytical
prediction is confirmed in the logarithmic plot Fig. 13.
At shorter distances, the numerically calculated disjoining
potential deviates from the analytical prediction from the
slowest decaying density waves only (dotted lines in Fig. 12),
and the inclusion of the next terms leads to a significantly
better agreement (solid and dashed line), and we observe the
distinction between the attractive and repulsive cases. Only at
short distances is the interaction strongly affected by nonlinear
contributions. In particular, we observe a stable minimum in
the disjoining potential for the most repulsive case, because a
hard core repulsion due to elastic deformations prevents a full
merging of the interfaces.

D. {310} surfaces

As alast example we investigate (310) interfaces, where we
receive nontrivial contributions from the first and the second

-0.02 -

T
.
.
.
[}
)
[y

b—=,

-0.04 - *

\GS

-0.06 -

-0.08 | Sl v "92r20.0, w, ""V27=00  © A
. v "927=0.5, i, ("%27=00 m

2 3 4 5 6 7 8 9 10

FIG. 12. Disjoining potential for (110) interfaces. At large dis-
tances, the interaction is always attractive and solely determined
by the (110) density wave. The graphs shows numerical results
for two different shifts together with the analytical predictions: The
dotted curve takes into account only the longest-range exponential,
the solid (a) and dashed curve (b) also the corrections due to
faster decaying density waves. Asymptotically for large distances the
numerical and analytical data match perfectly, and the consideration
of additional shorter ranged exponentials leads to a better agreement
also at intermediate distances. At small interface separations W
contributions from the nonlinear terms lead to deviations between
theory and simulation.
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1 i ' | |
S W1( ),21[ 00 " (110)/215—00
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| Asymptotics —-——--
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FIG. 13. Asymptotics of the disjoining potential for (110) inter-
faces. At large distances, the interaction is always attractive and solely
determined by the (110) density wave. The graph shows numerical
results for two different shifts together with the analytical prediction
(only the contribution from the slowest decaying exponential).

exponentials. With AG'® = (3,1,0)/+/10 we use tangential
vectors £319 = (0,0,1) and $3'9 = (1, — 3,0)/+/10. The
27 periodic in-plane coordinates are I/f(310) Ax qo/ \/— 2 and

5310) = Ay qo/+/20, and all data are summarized in Table III.
The longest-range density wave is uj19, and the lateral
dependence of the disjoining potential

(310)
fk A=25

is shown in Fig. 14. Two fields, [101] and [101] (plus inverse
vectors), contribute to the next exponential; therefore the
lateral dependence of this term is

(310) _ (310) (310)
Sinoapys = —cos(¥ 7 +up ) —

= —2cos ' cos Y ', (58)

—cos 2y (57)

cos ( (G10) 5310))

see Fig. 15. We investigate in particular three different
shifts, all with '@ = 7 and ¥ = 0.04 x 27,

§310)'b =0.07 x 27, and wf“’)'c =0.11 x 27. For this in-
clination, both the longest-range term and the next term have—
depending on the mismatch—attractive and repulsive regions.
The three scenarios are indicated by the arrows in Fig. 14
for the lateral dependence of the slowest decaying exponential
and also in Fig. 15 for the next exponential. Apparently, for the
sample cases (a), (b), and (c) the slowest-decaying exponential
is always attractive, whereas the second is repulsive. From (a)
to (c) the strength of the first exponential becomes smaller, and
therefore we see a crossover from a long-range attraction to

TABLE III. Phase shifts and matching constants for the (310)
interface normal for the nonslaved fields. Notice that the fields with
the highest scalar product £ - /i have the longest range.

kO k9 - a Phase shift ¢; ~ Matching constant ¢ o
[110]  2/+/5~0.89 2y {10 0.128

[101] 3/2v2~0.67 y'0 4 y0 0.18

[101] 3/2v2~0.67 y{'” —yC0 0.18

[170]  1/4/5~0.44 4y P10 0.425

[o11; 1/ 252022 (slaved by cubic) (slaved by cubic)
[011] 1/ 2/5~022 (slaved by cubic) (slaved by cubic)
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FIG. 14. Lateral dependence of the longest-range contribution
of the disjoining potential for the (310) interfaces. The potential is
attractive in regions where the value is negative. In particular, this
contribution to the interaction does not depend on the translation in
the [001] direction.

an intermediate repulsion. This prediction is confirmed by the
numerical results in Fig. 16. Figure 17 shows the asymptotics
of the disjoining potential for ¥'?“ = 7 and ¥{*'" =
0.04 x 27 and the comparison with the analytical prediction.

E. Box operator corrections

Let us briefly discuss the influence of the correction terms of
the box operator, which have been neglected in the discussion
so far. With the previous knowledge that the additional terms
are small, it is immediately transparent that the results can
be modified only slightly, and therefore the above simplified
picture remains valid. Nevertheless, the analysis can also be
formally performed in this more complicated case, and this is
outlined here.

The presence of the box operator leads to the following
modifications: First, the amplitudes in the linearized region
become a superposition of four exponential solutions instead
of only two. Determining the disjoining potential now requires
identifying matching pairs of incoming and outgoing waves
in the sense of a conservation law. Two of the exponentials
are strongly suppressed, since they show relatively fast
oscillations. Second, the concept of the Hamiltonian as in clas-
sical mechanics is only applicable if the free-energy density
contains only first-order derivatives (the kinetic term). The

=
‘ < '//,
,a,;//,,,'/.'.

FIG. 15. Lateral dependence of the second-longest-range con-
tribution of the disjoining potential for the (310) interface normal
direction. The potential is attractive in regions where the value is
negative.
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FIG. 16. The disjoining potential for (310) interfaces for the three
cases a, b, ¢, as explained in the text. For each case, the isolated points
show the result from the numerical simulation, the dotted lines the
asymptotic prediction, taking into account only the slowest-decaying
density wave [110], and the solid line the analytical predictions,
using the first and second exponentials. The potential is here in all
cases attractive at large distances and repulsive for small separations
W. Asymptotically for large distances the numerical and analytical
data match perfectly, and the consideration of additional shorter
ranged exponentials leads to a better agreement also at intermediate
distances. At small interface separations W contributions from the
nonlinear terms lead to deviations between theory and simulation.

box operator, however, introduces higher order derivatives,
and therefore this concept has to be generalized.

A generalized conservation law, which is valid also for
misoriented grain boundaries, where the box operator is
essential, is derived in Appendix B, and here we need only
the special case that all fields depend only on the coordinate
normal to the grain boundary. (In the general case, the
Hamiltonian is an integral expression along the grain boundary
plane, which reflects the fact that the interaction forces can vary
spatially and have to be averaged to get the net force.) Here,
the interaction is homogeneous, and therefore the following
expression becomes a conserved quantity:

N/2
H = Z(p(j)u(j) + p(j)*ll(j)* 4 @50 ~|—r(j)*11(j)*
Jj=1
— DOy ’;(j)*u(j)*) _ (59)
107" N —
Analytical asymptotics
102 Numerics o

W)\,O

FIG. 17. Logarithmic plot of the asymptotics of the disjoining
potential for ¥*'"* = 7 and ¥"'”* = 0.04 x 2 for (310) inter-
faces. The numerical results are compared against the analytically
determined asymptotic behavior including the two slowest-decaying
exponentials.
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where f is the free-energy density. It corresponds to a

generalized Legendre transformation, with “momenta”

G . Of R
oouWw’ RPN

p (60)
where we treat u) and the complex conjugate u* as
independent functions. The Hamiltonian is conserved; i.e.,
H = 0. From the linearized solution (30) we obtain after some
straightforward but tedious algebraic manipulations

N/2

2nokpT
H:_nOB Z(f*vL et

+ciket +ctieT))
S(q0) J.a~j.a j.aCja J:b~j.b J:b™j.b

i
(61

for the value of the Hamiltonian, calculated in the liquid up to
second order.

Similar to before, the prefactors of the exponentials in the
linearized solution decay with the melt layer thickness, and we
have

Cra = € eXP(5, W/2), 62)
Cra = Clu exp(=1],W/2), (63)
cip = 1 exp(h;, W/2), (64)
ety = ¢l exp(=1], W/2). (65)
Therefore, the disjoining potential becomes
N/2 - —.0% 4.0
2n0k3T ja Cja +
VW) = — - —exp(—AT W
W) = - ij [ AW
—,0% + 0
b
+ T CXP(—)»IbW)} +c.c. (66)
Js

Again, the prefactors acquire a complex factor if the crystals
are translated against each other. As mentioned before, the
prefactors ¢’ b % and c b are small and can be neglected. For
rough interfaces (e —> 0) we recover the above expression (47)
for the disjoining potential.

V. INTERACTION BETWEEN MISORIENTED GRAINS

An analysis for the long-range interaction as for the
shifted crystals is not possible if a misorientation is involved,
since the problem is not one-dimensional anymore. However,
the range of the interactions can still be understood using
similar arguments, and the central outcome is that they are
significantly shorter ranged. We consider here the case of a
tilt grain boundary, to illustrate the basic idea. As had been
discussed in detail in Ref. 42 the presence of a lattice rotation
makes the use of the full box operator mandatory, and still the
description is only valid for small misorientations.

Let us assume that the left grain (z — —oo, characterized
by subscript —) is rotated by ®_ with respect to the reference
orientation of the RLVs, whereas the right grain (z — oo,
subscript +) is rotated by . Still the interfaces are assumed
to be planar and normal to the z axis.

First, the left grain has amplitudes

u? = uy explik P M(d_)7] (67)
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in the bulk, where the dagger denotes transposition and

M(®) = R(P) — I with the identity matrix I and the rotation
matrix R(®),
R(®) — ( co's ® sin <I>) . 68)
—sin® cos®
Similarly, for the right grain
u— = uy explikVTM(d,)F]. (69)

This suggests looking for solutions in the liquid region of the
structure

u = c; L explikVTM(®_ )Flexplh; ,(P-)z]

+c;, explikVTM(®_)F] exp[ ,(P_)z]
+cl, explikVTM(® )F] exp[AT (. )z]
+c, explikVTM(®, 7] explaf, (@42, (70)

in analogy to Eq. (30), with RA; ) < 0, RA; ) < 0,
‘R()DL ) >0, ‘R(A+ ) > 0. The ranges Ai ajp AT computed
from the llnearlzed equilibrium condltlon (28) with the help
of the rotation theorem

C2Lf(F) exp(ikDTMF)] = exp(ikVTMA)T2 , f(F)
for any function f(¥) and
Ly 1)

0. — k(])
o 2q0

with the rotated reciprocal vectors k) = RTkU); see Ref. 42
for details. It turns out that the decay ranges are given by the
same expressions as for the shifted crystals, Eqs. (31)—(34),
but the reciprocal vectors have to be rotated here appropriately
in the k) - /i term.

Inserting these expressions into the generalized conser-
vation law (B6) using only quadratic terms gives H = 0 in
disagreement with the tilt H = —Af. This shows that the
longest-range interaction is not mediated by the quadratic
terms in the functional but stems from the higher order
nonlinearities. Since their contribution vanished quickly in the
melt phase, it is intuitively clear that the interaction range for
misoriented grains is shorter than for shifted crystals.

One can interpret this statement also in a physical way:
For two misoriented grains the normal shift between lattice
planes of the two crystals varies along the grain boundary, and
therefore the interface alternatingly consists of regions where
the atomic planes match and where they are out of phase. This
leads to alternations of attractive and repulsive regions along
the grain boundary. Since the strength and size of attractive and
repulsive regions is equal at quadratic order, their contributions
cancel each other in the total interaction energy between the
grains. Thus, only shorter range higher order terms can be
responsible for the disjoining potential here.

To understand the range of the remaining interaction further,
one can continue to employ the conservation law (B6). The
next step is to assume that the interaction stems from the
cubic terms in the functional. They can appear in two different
ways: First, they can appear as products of two incoming
and one outgoing wave or one incoming and two outgoing
waves from expression (70). Second, the cubic nonlinearities
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FIG. 18. Comparison of the interaction decay for (100) shifted
crystals and a (100) symmetric tilt with 260 = 45.2° for § iron.

(which appear as quadratic terms in the equilibrium conditions)
generate perturbations of the basic solution (70). The structure
of these perturbations §u'/) would again be a product of two
density waves, and a product of the type u"’su'/) would
then have then same structure of a product of three density
waves. However, such a product would contain a term like
exp [(A1 + X2 + A3)z] with three decay lengths A, Az, A3,
which would appear in the conservation law. Since it has a
nontrivial z dependence, all these terms in the end have to
cancel, since by the conservation law the Hamiltonian must
be z independent. Therefore, also the cubic terms cannot
contribute to the long-range interaction.

At quartic order, terms like exp [(A] + X2 + A3z 4+ A4)z] can
again be z independent in the Hamiltonian, and they do not
cancel; thus they finally balance the temperature term Af.
The interaction range is therefore set by the sum of two A
values, and decays therefore twice faster as for shifted crystals.
This is also confirmed by numerical investigations. Figure 18
shows the cases of the shifted crystals in comparison to a
repulsive grain boundary. The shifted crystals case depicts
the maximum repulsion for (100) interfaces, as discussed
before in Fig. 9 (curve b), again without the correction term of
the box operator. In comparison, the disjoining potential for the
repulsive grain boundary with a misorientation of 260 = 45.2°
decays significantly faster. For these simulations we used € =
0.0923 and also took into account the box operator correction,
since otherwise rotated crystals would melt spuriously at
T = Ty. For the mapping to physical data we used the
parameters for bce § iron, which were previously determined
in Ref. 40.

Figure 19 shows the same data on a logarithmic scale,
together with the analytical prediction of the slowest-decaying
quartic interaction term, which stems from the [110] and [101]
density waves; here we note that for the prediction of the decay
range also the rotation of the interface normal by 6 has to be
taken into account in expression (25). More explicitly, due
to the rotation invariance established by the box operator, for
each interface either the reciprocal lattice vectors (related to
the lattice orientation) or the interface normal vector have to
be rotated according to the grain misorientation. Preserving
the k vectors as given by Eq. (6) therefore leads to n, =
cos@, ny, =siné, n; = 0 for the components of the normal
vector for the symmetric tilt of interest. For the parameters
of iron, as given in Ref. 40, the corrections of the higher
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FIG. 19. Comparison of the interaction decay for (100) shifted
crystals and a (100) symmetric tilt with 26 = 45.2° for § iron. The
decay range of the quartic asymptotics is calculated without including
the box operator correction term, which is negligible here.

order terms in the box operator to the interaction ranges and
the corresponding oscillatory contributions of the density wave
decay are negligibly small, as discussed in Sec. III. Hence we
can use Eq. (25) for the prediction of the decay range of the
density waves at the solid-melt interfaces. Notice that for 260 =
45.2° the directional cosine &) - 7 is largest for [110], which
therefore gives the dominant contribution to the asymptotic
interaction of the interfaces for large separation (the second
most important density wave is related to [101]). Hence
the dominant quartic interaction stems from a nonvanishing
term containing the factor exp[(2A[},q;, + 2A(1}01.0)2] = 1 in
the conservation law, resulting from two growing and two
decaying exponentials. Thus the interaction decays at large
separations W as V(W) ~ exp(—2A(110)W). Notice that these
considerations do not easily allow us to predict the prefactor
of the interaction, as the quartic terms can appear from various
sources [the quartic terms in the functional (12), cubic terms

involving perturbative contributions u)*su") and quadratic
terms (8u®)?]. We therefore determined the prefactor such
that the numerical results are matched. These numerical
results confirm that the interaction of misoriented crystals is
mediated by quartic terms in the framework of this model, and
therefore the interactions of wet grain boundaries are very short
ranged.

VI. DISCUSSION AND SUMMARY

We have calculated the interaction between solid-liquid
interfaces based on amplitude equations, which are derived
from PFC or density functional theory. In the framework of this
model, the tail of the structural interaction can be calculated
fully analytically for grains which are not misoriented but only
differ by a lateral translation. It is short ranged and decays
exponentially with the grain separation. Depending on the
lattice mismatch we find that the interaction is either attractive
or repulsive. It is most attractive if the lattice planes are
fully aligned, such that complete freezing would remove any
interface between the crystals. In the opposite extreme case,
that the grains are shifted against each other, such that a strong
mismatch appears when the liquid layer disappears, leading to
strong elastic deformations, the interaction is repulsive. The
entire interaction is a superposition of the contributions of
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the different density waves, and the longest-range fields at a
solid-liquid interface, i.e., those density waves which extend
the crystalline ordering furthest into the melt, also give the
longest-range contribution to the solid-melt interface interac-
tion. The range of this interface interaction is given by Eq. (25)
for the individual density waves. This analytical expression
also shows that the range of the interaction is determined
by scattering properties of the melt phase and the relative
orientation of the density wave vector to the interface normal.

The case of purely translated grains describes unstable
configurations or repulsive interactions, since strong lateral
forces will force the system back to configurations with
aligned crystallographic planes. Nevertheless, the results will
be relevant for the understanding of the merging of dendrite
sidearms from the same grain, where due to elastic deforma-
tions the lattices in the side branches are shifted against each
other. Apart from the remarkable feature that the interaction
and its origin can be understood fully analytically, we also
mention the relation to the similar concept of y surfaces**—
the energy landscape of two half crystals are which are
tangentially displaced against each other—which is essential
for the understanding of stacking faults and other defect
formation mechanisms. Here, we obtain a fully analytical
prediction of this lateral dependence of this energy landscape
for solid-melt-solid layer systems at larger distances.

At this point we also mention that the term interaction
must not be interpreted as a mechanical force that leads to
an interaction between the grains, but rather a thermodynamic
force. The central difference is that a mechanical attraction,
e.g., would move the grains towards each other, so each atom
moves. Here, however, we consider the situation of a melt
layer that separates the two grains, and therefore the attraction
between the grains would manifest in the solidification of the
melt layer. As a consequence, the gap between the crystal is
closed, but without a rigid-body motion of the entire grain.
In other words, during the solidification process the number
of atoms in the solid phases increases, whereas it would be
conserved for a purely mechanical motion. This aspect is also
important from another point of view: In the consideration of
the shifted crystals we have excluded translations in normal
direction (z direction) and only investigated motion in the
tangential xy plane. This means that the atomic planes are
always aligned in the normal direction and only exhibit a
mismatch in the others. One could also consider the translation
in z direction, which would then lead to an additional
oscillatory interaction dependence in this direction. This Az
dependence is not related to the exponential decay of the
disjoining potential, which appears separately on a larger scale.

Beyond the case of pure grain translation we have also
considered grain boundaries with a misorientation. In this case,
a full analytical calculation of the disjoining potential is not
possible anymore and numerical investigations are needed.?
Nevertheless, we have explained that the interaction then stems
from higher order terms in the free-energy functional, since the
longest-range contributions from quadratic terms cancel. As
a result, we find that the disjoining potential decays twice as
fast as for shifted crystals. This prediction of the interaction
range is confirmed also by numerical simulations and further
discussed in Ref. 33.
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APPENDIX A: LINEAR TEMPERATURE COUPLING

The difference between the coupling functions (18) and (20)
is that the first is quartic in the amplitude variations in the
bulk states and the latter linear. From this we immediately
conclude that in the first case it is not necessary to take the tilt
term into account for the solution of the linearized equations
in the liquid region, as it is of higher order, and it appears there
only effectively through the energy shift as the value of the
Hamiltonian. The situation is different for the linear coupling,
and different effects have to be taken into account formally:
(1) The amplitudes in the liquid change since the minimum of
the potential energy is shifted away from u") = 0 for T # Ty,
(i) the amplitudes in the solid change since the minimum of the
potential energy is shifted away from u) = u, for T # Ty,
(iii) the thermal tilt gives a contribution to the Hamiltonian in
the liquid, which needs to be taken into account up to second
order, and (iv) the value of the Hamiltonian changes in the
solid due to the shift of the solid amplitudes.

At a first glance, one may therefore expect that the
results are changed by these effects, and that the long-range
interaction should depend on the precise choice of the coupling
function. However, here we show that this is not the case up to
linear order in (T — Tys)/ Ty. For simplicity, we again do not
take into account the correction term from the box operator.

Writing f({u},T) = Ffrom({u}) + fr in the spirit of
Egs. (3) and (21), where f,,, therefore contains the free-
energy density terms to cubic and higher order (leading to the
nonlinear terms in the equilibrium conditions), we therefore
obtain the equilibrium conditions

5F W .
: =n0kBT(“ L C@ o, )2u<f>)

Sul* S(qo) 2
fpomt (U} 0fr({u}) _
+ QuU)* + QuU)* =0. (Al

The equilibrium conditions for the liquid between two solid
phases are therefore up to first order in the amplitudes

0 .
nokaT (2 4 D) o) 0
S(qo) 2
T—Ty 1 u?
+L — =0 (A2)
Ty Nug [uD|

and differ from the previous condition (23) only by the
temperature term. For simplicity, we consider from now
only the case of real amplitudes, i.e., no crystal translation,
u/|u’| = 1. Then the general solution is

u? = C + ¢jinexp(—1jz) + ¢jour €xp(hjz),  (A3)
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where the decay parameters are unchanged and given by
Eq. (25). The constant term is

S(qo) T —Ty 1
c=-S)  T-Tu 1 (Ad)
nokBT TM NMS

In the same way, we can analyze the behavior in the solid
phases, where the amplitudes are constant. One readily finds
that the deviation from the previous bulk value u') = uy is
linear in the temperature deviation (7" — Tys)/ Ty

The expression for the Hamiltonian up to second order in
the amplitudes also now contains the tilt term,

U Dy

anB N
Z < S(qo0)

Jj=1

N C”(qo)(k(,) )zumu(”*) — fr.

(A5)

Inserting the above solution gives up to first order in (7 —
Ty)/ Ty the same expression (41) as before.

In the solid, the value deviates from the previous expression
H = —Af = L(T — Ty)/ Ty only by quadratic corrections
in Af. Consequently, the long-range interaction is unaffected
by the choice of the linear instead of a higher order coupling
function for the temperature.

APPENDIX B: THE GENERALIZED CONSERVATION LAW

As has been demonstrated in Sec. IV the consideration
of the Hamiltonian H as a conserved quantity is a valuable
way to understand the interaction of two crystals, which
have the same lattice orientation but are shifted against each
other. The limitations were (i) the neglect of the box operator
correction and (ii) the restriction to pure translations, which
forbids the analysis of grain boundaries, where the crystals are
misoriented.

Here we generalize this concept to overcome these re-
strictions. For the shifted crystals, the translation leads to
a multiplication of the amplitudes by a spatially constant
phase factor. The main difference is that a rotation leads to
nonconstant phase factors. In particular, the amplitudes then
do not depend only on a single coordinate normal to the grain
boundary, but on all spatial coordinates. Therefore, a proper
conservation law should also take into account the directions
parallel to the interface.

We consider a “Lagrangian” (i.e., the free-energy density
in the present context) of the form

L= ﬁ({ld(j)},{u(j)*},{Ift(j)},{lft(j)*},{u(j),},{u(j)*/},

x (i) (i) () ), ®h

where expressions like {#} denote the set of all amplitudes
u. For simplicity, we assume that all fields depend only on
two coordinates, which we choose to be normal and tangential
to the interface. This is the case, e.g., for tilt grain boundaries,
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and a twist would require the straightforward inclusion of
another tangential dependence. Derivatives with respect to
these directions are denoted by a dot for the normal and a
prime for the tangential direction, although this assignment of
directions is in principle arbitrary; however, it will turn out to
be a useful choice. We align our coordinate system such that
x is the normal and y the tangential direction. In contrast to
the pure Hamiltonian system in the previous section here also
higher order derivatives appear. It turns out that in our case
mixed mode derivatives like 4" do not appear, and therefore
we do not consider them.
We introduce generalized momenta,

) oL . oL
() .— ) —
Pr=am 1T o0 ®2)
) oL . oL
) — ) —
rv) = PPHE s = P B3)

Here, u"” and u'/* are treated as independent variables. The
equilibrium conditions for the amplitudes

1) o
can be written as
oL , Y .
_ p(]) _ q(J) 47D L O = 0. (B5)
au(])
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We obtain then the following conserved quantity, which means
H=0:
N/2
H— /dy[Z(p(j)u(j) 4 U L pDU) el
j=1

— Dy _ ,;(j)*u(j)*) _ ‘C]' (B6)
Here, N /2 is the number of independent density waves (we
write the complex conjugate fields explicitly and must not
double-count them). The proof is straightforward: Performing
the normal derivative and application of the equilibrium
conditions (BS) yields after a few algebraic simplifications

N/2
H = /dy Z [ —0y(qV D 4 g%y

i=j
—0,(sDa 4 sy 4 ay(s(”u(f))} -0,

where the last step follows from periodicity along the grain
boundary (in the y direction).

The expressions are written here for a two-dimensional
dependence of the fields, which is the case of tilt boundaries in
a three-dimensional system. It is obvious that for more general
cases, e.g., twists, the concept can easily be generalized by in-
troduction of a second coordinate in the grain boundary plane.
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