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Phase transitions in XY antiferromagnets on plane triangulations
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Using Monte Carlo simulations and finite-size scaling, we investigate the XY antiferromagnet on the triangular,
Union Jack, and bisected-hexagonal lattices, and in each case find both Ising and Kosterlitz-Thouless transitions.
As is well known, on the triangular lattice, as the temperature decreases the system develops chiral order for
temperatures T < Tc, and then quasi-long-range magnetic order on its sublattices when T < Ts, with Ts < Tc.
On the Union Jack and bisected-hexagonal lattices, by contrast, we find that as T decreases the magnetizations on
some of the sublattices become quasi-long-range ordered at a temperature Ts > Tc, before chiral order develops.
In some cases, the sublattice spins then undergo a second transition, of Ising type, separating two quasi-long-range
ordered phases. On the Union Jack lattice, the magnetization on the degree-4 sublattice remains disordered until
Tc and then undergoes an Ising transition to a quasi-long-range ordered phase.
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I. INTRODUCTION

Two-dimensional fully frustrated XY (FFXY) models have
been the subject of considerable interest over the past three
decades; for a recent review see Ref. 1. In addition to their
intrinsic theoretical importance within the field of critical
phenomena, such models can also be realized experimentally
via Josephson junction arrays (JJAs) in a uniform magnetic
field.2,3

In this work, we provide strong numerical evidence that the
magnetic transitions of FFXY models can display rather un-
usual behavior. In particular, we observe a magnetic transition
from disorder to quasi-long-range order which is in the Ising
universality class, rather than the Kosterlitz-Thouless class, as
would be expected for two-dimensional XY models.

On the triangular lattice, or indeed any triangulation of
the plane, the FFXY model coincides with the usual anti-
ferromagnetic XY (AFXY) model,4,5 defined by the reduced
Hamiltonian

H = J
∑

ij

si · sj = J
∑

ij

cos(θi − θj ), (1)

where si = (cos θi, sin θi) is a planar spin with unit length
on lattice site i, J = 1/T is the inverse temperature, and the
summation is over all nearest-neighbor pairs of sites.

The ground states of the triangular-lattice AFXY model
are such that the spins on each of the three equivalent
triangular sublattices are perfectly aligned, with adjacent
spins differing by an angle ±2π/3. In addition to an SO(2)
rotational degeneracy, generic of XY models, there is a
discrete Z2

∼= O(2)/SO(2) reflection degeneracy, induced by
frustration, corresponding to the two possible chiralities of
each elementary triangular face. The chirality of a face refers
to the sign of the rotation of the spins as one traverses the
face counterclockwise (see Fig. 1). At positive temperatures,
the Mermin-Wagner theorem6 forbids the sublattice spins
from ordering. However, for low temperatures, the sublattice
magnetizations exhibit quasi-long-range (QLR) order (alge-

braically decaying correlations), while the chiral degrees of
freedom exhibit a genuine long-range order.

Despite some early controversy,4,5,7–11 there is now a
consensus1,12–19 that for a number of FFXY models sharing
the same ground-state degeneracies, including the triangular-
lattice AFXY model and square-lattice FFXY model,20–22 the
phase transition associated with the magnetic order parameter
occurs at a temperature Ts strictly below the transition point Tc

for the chiral order parameter. It is generally accepted1 that the
sublattice magnetizations disorder via a standard Kosterlitz-
Thouless (KT) transition,23–25 while the chiralities undergo
an Ising transition. The behavior Ts < Tc is supported by
theoretical arguments based on the unbinding of kink-antikink
pairs.17,26

In this work, we study the AFXY model on the Union Jack
(UJ) and bisected-hexagonal (BH) lattices using Monte Carlo
simulations and finite-size scaling. The UJ and BH lattices
are plane triangulations that share many of the properties of
the triangular lattice (see Fig. 1). In particular, the ground-
state degeneracies of the AFXY model on each of these
three lattices are identical. However, as we show, the critical
behavior of the AFXY model on the UJ and BH lattices is
qualitatively different from the triangular-lattice case. One
concrete difference is that on both the UJ and BH lattices we
find Ts > Tc. Similar behavior has been previously observed
in uniformly frustrated XY models27,28 with less than full
frustration.

Like the triangular lattice, the UJ and BH lattices are
tripartite; each consists of three independent sublattices, which
we label A, B, C. Since each sublattice is regular, we use a
subscript to indicate its coordination number. The triangular
lattice consists of sublattices A6, B6, and C6, UJ consists of
A4, B8, C8, and BH consists of A4, B6, C12 (see Fig. 1). Unlike
the triangular lattice, the sublattices of the UJ and BH lattices
are not all equivalent, and this leads to interesting new physics.

On the UJ lattice, we find that the spins on the A4

sublattice become QLR ordered at a different temperature to
the spins on the B8 and C8 sublattices. Analogous behavior
has very recently been observed in the four-state Potts
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FIG. 1. (Color online) (Left) A ground-state configuration of the
AFXY model on the UJ lattice. The symbols + and − denote the
chirality of the elementary triangular faces. (Right) A BH lattice.
The tripartition of the vertex set is shown in purple/cyan/gray.

antiferromagnet.29,30 Perhaps more surprisingly, the magnetic
transition of the A4 spins, separating the disordered and
QLR-ordered phases, appears to be an Ising transition. Such
novel Ising transitions leading to QLR order, rather than
genuine long-range order, have very recently been observed31

in generalized XY models whose Hamiltonians contain ne-
maticlike interactions.31–34 Our study presents strong evidence
that such transitions can in fact arise in the standard XY

antiferromagnet.

II. SUMMARY OF RESULTS

A summary of the qualitative behavior of each lattice is pre-
sented in Fig. 2. On each lattice we observe a chiral transition
at a temperature T = Tc, with Tc(Tri) > Tc(UJ) > Tc(BH). In
each case we find strong evidence that the chiral transition is
in the Ising universality class. In addition, in each case we also
observe magnetic spin transitions at a temperature Ts �= Tc,
with Ts(Tri) < Ts(UJ) < Ts(BH). The qualitative features of
the magnetic transition are highly lattice-dependent, however.
On the triangular lattice, we observe a magnetic transition
from disorder to QLR order on each of the three equivalent
sublattices at Ts > Tc. The transition is consistent with the KT
universality class.

C6

B6

A6
Chiral

Tc

Ts

Tri

C8

B8

A4
Chiral

TsTc

UJ

C12

B6

A4
Chiral

TsTc

BH

FIG. 2. (Color online) Summary of phases and transitions for
AFXY model on triangular (Tri), Union Jack (UJ), and bisected-
hexagonal (BH) lattices. Red refers to disorder, blue to order, and
green to QLR order. Temperature increases from left to right.

On the UJ lattice, we observe that the spins on sublattices B8

and C8 undergo a transition from disorder to QLR order, which
is again consistent with KT behavior. However, on the UJ
lattice, we find very clear evidence that Ts > Tc. Furthermore,
we find no evidence of a spin transition on the A4 sublattice
at Ts, but we find strong evidence that the spins on the A4

sublattice undergo an Ising transition from disorder to QLR
order at (or extremely close to) Tc. In addition, it appears
that the spins on the B8 and C8 sublattices undergo a second
transition at Tc, which separates two QLR-ordered phases. This
second transition appears to be in the Ising universality class,
but the measured magnetic exponent takes a non-Ising value
of 1.94(1).

On the BH lattice, the spins on each sublattice A4, B6,
and C12 appear to transition from disorder to QLR order at
a common value of Ts > Tc. The transition appears to be
consistent with the KT universality class. The spins on A4

and B6 then undergo a second transition, consistent with the
Ising universality class, at T = Tc, while the spins on C12 do
not. The C12 sublattice appears to display generic KT behavior.

III. MONTE CARLO SIMULATIONS

Our simulations used a local algorithm based on a mix-
ture of standard local Metropolis35 updates together with
over-relaxed36,37 (microcanonical) updates. Periodic boundary
conditions are applied, and the maximum linear system size
is Lmax = 384,256, and 256 for the triangular, UJ, and BH
lattices, respectively. The total CPU time for the simulations
was approximately 60 years, with a 3.2-GHz Xeon EM64T
processor.

For each sublattice S = A,B,C, we define the magnetic
order parameter MS = (1/VS)

∑
i∈S si , with VS = |S|. The

chiral order parameter is defined as

Mc = 2

3
√

3N�

∑

�
[sin(θi − θj ) + sin(θj − θk) + sin(θk − θi)],

where the summation is over the N� triangular faces. The
sequence (i,j,k) is alternately chosen clockwise and coun-
terclockwise on neighboring triangles. The magnetic and
chiral susceptibilities are then defined to be χS = VS〈M2

S〉 and
χc = N�〈M2

c 〉, and we also define dimensionless ratios QS =
〈M2

S〉2/〈M4
S〉 and Qc = 〈M2

c 〉2/〈M4
c 〉. These ratios, which

are closely related to the Binder cumulant,38 have been
well-studied for both the Ising and XY universality classes,
and accurate estimates of their values are available.39–41

In addition, on each sublattice S, we measure the nearest-
neighbor spin-spin correlation function ES and define a
specific-heat-like quantity CS = VS(〈E2

S〉 − 〈ES〉2). While the
quantities CS may not be physically measurable, they are
convenient theoretical devices for studying critical behavior.

A. Triangular lattice

As T decreases, the Qc data for different system sizes
display an approximately common intersection near T ≈
0.512. For T � 0.512, the Qc value quickly approaches 1, and
〈M2

c 〉 converges to a nonzero value as L increases, implying the
occurrence of chiral order. The spins on the three sublattices
remain disordered until T ≈ 0.50, where the QS data indicate a
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magnetic transition on each of the three equivalent sublattices
S = A6,B6,C6. In the low-temperature region T � 0.50, as
L increases, the QS data converge to a line of nontrivial
T -dependent values, implying that each sublattice is QLR
ordered.

For small �c = T − Tc, the ratio Qc is expected to behave
like

Qc = Q∗
c + a1�cL

yt + a2�
2
cL

2yt + b/L, (2)

where a1, a2, and b are free parameters, and yt = 1/ν is
the leading thermal renormalization exponent. We performed
least-squares fits of (2) to the Qc data near T ≈ 0.512. The
data with L � 24 are well described by (2), and the fit yields
Tc = 0.512 3(2), yt = 0.99(1), and Q∗

c = 0.858 7(3).
We also performed least-squares fits of the χc data to

χc = L2yh−2
(
a0 + a1�cL

yt + a2�
2
cL

2yt + b/L
)
, (3)

with the fixed Ising value yt = 1. This yields a critical point
Tc = 0.512 3(1) and magnetic exponent yh = 1.874(3).

The estimated critical exponents, yt = 0.99(1) and yh =
1.874(3), agree well with the exact results yt = 1 and yh =
15/8 for the two-dimensional Ising model. The critical value
Q∗

c = 0.858 7(3) is also consistent with the existing result
Q∗

Ising = 0.858 725 28(3) for the ferromagnetic triangular-
lattice Ising model.40 We conclude that the chiral transition
is in the Ising universality class. We note that our estimate of
yt is inconsistent with several earlier values reported in the
literature15,19,42 which suggested yt ≈ 1.2. Our estimate of Tc

is close to the recent estimate19 of Tc = 0.512 54(3).
Compared with the chiral transition, it is much more

difficult to locate the spin transition of the sublattice mag-
netizations. It is known43,44 that at a KT transition the
susceptibility diverges as χ ∝ L7/4(ln L)1/8. Assuming that the
spin transition is of KT type, we therefore consider the curves
of χA6L

−7/4(ln L)−1/8 vs T for a number of fixed L. From
the scaling of the intersections for various 24 � L � 384 and
0.500 � T � 0.505, we obtain Ts = 0.504 0(3). This value is
consistent with the recent estimate19 of Ts = 0.504(1).

B. Union-jack lattice

Figure 3 shows that for sufficiently low temperatures,
the susceptibility on each sublattice displays an algebraic
divergence with a temperature-dependent exponent, signifying
a QLR-ordered phase precisely as observed on the triangular
lattice. From Fig. 4, which plots χB8L

−7/4 and QB8 vs T , we
see that the spins on the sublattice B8 (and also C8) undergo
two distinct phase transitions, one at T ≈ 0.43 and another at
T ≈ 0.64. By contrast, Fig. 5 shows that the spins on sublattice
A4 undergo a single transition near T ≈ 0.43.

Assuming that the spin transition near T ≈ 0.64 is a KT
transition, the χB8 data were analyzed in an analogous manner
to that described for the χA6 data on the triangular lattice. This
yields an estimate of the spin transition point on the B8 and C8

lattices of Ts = 0.639(2).
For the chiral transition, fitting the Qc data to (2) anal-

ogously to the triangular case yields Tc = 0.431 6(1), yt =
0.99(1), and Q∗

c = 0.856 2(3). Similarly, fitting χc to (3) with
yt = 1 fixed yields Tc = 0.431 6(1) and yh = 1.874(3). Not
only do these values of yt and yh agree with the known Ising

FIG. 3. (Color online) Log-log plot of χB8L
−2 versus L−1 on

the UJ lattice. From top to bottom the solid lines correspond to
temperatures T ≈ 0.357, 0.385, 0.417, 0.431, 0.5, 0.556, 0.633. The
inset shows the χA4L

−2 data for T ≈ 0.357, 0.385, 0.417. The dotted
lines correspond to the critical temperatures Tc and Ts.

values, but the estimated value of Q∗
c is also in excellent

agreement with the existing estimate Q∗
Ising = 0.856 215 7(5)

for the square-lattice Ising model,39,40 as expected from the
geometry of the UJ lattice. These results therefore provide
strong evidence that the chiral transition is again in the Ising
universality class.

Perhaps surprisingly, fitting the QA4 and χA4 data near
T ≈ 0.43 in a similar way also produces excellent fits,
which yield TA4 = 0.431 6(1), yt = 1.00(1), yh = 1.874(2),
and Q∗

A4
= 0.856 3(4). This suggests two things. First, within

the resolution of our simulations, the transition points of the A4

and chiral transitions coincide, implying that either TA4 = Tc

exactly, or that |TA4 − Tc| � 0.000 1. Secondly, and most
strikingly, the critical behavior associated with the A4 spin
transition is consistent with the Ising universality class, rather
than the KT universality class as one might have expected. This
suggests that the magnetization on the A4 sublattice undergoes
an Ising transition from a disordered phase to a QLR-ordered
phase at (or very close to) T = Tc. Further evidence supporting
this claim is provided by the divergence of CA4 at Tc, as shown
in the inset of Fig. 6. Based on these observations, we make
the rather remarkable conjecture that the A4 sublattice spins

FIG. 4. (Color online) χB8L
−7/4 vs T for various L, on the UJ

lattice. The inset shows QB8 vs T .
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FIG. 5. (Color online) χA4L
−7/4 vs T for various L, on the UJ

lattice. The inset shows χB8L
−91/48 vs T .

undergo an Ising transition precisely at the chiral transition
temperature Tc.

In addition, we find that the spins on sublattices B8 and
C8 also undergo a transition near (or at) Tc, in addition to
the transition at Ts > Tc. Fitting the B8 susceptibility data
near Tc to (3) with both yt and yh free, we find a second B8

transition at T = 0.431 6(4), with exponents yt = 1.00(1) and
yh = 1.94(1). The estimate yt = 1.00(1) agrees perfectly with
the exact Ising value yt = 1, and the transition temperature is
also entirely consistent with our estimate of the chiral transition
temperature Tc. From Fig. 3, however, it is clear that the phases
of the B8 spins on either side of Tc are both QLR ordered. We
therefore conjecture that at the chiral transition temperature
Tc, the spins on the B8 and C8 sublattices undergo an Ising
transition separating two QLR-ordered phases. This suggests
that the chiral transition at Tc induces Ising transitions in the
spins on each of the three sublattices; however the physical
mechanism underlying this behavior remains to be determined.

As further evidence that the B8 sublattice undergoes
transitions at both Ts and Tc, Fig. 6 shows the specific-heat-like
quantity CB8 . We clearly observe a peak near Ts and a
divergence near Tc as L → ∞, consistent with KT and Ising
behavior, respectively. For comparison, the inset shows CA4 ,
which does not show any peak near Ts.

FIG. 6. (Color online) CB8 versus T on the UJ lattice. The inset
shows CA4 .

FIG. 7. (Color online) CA4 versus T on the BH lattice. The inset
shows CC12 .

The value of yh = 1.94(1) is clearly not equal to the
usual Ising value, and determining it exactly remains to be
further explored. We remark, however, that it is numerically
very close to the fractal dimension of critical Ising domains
187
96 ≈ 1.947 9 . . . .45,46 It is tempting to therefore conjecture

that yh = 187/96 exactly for the transition at Tc on the B8

and C8 sublattices. For illustration, the inset of Fig. 5 shows
χB8L

−91/48 vs T .

C. Bisected-hexagonal lattice

Analyzing χc and Qc in the same manner as for the
triangular and UJ lattices, we find that the chiral order
parameter undergoes an Ising transition at Tc = 0.391 37(8).
Similarly, an analysis of the sublattice susceptibilities shows
that the spins on each sublattice undergo a transition from
disorder to QLR order at a common value of Ts = 0.747(2).
These magnetic transitions are again consistent with the KT
universality class. As for the B8 and C8 sublattices on the UJ
lattice, χA4 and χB6 show that the A4 and B6 sublattices of the
BH lattice also undergo an Ising transition at T = Tc. Near
Tc, the specific-heat-like quantities CA4 and CB6 are observed
to be divergent for L → ∞, while CC12 seems to be a smooth
function. By contrast, near Ts, a peak occurs in CC12 which is
absent in CA4 and CB6 (see Fig. 7). These observations suggest
that the magnetic transition on C12 is a generic KT transition,
and that the QLR magnetic order on A4 and B6 in the region
Tc � T � Ts is likely induced by the long-range correlation
length on C12.

IV. DISCUSSION

In this work, we have studied the XY antiferromagnet
on three plane triangulations: the triangular, UJ, and BH
lattices. Each of these lattices is tripartite. In each case we
find that the chiral order parameter undergoes a standard Ising
order/disorder transition. This behavior should be generic on
all tripartite triangulations of the plane, since the set of ground
states will share the same Z2 chiral degeneracy. However, as
we have shown, the nature of the magnetic transitions appears
to be strongly dependent on the specific lattice topology.

In addition to the intrinsic theoretical interest of these
results, we note the AFXY model on the UJ lattice could
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be realized experimentally using Josephson junction arrays
in an entirely similar manner to the triangular-lattice model.
Therefore, the results that we have outlined above should be
experimentally observable.
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