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Domain formation and dielectric response in PbTiO3: A first-principles free-energy
landscape analysis
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We determine the relative thermodynamic stability of competing homogeneously and inhomogeneously ordered
ferroelectric phases of PbTiO3 using its free-energy landscape, obtained from constrained-polarization molecular-
dynamics simulations with a first-principles effective Hamiltonian and thermodynamic integration. While we find
that the tetragonal structure is thermodynamically most stable at temperatures below the ferroelectric transition
temperature (T0 = 660 K), the free energy of an “orthorhombic-like” 90◦ domain phase relative to the tetragonal
phase almost vanishes at T = 540 K and remains small at all temperatures below T0. In contrast to BaTiO3, the
90◦ domain structure is an order of magnitude lower in energy than the one with 180◦ domains. We show that
the dielectric response contains signatures of such a domain structure and is significantly stronger than that of
the uniformly polarized tetragonal phase of PbTiO3.
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I. INTRODUCTION

A ferroelectric is a material with a polar phase produced
by a structural transition from a nonpolar high-symmetry
paraelectric state, with an electric polarization that can be
switched between two or more symmetry-related variants by
application of an electric field.1 The characteristic behavior
of ferroelectrics in applied electric fields gives rise to many
important technological applications, including nonvolatile
ferroelectric random-access memories, piezoelectric sensors
and actuators, microelectromechanical systems, and high-
dielectric-constant materials for electronics.2–5

When a ferroelectric material is cooled below its transition
temperature in the absence of an external electric field, it
typically forms complex microstructures consisting of many
small regions with different orientations of the spontaneous
polarization known as domains. Such domains form sponta-
neously to reduce the uncompensated depolarization field at
the surface of the crystal and hence to reduce the free energy
of the system.1 A precise understanding of the microstructure
of these ferroelectric domains and their dynamics as a function
of external conditions such as temperature, pressure, and
electric field is highly desirable for applications in devices. For
example, knowledge of the width of domain walls, nucleation
of domains, and their growth is directly relevant to how fast
polarization can be switched and hence to applications in
memory devices.2

Landau-Ginzburg phenomenological free-energy function-
als have long proved very useful in describing the behavior
of ferroelectrics6–9 relevant to modeling and simulations
of ferroelectric-based devices. From the knowledge of the
free-energy landscape one can determine various stable and
metastable states as well as minimum-energy pathways of
transition between them. For example, one can understand
switching of polarization from one equilibrium state to another,
relevant to applications of a ferroelectric in memory devices.
The functionals can include terms to describe domain walls and
can be used in studies of domains and other inhomogeneously
ordered states of ferroelectrics.10,11 However, they are limited
by the fact that the parameters in the functional are determined

phenomenologically, and the connection to the microscopic
energetics is not clear.

First-principles calculations have been quite effective in
accessing microscopic information about the structural en-
ergetics of ferroelectric materials12,13 and even predicting
phase-transition behavior at finite temperature through con-
struction of effective Hamiltonians.14–18 Recently, a method
was developed to obtain free energies and a Landau-Ginzburg
type of continuum theory19–21 of ferroelectrics starting from
a first-principles effective Hamiltonian.22–25 This construction
bridges the gap between first-principles results and the Landau
approach to describe behavior at longer length scales; it
provides a predictive method for determining parameters and
extending the form of the functional to include additional
terms and gives insight into the microscopic origin of the
features of the free-energy landscape. PbTiO3 is one of the
most studied ferroelectric materials both experimentally and
from first-principles calculations. It has a transition at ≈760 K
from the high-temperature cubic perovskite paraelectric phase
(space group Pm3̄m, # 221) to a low-temperature tetragonal
ferroelectric phase (space group P 4mm, number 99) with a
large electric polarization (≈75 μC/cm2).

In this paper, we perform first-principles constrained-
polarization molecular-dynamics (MD) simulations for
PbTiO3 and determine the free-energy landscape as a function
of polarization for a range of temperatures to find the relative
stability of different phases and determine parameters in a
Landau functional that describes uniform configurations of
PbTiO3 near Tc. We also study the free-energy landscape for
inhomogeneously ordered configurations of polarization using
an augmented form of the effective Hamiltonian that provides
information about the energetics of formation of domains and
domain-wall energy. For these inhomogeneous configurations,
calculation of the dielectric response due to phonons and
fluctuations of domain walls shows significant enhancement
relative to the configurations without domain walls, even in the
absence of contributions from uniform domain-wall motion,
which are not accessible on the time scales of the simulations.
We discuss the relevance to experimental observations.
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TABLE I. The values of the parameters of the first-principles
effective Hamiltonian for PbTiO3 used in our simulations. The
third column shows how these parameters are determined from the
parameters given in Ref. 17.

Parameters Value Relation

a0 (Å) 3.969 a0

B11 (eV) 117.9 C11

B12 (eV) 51.6 C12

B44 (eV) 137.0 C44

B1xx (eV/Å2) −114.02 2(g0 + g1)
B1yy (eV/Å2) −13.67 2g0

B4yz (eV/Å2) −22.67 g2

α (eV/Å4) 27.83 B + C

γ (eV/Å4) −34.48 −2C

k1 (eV/Å6) −42.42 D

k2 (eV/Å6) 0
k3 (eV/Å6) 0
k4 (eV/Å8) 156.43 E

m∗ (amu) 100.0
Z∗ (e) 10.02 Z∗

ε∞ 8.24 ε∞
κ2(eV/Å2) 1.170 A

j1 (eV/Å2) −1.355 2aT

j2 (eV/Å2) 4.986 2aL

j3 (eV/Å2) 0.222 bl + bt1

j4 (eV/Å2) −0.018 2bt2

j5 (eV/Å2) 0.398 bl − bt1

j6 (eV/Å2) −0.083 2(cl+2ct )
3

j7 (eV/Å2) −0.204 2(cl−2ct )
3

II. COMPUTATIONAL METHODS

A. Effective Hamiltonian

A first-principles effective Hamiltonian is a parametrization
of the energy surface in the subspace of important degrees
of freedom, with parameters obtained from first-principles
density functional theory total-energy calculations.13–17 A
first-principles effective Hamiltonian for PbTiO3, in terms
of local dipolar distortions and strain, has been previously
constructed;17 we use this effective Hamiltonian in the present
work. In order to perform the simulations with the FERAM

code, described in more detail below, we transformed it into
the equivalent form given in Refs. 18, 26, and 27. In Table I,
we give the values of the parameters in this latter form and
show how they are determined from the parameters given in
Ref. 17. The sixth-order anisotropy terms (k2 and k3) are not
present in the effective Hamiltonian of Ref. 17 and are set to
zero in the present calculations.

B. MD simulations of bulk PbTiO3

We performed molecular-dynamics simulations using the
first-principles effective Hamiltonian specified in the previous
section. We used the mixed-space molecular-dynamics code
FERAM,26–28 in which the long-range interactions are treated in
reciprocal space29,30 to perform both heating-up and cooling-
down simulations in a simulation box of Lx × Ly × Lz unit
cells with periodic boundary conditions. A Nose-Poincaré
thermostat31 is used to maintain constant temperature, which

allows us to use a relatively large time step of 2 fs. In
the cooling-down simulations, we started with a random
configuration of local dipoles at high temperature (T � Tc,
900 K), performed a thermalization run of 100 000 time steps,
and then performed an averaging run of 100 000 time steps.
The temperature was then decreased by 10 K, and the ther-
malization and averaging processes were repeated using the
final configuration from the previous temperature as an initial
configuration for the new temperature. In the heating-up simu-
lations, we started with uniformly aligned local dipoles along
the z direction at low temperature (T = 200 K), performed a
thermalization run of 100 000 time steps, and then performed
an averaging run of 100 000 time steps. The temperature was
then increased by 10 K, and the thermalization and averaging
processes were repeated as in the cooling-down simulations.

The polarization of a system is given by �P = Z∗ ∑
i
�ξi

�
, where

�ξi is the local mode at each site, Z∗ is the mode effective charge,
and � is the total volume of the system. The sum over i runs
over all unit cells in the system. The dielectric constant of the
system is determined from the fluctuations in polarization.

ε = �[〈 �P 2〉 − 〈 �P 〉2]

ε0kBT
, (1)

where kB is the Boltzmann constant and T is temperature.

C. Simulations with constrained polarization and domains

To obtain the value of the Ginzburg-Landau free-energy
function for a given macroscopic polarization and temperature,
we used a thermodynamic integration method with the results
of constrained-polarization molecular-dynamics simulations.
This procedure is the one used in our previous work on
BaTiO3 (Ref. 23) and is analogous to that used by Geneste.25

To constrain polarization to a given value in the simulation,
we augmented the first-principles effective Hamiltonian H0 of
PbTiO3 with three terms. This yields

H = H0 − Z∗ �E ·
∑

i

�ξi + � �P · �E

− �

8π

∑
αβ

(
ε∞
αβ − δαβ

)
EαEβ, (2)

where �P is the target polarization, i is an index for the lattice
sites, �ξi is the local polar distortion vector32 describing the
displacements of atoms near site i, and �E is an auxiliary
fluctuating electric field to keep the average polarization of
the system at the target value. The modified Hamiltonian
H [Eq. (2)] ensures that sampling in molecular-dynamics
simulations will yield the target average polarization.

Once we have the auxiliary electric field 〈E(P )〉 for a
range of polarization at a given temperature, we can use the
thermodynamic integration method33 to determine the free
energy as a function of polarization and temperature. For a
given temperature, the free-energy difference between two
polarization states P1 and P2 is given as

�FH =
∫ �P2

�P1

〈 �E( �P ′
)〉d �P ′

. (3)

We point out that constraining the total polarization of
the system to a value smaller than its equilibrium value can
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result in a configuration with domains, as has been observed
in earlier works23,25 on BaTiO3. This is observed for large
system sizes because the gain in energy due to changing the
polarization to its equilibrium value within a domain scales
with the volume of the domain, while the energy cost of domain
walls needed to create the domain scales with surface area.
The formation of an inhomogeneous configuration as a result
of constraint on the order parameter to a value smaller than
its equilibrium value is a very general phenomenon and has
been observed in other systems.22,34 The free energy of such
inhomogeneously ordered configurations can be represented
in a Ginzburg-Landau theory by adding terms that depend on
divergence and curl of the order parameter.23

With a generalized form of the augmented first-principles
effective Hamiltonian, we can impose a constraint on the
spatially varying polarization, where �ED is an auxiliary
fluctuating electric field that is allowed to take different values
on different lattice sites. This allows us, for example, to study
a system with a domain wall.

H = H0 − Z∗ �ED ·
∑

i

ξi êi + � �P D · �ED

− �

8π

∑
αβ

(
ε∞
αβ − δαβ

)
ED

α ED
β , (4)

where a superscript D means domain (or it can be a configura-
tion characterized by spatially dependent polarization), êi is the
unit vector along the direction of this configuration in the phase
space, and �ED is the analog of �E for domain configurations. To
access a configuration consisting of domains of two opposite
orientations, we set êi = (111) for sites i in the first domain and
êi = (1̄1̄1̄) for sites i in the second domain and use a domain
constraint P D along (001) to access two 180◦ domains in the
system. In this case, �P D = 1

2 ( �P1 − �P2), so that the constraint
on domain polarization corresponds to the constraint of the
difference between the polarizations of regions 1 and 2, leading
to the formation of two 180◦ domain walls separating the two
domains in periodic boundary conditions. This procedure was
used in our previous work23 on BaTiO3 to study the energetics
of domain walls and differs from the constraint on local
polarization used by Geneste35 to study the effect of shape and
size of clusters on the free-energy landscape. The evolution
of a system from a configuration with uniform polarization
(for which P D is zero) to a domain configuration can provide
information about the energetics of the domain wall.

For all constrained-polarization simulations, we start with
a zero polarization (or zero P D) configuration and increase
the target polarization (or target P D) in steps of 2 μC/cm2,
keeping the temperature fixed. For each value of the target
polarization, we thermalize the system with 100 000 time steps
and then perform an averaging of various quantities using a
run of 100 000 time steps. We use the final configuration of the
simulations with the previous target polarization as the initial
configuration in the simulation for the next target polarization.

III. RESULTS

A. Ferroelectric transition and hysteresis

First, we perform a heating-up and a cooling-down MD
simulation for bulk PbTiO3 using the effective Hamiltonian
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FIG. 1. (Color online) Polarization and dielectric constant as a
function of temperature in heating-up and cooling-down molecular-
dynamics simulations using the effective Hamiltonian H0. The Px and
Py components in the heating-up simulations and the Py component
in the cooling-down simulations are negligible and are not shown in
(a) for clarity.

H0. The results for the polarization and dielectric constant as
a function of temperature are shown in Fig. 1.

In the heating-up simulation, we started from a low temper-
ature (200 K) with an initial configuration with polarization
along the z direction. We increased temperature in steps of
10 K. It can be seen in Fig. 1(a) that the system undergoes
a transition from a polar ferroelectric state to a nonpolar
paraelectric state at T = 670 K. This transition temperature
is the same as that found in a previous Monte Carlo study
with the same first-principles effective Hamiltonian.17 In the
cooling-down simulation, the transition temperature is about
50 K lower. This hysteresis is typical of a first-order phase
transition. It is intriguing that in the cooling-down simulation
the system does not transform below the transition to the
tetragonal phase with polarization along [001] but to a phase
with polarization approximately along [101]. This will be
discussed in more detail below.

In the heating-up simulation, the dielectric constant [see
Fig. 1(b)] shows a jump at the transition temperature and a
peak at the transition in the paraelectric phase, as expected in
the soft-mode theory of ferroelectricity. In the cooling-down
simulation, the dielectric constant in the paraelectric phase
above 670 K is the same as in the heating-up simulation.
It then increases smoothly down to 620 K, consistent with
metastability of the paraelectric phase in the hysteretic range,
but then has a large and variable value down to 500 K.
This latter observation is connected to the unexpected [110]
direction of the polarization mentioned above and will be
discussed in more detail below.
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FIG. 2. (Color online) Free-energy differences per unit cell with respect to zero polarization (P = 0) as a function of polarization along
the (a) [001], (b) [111], and (c) [011] directions for a range of temperatures close to Tc. (d) A comparison of the minimum of the free-energy
difference per unit cell [�F (T ) = F (P = Ps) − F (P = 0)] as a function of temperature along the [001], [011], and [111] directions of
polarization from constrained MD simulation and the fitted Landau free-energy function (shown as LT).

B. Free energy of the ferroelectric phase transition

The computed free energies for P along [001], [111], and
[011] for a range of temperatures above and below Tc are
shown in Figs. 2(a)–2(c). Below Tc, the �F (P ) curves for P

along [001] show a visible cusp. The reason for this is that for
P constrained to values smaller than at the cusp, the system
achieves the target polarization by breaking into 90◦ domains,
which we confirmed by examination of configurations in the
simulation. Above this value, the curves are well described by
the Landau form.

The Landau free-energy functional is very helpful in
understanding the behavior of ferroelectrics near the Curie
temperature. Here, we write

�F ( �P ,T ) = F (0) + A(T − Tc)
(
P 2

x + P 2
y + P 2

z

)
+B1

(
P 4

x + P 4
y + P 4

z

) + B2
(
P 2

x P 2
y + P 2

y P 2
z

+P 2
z P 2

x

) + C
(
P 2

x + P 2
y + P 2

z

)3
(5)

In this simple form of the functional, strain is integrated out,
and its effects are absorbed in the values of the coefficients.
Thus its applicability is limited to configurations in which the
strain is slowly varying in space; for example, we use it below
to estimate the contribution to the free energy of domain walls
separating domains with essentially uniform polarization.

We determined the parameters for PbTiO3 by fitting to
first-principles results for the free energy as a function of �P ,
obtained by thermodynamic integration for the constrained-
polarization molecular-dynamics simulations as explained in

Sec. II C. Specifically, we use values of the free energy with
P along [001] and [111] for a range of temperatures above Tc,
and we do not include the free-energy data below Tc to extract
the parameters because constraining polarization to a value
smaller than the spontaneous polarization below Tc results in
configurations with domains or nonuniform order.22,25 This
yields the parameters given in Table II.

As a measure of how well the functional predicts the behav-
ior near the transition, we found the magnitude of polarization
Ps that minimizes the first-principles free energy for each of
the three directions of polarization at each temperature. In
Fig. 2(d), we show the corresponding free-energy difference
[�F (T ) = F (P = Ps) − F (P = 0)] as a function of temper-
ature for all three directions of polarization, compared with the
value of the free-energy difference evaluated with the Landau
functional [Eq. (5)]. For P along [001] and [111], the Landau
functional is seen to give a good description close to Tc, as

TABLE II. The free-energy parameters of Eq. (5) obtained from
fitting MD simulation data above Tc. The values of free energy and
polarization used in the fit are in meV and μC/cm2, respectively.

Parameter Value

A 1.48 × 10−5

Tc (K) 605
B1 −6.18 × 10−7

B2 1.19 × 10−7

C 8.92 × 10−11
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FIG. 3. (Color online) A snapshot of the local dipole moments
during constrained MD simulations (constrained P is along [011]) at
T = 520 K.

expected, with the tetragonal phase being most stable below
the first-order transition temperature of 640 K. This value is
consistent with the transition temperatures observed on heating
and cooling discussed above.

However, the Landau functional completely fails to de-
scribe the results for P along [011]. Instead, the minimum free
energy for P along [011] is very close to that of the tetragonal
phase [see Fig. 2(c)]. We note that a macroscopic polarization
along [011] can be obtained either from a homogeneous
phase in which all dipoles are aligned along [011] or from
a 90◦ domain phase in which the polarizations of domains are
aligned along [001] and [010]. In fact, careful analysis of the
configurations in our MD simulations reveals that constraining
polarization along [011] leads to the formation of a 90◦ domain
structure (see Fig. 3), with alternate domains of the tetragonal
phase with polarization along [001] and [010] directions.
This accounts for the fact that the free energy of the 90◦
domain phase is close to that of the homogeneous tetragonal
phase. Also, this is the reason that a 90◦ domain phase is
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FIG. 4. (Color online) (a) Free-energy differences of domain
configurations with respect to uniformly polarized configuration for
a range of temperatures and (b) the free energy of the 180◦ and 90◦

domain walls as a function of temperature of PbTiO3.

obtained in the unconstrained cooling-down simulation shown
in Fig. 1(a). We would like to emphasize that the dielectric
constant estimated from the cooling-down simulations pro-
vides us the dielectric signature of the 90◦ domain structure,
with a relatively large (∼500) response along the direction
perpendicular to the plane of polarization in adjacent domains.

C. Free energy of states with domains

Using the generalized form of the augmented Hamiltonian
[Eq. (4)], we obtained the free energy of a 180◦ domain
structure as a function of domain polarization �P D = (0,0,P D)
at various temperatures [see Fig. 4(a)]. For a given temperature
below Tc, we started from a uniformly polarized state and
increased P D in steps of 2 μC/cm2. For small P D , the
polarizations in the two regions are aligned with magnitude
modulated by P D . At a critical value of P D that increases
with decreasing temperature, 180◦ domains form. At this
value, the nuclei with opposite polarization that form in
the simulations exceed critical size. The initial increase in
free energy until the state changes from uniform polarization
to the one with domains is the free-energy barrier associated
with the formation of a nucleus of critical size. With a further
increase in P D , the free energy remains essentially constant
(the nearly flat part of the free-energy curve) up to P D = Ps ,
the spontaneous polarization at that temperature, and then
increases for higher values of P D . The absence of local minima
for P D larger than the critical value is due to the fact that
the system size considered here is too small to stabilize two
180◦ domains. We find that two 180◦ domains can be easily
stabilized in a larger system size of 40 × 16 × 16 unit cells.
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The 180◦ domain-wall energy at a temperature is obtained
from γD(T ) = �F (P D = Ps)/(2LyLz), where Ps is the spon-
taneous polarization of the system at that temperature. The
factor of 2 is due to the fact that two domain walls are
present in our systems under periodic boundary conditions.
Our estimate of the domain-wall energy as a function of
temperature (see Fig. 4) is comparable to earlier estimates.36,37

The 180◦ domain-wall energy for PbTiO3 is about 15 times
larger than that of BaTiO3.23 This large difference is expected
due to the fact that strain-polarization coupling is larger in
PbTiO3 than in BaTiO3.

To estimate the 90◦ domain-wall free energy, we take
the free energy from the MD simulation with constrained
polarization along [011] and subtract the free energy for the
simulation with polarization along [001] [see Fig. 2(c)]. We
find that the 90◦ domain-wall energy in PbTiO3 is much smaller
than the 180◦ domain-wall energy, indicating that the system
can easily form 90◦ domains. This is consistent with the recent
experimental observation of 90◦ domains in PbTiO3.38

D. Dielectric response of domain configurations

The dielectric response of a system having 180◦ domains is
shown in Fig. 5, with the dielectric response of a system with
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FIG. 5. (Color online) Dielectric constant of 180◦ domain con-
figurations compared to a uniformly polarized configuration (shown
as bulk) of PbTiO3 as a function of temperature.

uniform polarization (obtained from the heating-up simulation
previously shown in Fig. 1) included for comparison. In the
180◦ domain simulation, at each temperature the system is
constrained to a domain polarization, P D = 66 μC/cm2 ẑ

(which is the spontaneous polarization at temperature T =
580 K). The high-temperature behavior, above Tc, of all three
components of the dielectric response of the system with 180◦
domains is weak. This difference in the dielectric response of
the system with 180◦ domains and the system with uniform
polarization above Tc is expected because constraining P D =
66 μC/cm2 for domain configurations strongly suppresses
fluctuations, whereas the system with uniform polarization
fluctuates around zero polarization. Below Tc, the dielectric
response of the 180◦ domain configurations along the direction
of P (i.e., zz component) is rather weak, comparable to that
of the uniformly polarized state below 600 K (see Fig. 5).
The dielectric response along the direction perpendicular to
polarization and in the plane of the domain wall (i.e., yy

component) is enhanced relative to uniform polarization and
comparable to that of the 90◦ domain structure.

In contrast, at low temperatures the response along the
direction perpendicular to the plane of the domain wall (i.e.,
xx component) is anomalously high. This behavior can be
attributed to the constraint on P D . As the temperature is
decreased, the spontaneous polarization in the two domains
becomes larger than the constrained domain polarization at a
point close to the temperature at which the dielectric response
starts to increase. To satisfy the constraint, the domain wall
fluctuates, resulting in sites where the local polarization is
opposite to ê of Eq. (4); this also results in a nonzero
polarization for the system, consistent with simulation results
(not shown). In the vicinity of steps in the domain wall, the
other components of the local polarization can take on nonzero
values. The constraint can also be satisfied by reducing the
z component of the local polarization near the wall, which
would tend to favor an increase in the other components and
correspondingly an increase in the fluctuation of their values.
The fact that these effects are so much stronger in the direction
perpendicular to the wall, especially at very low temperatures,
is quite striking and suggests further investigation.

Our finding of large dielectric responses for inhomoge-
neously ordered states thus is seen to arise from the imposition
of a constraint that is inconsistent with the most favorable
state and leads to a multiplicity of states with a distribution
in polarization. While the constraint we have imposed here
would be difficult to realize in an experimental system, this
suggests a potentially promising design principle for systems
with a large dielectric response.

IV. SUMMARY AND CONCLUSIONS

Using a first-principles effective Hamiltonian in
constrained-polarization molecular-dynamics simulations, we
determined the free-energy landscape for PbTiO3 near its
ferroelectric phase transition. A comparison of the free
energies of states with polarization along different direc-
tions shows that the tetragonal phase is thermodynami-
cally stable for all temperatures below the ferroelectric
transition temperature. For some temperature range close
to 520 K an orthorhombic-like metastable phase becomes
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very close in energy to the tetragonal phase. However,
a close examination of this phase reveals a 90◦ domain
structure.

We also used a generalized form of the effective Hamil-
tonian to study the energetics of configurations consisting of
ferroelectric domains, determining the domain-wall energies
of 90◦ and 180◦ domain walls as a function of temperature,
the former being an order of magnitude lower in energy
than the latter. As a prediction to aid the interpretation of
experiments, we show that the dielectric response of PbTiO3

bears interesting signatures of the domain structure and that it
is anomalously larger than that of the uniformly polarized state.
Our finding provides a possible explanation for why observed

dielectric response of ferroelectrics is often significantly larger
than the one estimated from first-principles calculations of
phonons.
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