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Mechanism for the α → ε phase transition in iron
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The mechanism of the α-ε transition in iron is reconsidered. A path in the Burgers description of the bcc/hcp
transition, different from those previously considered, is proposed. It relies on the assumption that shear and shuffle
are decoupled and require some peculiar magnetic order, different from that of α and ε phases as found in density-
functional theory. Finally, we put forward an original mechanism for this transition, based on the successive shuffle
motion of layers, which is akin to a nucleation-propagation process rather than to some uniform motion.
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I. INTRODUCTION

The bcc-hcp transition in iron has recently been the
subject of intense experimental1–4 and theoretical5–13 work.
At room temperature and pressure, α-iron is a bcc metal
with ferromagnetic (FM) order. Upon pressure, iron exhibits
a phase transition at �13 GPa to a hcp structure14–16 with no
magnetic order.17 The hysteresis at the transition is large,18

and as pressure is changed, the transformation occurs rapidly,
suggesting that the transition is nondiffusive and martensitic.
A recent paper underlines the importance of antiferromagnetic
(AFM) fluctuations in hcp ε-iron.4

In order to describe α-iron from an ab initio point of view,
dynamical mean-field theory12,19 in combination with density-
functional theory (DFT) or other advanced schemes13 have
been used. In particular, the localization of electrons in the
nonbonding eg state but not in the bonding t2g state is a key
point19 for understanding paramagnetic bcc iron. However,
DFT ab initio techniques alone can handle FM bcc iron and the
thermodynamical fundamentals of the α → ε transition:20 The
generalized gradient approximation (GGA) correctly captures
the basic Stoner mechanism for the reduction in magnetism,
under the increase in atom coordination during the α → ε

transition, as well as the larger spin polarization of eg orbitals
with respect to t2g in the α phase.

The α → ε transition can be viewed21 as combining an
anisotropic compression (shear) in the (100) direction of the
bcc with a shuffle in the (011) plane, that corresponds to a
zone-boundary transverse phonon mode (see, e.g, Ref. 5).
Due to its martensitic nature, the transformation is triggered
above the thermodynamical threshold, i.e., when the α and ε

enthalpies are equal, which appears above �10–13 GPa,5,7,9

as computed in the GGA.
However, its ab initio description is debated. Although the

broad outline of the transition has been settled, a detailed
description faces the problem of accurately computing the
relevant energy barrier. Ekman et al.5 demonstrated that the
transition is first-order with no dynamical precursors and that
it is caused by the effect of pressure on the magnetism of
iron. Johnson and Carter7 have shown that a minimization
with respect to shuffle and shear, considered as independent
variables, leads to a cusp in the energy profile with a particu-
larly low-energy barrier. This pathway imposes a discontinuity
of the shuffle displacement at no additional energetic cost.
Rejecting this possibility, Liu and Johnson9 stated that shuffle
and shear are coupled and cannot be minimized separately.
Still, the barrier energy found this way is too high—within

the range of pressures for which the transition is expected
to occur—to permit the transformation.6 No mechanism,
allowing for a transformation with a reasonable energy barrier,
has been proposed.

Investigations have established the role of complex
magnetic structures for some transition paths of the α → γ

(Refs. 10, 22 and 23) and α → ε transitions,6 e.g., for ε-Fe
spin, spiral states have the same energy as AFM structures.8

Yet, no study has been carried out on the effects of magnetic
ordering on the pathway of the bcc-hcp martensitic phase
transition.

As to the kinetics of the transition, no intermediate states
were detected in experiments on the nanosecond time scale,24

which suggests that the transformation is very rapid and
probably propagates at near sound velocity. Moreover, it
recently has been shown that, for cobalt, the transition occurs
through microstructural avalanches.25 Such behavior implies
that the transition is not of the military type but instead involves
localized transformation events. No such possibility has been
considered yet for iron.

In this paper, we propose (Sec. II) an alternative
description of the path for the α → ε transition within the
Burgers mechanism. Second, using GGA calculations, we
show the importance of AFM order to describe the energetics
of this path (Sec. III A). Third, and this is our main result, we
emphasize (Secs. III B and III C) that the shuffle mechanism
could occur layer after layer in a nonsimultaneous way, thus,
bridging the gap between the low-energy pathway of Ref. 7
and a description of the transition without any discontinuity
in displacement.9

II. COMPUTATIONAL SETUP AND METHODOLOGY

The two-atom unit cell is replicated four times in the
(001)hcp ‖ (110)bbc direction into an eight-atom supercell
with periodic boundary conditions (PBCs). The unit cell is
represented in Fig. 1 with lattice vectors �R1, �R2, and �R3.
Three parameters are necessary to determine the unit cell: the
angle α, the value of c = R2/4, and the value of R1. Three
macroscopic quantities can be used to compute them: the
volume, the c/a = R2/(4R3) ratio, and the shear ε. In our
paper, the volume, namely, 71.5 bohr3/atom, is such that hcp
and bcc energies coincide. The c/a ratio is kept constant and
equal to

√
8/3 � 1.633, which is the value in the bcc structure

and in the ideal hcp compact structure. The shear is defined
by ε = (2 sin α − 2√

3
)/(1 − 2√

3
) and is equal to 0 and 1,
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FIG. 1. (Color online) Scheme of the (001)hcp ‖ (110)bbc plane
in the bcc configuration. The vectors �R1, �R2, and �R3 define our
simulation cell. The red atoms and blue atoms lie in two different
planes (see Fig. 2). �R2 is perpendicular to �R1 and �R3, and R2 = 4c. The
shear is defined by ε = (2 sin α − 2√

3
)/(1 − 2√

3
). In bcc, 2 sin α =

2√
3
, and ε = 0. In hcp, 2 sin α = 1, thus, ε = 1. From this defini-

tion, conservation of volume (R2R1R3 sin α = V ), conservation of
c

a
(= R2

4R3
=

√
8
3 ), and the geometric relation 2R3 cos α = R1, give

�R1, �R2, and �R3 as a function of the value of the shear.

respectively, in the bcc and the hcp structures. For each value of
the shear, we computed the energy for three values of the c/a

ratio, namely, 1.605,
√

8/3 � 1.633, and 1.668 to check that
the sheared bcc structure is stable with respect to a change in
c/a and that c/a = √

8/3 is close to the minimum. The results
are insensitive to the small difference between this value
and the true minimum. Finally, the shuffle η is proportional to
the distance of one blue atom between its position during the
transition (see Fig. 2) and the reference position in bcc.

We focus our paper on the shuffle part of the Burgers
mechanism. Because of the different physical time scales
involved,7 we assume that the lattice shear deformation mode
(ε) and the shuffle mode (η) are uncoupled in such a manner
that, with respect to shear, shuffle is instantaneous. Volume and
c/a ratio are, thus, kept constant during the shuffle. The path
proposed in Ref. 7 is defined by the equality of the energies
of the sheared bcc and hcp phases. In Ref. 7, however, the
energetics of the shuffle is not explored. On the other hand,
Liu and Johnson9 couple shear and shuffle modes. Their path is
schematically represented in black in Fig. 2. In this figure, the
shear (ε1) is fixed to half the value necessary to go from the bcc
α phase to the hcp ε phase. It is the shear at the transition state
computed by Ekman et al.5 at constant volume. This choice
guarantees that the shuffle mode goes through the transition
state (TS) of Ref. 5 and corresponds to the energetically most
favorable path, represented in solid red in Fig. 2.

In this paper, we are concerned by the shuffle mechanism
along the BC line (see letters in Fig. 2). Since the shuffle of
a large number of atoms can be described in several different
ways, our aim is to understand whether the shuffle of all the
layers is simultaneous or not.

A. Simultaneous shuffle

Let us first consider simultaneous shuffle (S). By
AĀAĀAĀAĀ, we denote the stacking of the eight atoms in
the bcc-sheared phase, and by BB̄BB̄BB̄BB̄, we denote their
stacking in the hcp-sheared phase. In this notation, A and Ā,
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FIG. 2. (Color online) Sketch of possible paths for the bcc/hcp
transition in the shear shuffle plane. TS is the transition state, and
the black line corresponds to the lowest pass to go from the bcc
valley to the hcp valley. The red and green lines are the transition
paths that are studied in Fig. 4 (see also text). ε1 = 0.5, and
ε3 = 0.875.

and B and B̄, correspond to atoms in the bcc- or hcp-like
configurations, respectively. The atoms in the A and Ā layers
have 8 neighbors, whereas, atoms in the B and B̄ layers have
12 neighbors. During the simultaneous shuffling of all four
atoms of the Ā-type layer into a B̄-type layer, A-type layers
are transformed into B-type layers. The transformation is, thus,
AĀAĀAĀAĀ → BB̄BB̄BB̄BB̄ [Fig. 3(b)].
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FIG. 3. (Color online) (a) Total energy for the simultaneous
shuffle S1 computed for FM, AFMI, AFMII,31 and nonmagnetic (NM)
configurations. S stands for simultaneous, and the index 1 refers to the
shear ε1 (see Fig. 2). The energy is given for a supercell of eight atoms
to allow for an easy comparison with Fig. 4. (b) Stacking of the layers
during the transition. In black, the A and Ā layers. In orange, the B
and B̄ layers. The black (respectively, orange) color, thus, indicates
that the first shell of neighbors is bcc- (respectively, hcp-) like. In
the inset, the evolution of the magnetic moment for the eight atoms
during the FM → AFMI transition.
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FIG. 4. (Color online) (a) Comparison of energies for three
different shuffling mechanisms (for a shear of ε1 = 0.5). (S1) is the
simultaneous shuffling of all atoms. (CfS1) stands for “consecutive
from simultaneous,” a hypothetical mechanism that corresponds to
consecutive shuffles within an assumption of independent layers
(interactions neglected), computed with the energies of mechanism
S1 (see text). (C1) is the true energy computed when layers shuffle in
a consecutive way (interactions included). Ei and Ea , respectively,
represent the interface energy and the activation energy for the first
shuffle (see text). (C3) is the energy for the consecutive shuffling of the
atoms for a shear of ε3 = 0.875. (b) Layer stacking during consecutive
shuffling: in blue, layers in which the first atomic shell is intermediate
between the bcc and the hcp environments. Arrows indicate the sign
of the magnetic moment in each layer as described in Fig. 5.

B. Consecutive shuffle

Consider next the consecutive individual shuffle of layers
(C), schematically represented in Fig. 4(b). First, we compute
the individual shuffling of layer 2 from Ā to B̄. It corresponds to
the transformation AĀAĀAĀAĀ → IB̄IĀAĀAĀ. Due to the
PBCs, this creates intermediate (I) configurations for the first
and third layers. It corresponds to an atom layer sandwiched
between one B̄ and one Ā layer. Their local environment is,
thus, neither bcc nor hcp.

In a second step, starting from the latter configuration,
we study the shuffling of the second layer up to the new
configuration IB̄BB̄IĀAĀ. During this transformation, the
fourth layer shuffles from configuration Ā to configuration
B̄. Thus, the third layer now has a full hcp-like configuration
around it and now is, thus, labeled B. The process can be
pursued until all layers have shuffled.

C. Computational details

We use the projector wave augmented26 implementation27

of ABINIT (Ref. 28) in the GGA PBE approximation of

DFT. Atomic data include 3s and 3p semicore states,26 the
cutoff radius is 2.0 a.u., the energy cutoff for the plane-wave
expansion is 20 Ha, and the convergence criterion for the
charge-density residual is 10−9. With these atomic data, results
of Ref. 27 are reproduced. A 18 × 4 × 26 special k-point
mesh29 and a Gaussian smearing of 5.10−4 Ha for electronic
occupations30 are used in order to obtain a good estimate of
the energetic and magnetic properties.

III. RESULTS

A. Simultaneous shuffle

Energies for the simultaneous mechanism are displayed in
Fig. 3(a). The reaction coordinate (ρ) is taken proportional
to the shuffle (η) of the supercell atoms and varies from 0
(bcc like) to 4 (all atoms in a hcp-like environment). Near
equilibrium (ρ = 0), the energy increases quadratically as
expected. The curve exhibits a cusp at 60% shuffle amplitude
due to a change in magnetism from FM to AFMI.31 During this
transition, the magnetic moment—reproduced in the inset of
Fig. 3—changes abruptly from 2.2 μB/atom to 1.1 μB/atom
in agreement with Ref. 6 where, however, AFMI order was
not considered. This confirms the importance of magnetism
for this transition:5–7,9 Without any change in magnetism, the
transition would not occur. In the rightmost part of the curve,
the energy decreases to a local minimum corresponding to
a deformed hcp phase. We computed the same curve with
a cell of four atoms allowing for the creation of AFMII
order.31 We find, in agreement with Refs. 32 and 8, that
AFMII is more stable for the hcp structure (ρ = 4) compared
to AFMI. However, and interestingly, we also find that past
the cusp, the AFMI structure is more stable than the AFMII.
This highlights the important role of complex magnetism
for the DFT description of the transition path and not only
for the stable structure.5 A complete study of magnetism,
especially noncollinear, lies beyond the goal of our paper. We,
nevertheless, show that an AFMI description of the transition
path is particularly adapted to the present case. We call ES1 (ρ)
the combination of the FM and AFMI curves. The energy
profile qualitatively agrees with previous results, involving a
smaller unit cell with two atomic layers (Figs. 5 and 6 of Ref. 5)
even if Ekman et al. have considered a NM ground state for
the hcp phase and the PW91 GGA functional.

B. Consecutive shuffle

Energy plots associated with the consecutive mechanism
are drawn in Fig. 4(a). From ES1 (ρ), one can trivially compute
the energy of shuffle per atom and, thus, can simulate the
consecutive motion of four layers under the assumption that
the energy for the shuffling of only one layer is equal to that
for shuffling all layers divided by the number of layers. This
approximation would be correct if there were no interactions
between layers. For this mechanism, because all atoms are
not shuffling at the same time, ρ describes the consecutive
shuffling of all the layers. Formally, from value n − 1 to value
n, [ρ − (n − 1)] is, thus, proportional to the displacement of
the atoms of the nth layer. As a consequence, for ρ = 0 and
ρ = 4, whatever the mechanism, all atoms are in the same
positions. The expression for ECfS(ρ) between n − 1 and n is
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as follows:

ECfS(ρ) = ES{4[ρ − (n − 1)]}
4

+ (n − 1)
ES(ρ = 4)

4
.

As a consequence, ECfS(0), ECfS(1), ECfS(2), ECfS(3), and
ECfS(4) lie on the same line (dashed red in Fig. 4). Trivially,
this mechanism reduces the total energy barrier: In Fig. 4, the
energy barrier ECfS1 (ρ � 3.53) − ECfS1 (ρ = 0) is lower than
the energy barrier ES1 (ρ � 2.30) − ES1 (ρ = 0). Finally, the
third curve (EC1 ) corresponds to the explicit calculation of the
consecutive motion of four layers.

C. Discussion

We focus next on the comparison between the model of
independent layers (CfS1) and the true calculation (C1). The
two curves show the same main tendencies with four energy
barriers corresponding to the shuffling of the four atoms and
three metastable structures corresponding to the shuffling of
only one, two, or three layers (ρ = 1–3). However, the energy
of the three metastable configurations (for ρ = 1–3) differs
by only Ei = EC1 (1) − ECfS1 (1) = 60 meV and is, thus, a
constant independent of the number of shuffled layers. This
suggests that Ei comes from the two interfaces (in blue in
Fig. 4) between shuffled and unshuffled layers. The number of
such interfaces is constant and independent of the number of
layers.

To assess the electronic origin of these interface energies,
Fig. 5 represents the evolution of the d-magnetic moment
for the eight layers in the supercell as a function of ρ. The
transition goes along with a progressive change in magnetism
in which each successive layer shuffle, from the bcc- to the
hcp-like configuration, involves local jumps from FM to
AFMI. Indeed, after plane number 2 is translated, there is
a local AFMI order around this layer. When plane number
4 is translated, AFMI order expands over five layers, and
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FIG. 5. (Color online) Evolution of the local magnetic moment
for the eight atoms of the supercell as a function of the reaction
coordinate ρ. The black, orange, and blue colors approximately depict
the bcc, hcp, and mixed bcc/hcp values for the magnetic moment. The
atom numbering is related to Fig. 4. Atoms 1, 3, 5, 7 belong to the A
layers, and atoms 2, 4, 6, 8 are successively moving from an Ā-type
layer to a B̄-type one.

so forth. Also, the local moments strongly depend on local
coordination, in agreement with the generalized Stoner
mechanism for the appearance of magnetism as a function
of bandwidth.5 For example, when the fourth atom goes
from a bcc-like local configuration to a more compact
hcp-like local configuration, its local moment changes from
2.2μB to −1.1μB with no substantial difference with the
simultaneous mechanism. At the same time, the moment of
the neighboring atom 5 changes from 2.2μB to 1.7μB only
because atom 5 now has a local environment intermediate
between the hcp and the bcc. Once atom 6 has moved,
atom 5 ends up (for ρ = 3) with a full hcp-like local
environment and a moment of 1.1μB . This demonstrates:
(i) the absolute correlation between magnetism and total
energy in the transition and (ii) the link between interfacial
energy and layers with intermediate local moment and coordi-
nation. The interfacial energy only depends on the number of
interfaces, which is constant in the present paper. Remarkably,
energy barriers are not shifted by this interfacial energy.

For ε1 = 0.5, one notices that the energy progressively
increases for all the metastable states up to the final energy
gain of −0.5 eV. An additional calculation is performed
for a shear of ε3 = 0.875 (green lines in Figs. 2 and 4).
The resulting energy exhibits the same characteristics as for
ε1 = 0.5 and notably an interface energy of 100 meV but with
an overall gain of + 0.45 eV after the shuffle. For ε3 = 0.875
and only around ρ = 3, a new magnetic order—not stable
for ε1 = 0.5—diminishes the interface energy to 52 meV. It
embodies both FM and AFM interactions between the layers
and highlights the energetic proximity of several magnetic
orders. Further studies, with larger supercells, would be
necessary to study this magnetic order, but this is not the goal
of the present paper.

Two shear thresholds for the bulk transformation can be
estimated. A simple linear interpolation between the shuffle
curves C1 and C3 produces the following energy for a shear ε2

such that ε1 � ε2 � ε3 and the shuffle ρ,

E(ρ,ε2) = EC1 (ρ) + EC3 (ρ) − EC1 (ρ)

ε3 − ε1
(ε2 − ε1).

A lower-nucleation-threshold (LT) shear εLT
2 � 0.7 is defined

as the shear above which the gain E(ρ = 0,ε2) − E(ρ = 4,ε2)
becomes positive. To complete the transformation, the inter-
face energy has to be overcome for the first layer only, leading
to shuffling of subsequent layers at no additional cost. For a
large number of layers, thermodynamical equilibrium, thus,
drives the transition to completion. Also, an upper-nucleation-
threshold (UT) shear of εUT

2 � 0.84 is estimated from the
linear interpolation. It is defined as the shear above which
the gain E(ρ = 0,ε2) − E(ρ = 1,ε2) for the first metastable
state becomes positive. Above this shear, even the first shuffle
occurs at no energy cost. Then, all subsequent shuffles are
strongly favored, possibly leading to propagation and to a
global transition.

Consequences on the kinetics of the α-ε transition are
as follows. Shuffle can be viewed as a thermally activated
kinetic process due to vibrations of atoms.5,7,9 As emphasized
above, the energy barrier per atom Ea , which defines the
activation energy, is independent of the interfacial energy so
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that the shuffle of a single layer has, thus, no supplementary
activation cost. In this perspective, the above provides an
alternative mechanism for the transition in which the bulk
shuffle transformation nucleates from one single shuffle event,
possibly initiated by some initial shear ε2, such as, e.g.,
in a shock wave. This mechanism considerably reduces the
amount of energy needed to trigger the transformation, the
dimensionality of the nucleation process being reduced from
3 to 2.

In order to describe a transition corresponding to a shuffle
for a domain, a complete thermodynamical description of this
mechanism would be necessary. This would require relaxing
atoms after each shuffle and is beyond the scope of our paper.

IV. CONCLUSION

In conclusion, we utilize the fact that shuffle—or
optical-phonon mechanism—and macroscopic compression
—shear—have, in general, different time scales, which allows
for their decoupling. This is true for iron but also for other
systems, such as Zr, Ba, or related transitions, such as

Pu.33 Second, in iron bcc-hcp transition, we show that the
transition path description requires some peculiar magnetic
order different from the magnetic order of equilibrium phases.
Third, we highlight a new mechanism for this transition based
on the successive shuffle motion of layers. It indicates that each
layer itself could move by developing “shuffle dislocations” in
a manner akin to slip motion in plasticity. Our paper suggests
that detailed investigations of nucleation mechanisms would
be required to resolve the frontier between the military and the
thermally activated characters of solid-solid phase transitions.
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