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Vortex-induced strain and magnetization in type-II superconductors
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It is argued that the stress caused by vortex cores in the mixed state of superconductors may result in a
measurable field-dependent contribution to the free energy and magnetization. For sufficiently strong stress
dependence of the critical temperature, ∂Tc/∂p, this contribution may result in the “second peak” in the field
dependence of the reversible magnetization, the effect often masked by vortex pinning and creep.
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The so-called second peak in the field dependence of the
magnetization M(H ) in a number of type-II superconductors
is a long-standing puzzle. The peak has been observed in
magnetization loops having a “fishtail” shape so that the
loop width of the irreversible magnetization increases with
increasing field in intermediate field range and the critical
current rises with H in this domain.1

A few explanations based on peculiarities of pinning and
flux creep have been offered for this apparently strange
phenomenon.2 These suggestions may well be correct but they
do not cover all cases in which the second peak has been
observed. Puzzling in particular is the fact that in some systems
the second peak has been reported also in the reversible
M(H ); the examples are NbSe2, La1.45Nd0.40Sr0.15CuO4, and
CeCoIn5.3–5

In this work, the second peak in reversible M(H ) is
associated with the strain caused by normal vortex cores
embedded in the superconducting phase, a “magneto-elastic”
effect. The strains arise due to a small difference in densities
of the normal and superconducting phases which is related
to the stress dependence of the critical temperature ∂Tc/∂p.6

It turned out recently that this derivative in pnictides, and
in Ca(Fe1−xCox)2As2 in particular,7 by one or two orders of
magnitude exceeds values for conventional superconductors
making Fe-based pnictides especially favorable for observa-
tion of magneto-elastic effects.

Strain caused by a single vortex. Consider vortex nucleation
prior to which the superconductor has been strain free. We
model the vortex core as a normal (n) cylinder of radius ρ ∼ ξ ,
the coherence length, immersed in the superconducting (s)
phase with a constant order parameter. This is a London-type
approach8 which suffices for qualitative estimates, although
Ref. 9 argues that such an approach underestimates magneto-
elastic effects.

Nucleation of the normal core causes stress, since the n

phase has a larger specific volume Vn as compared to Vs . The
relative volume change ζ is related to the pressure dependence
of the condensation energy or of the critical field Hc: 6

ζ = Vn − Vs

Vs

= Hc

4π

∂Hc

∂p
. (1)

The elastic energy density in isotropic solids reads10

F = λu2
ll/2 + μu2

ij , (2)

where uij is the strain tensor and λ, μ are Lamé coefficients;
summation over double indices is implied. The stress tensor

σij = ∂F/∂uij = λullδij + 2μuij , and the equilibrium condi-
tion ∂σij /∂xj ≡ σij,j = 0 is given by

λull,i + 2μuij,j = 0. (3)

For brevity, the comma in uik,j is used to denote derivatives
with respect to the coordinate j .

For a single vortex directed along z, the displacement u =
(ux,uy,0) is radial in the plane xy, i.e., curl u = 0 or u = ∇χ ,
and uαβ = χ,αβ where χ is a scalar and α,β acquire only x and
y values. The equilibrium condition (3) reads (λ + 2μ)χ,αββ =
0 with the first integral

χ,ββ ≡ ∇2χ = C = constant. (4)

To fix this constant, we note that χ,ββ = uββ describes
compression and is related to the hydrostatic pressure within
the system. For the problem of the strain caused by a single
vortex in otherwise unrestrained crystal, the pressure is zero,
and we have to solve ∇2χ = 0 under the boundary condition
u → 0 at large distances. Hence, the problem is the same as
that of a linear charge in electrostatics: χ ∝ ln r , r = (x,y).
Hence, we obtain8

us = γsξ
2r

r2
, u

(s)
αβ = γsξ

2

r2

(
δαβ − 2

r2
xαxβ

)
, (5)

where ξ 2 is introduced for convenience and the constant γs is
given below.

At the core center u(0) = 0; we have

un = −γnr, u
(n)
αβ = −γnδαβ (6)

in the core interior. The constants γ are evaluated by using
boundary conditions at the interface:8

γn = ζμ

2(λ + 2μ)
, γs = ζ (λ + μ)

2(λ + 2μ)
. (7)

The displacement us of Eq. (5) is analogous to the electric
field of a charge with linear density γsξ

2/2 situated at the z

axis. Hence, the vortex can be considered as the linear source
of deformation u outside the core, whereas the scalar potential
χ satisfies

∇2χ = 2πγsξ
2δ(r). (8)

Vortex lattice. Consider now a 2D periodic lattice of vortices
at positions a in an infinite sample. At first sight, the potential
χ should obey

∇2χ = 2πγsξ
2
∑

a

δ(r − a). (9)
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The electrostatic analogy, however, shows that this equation
cannot have bound solutions, whereas we are interested in
periodic χ (r) to describe an infinite vortex lattice. We therefore
introduce a uniform background “charge density” of a sign
opposite to γsξ

2/2 to make the system “quasineutral.” In other
words, the condition for a periodic χ to exist is∫

d r

(
2πγsξ

2
∑

a

δ(r − a) + C

)
= 0. (10)

This translates to 2πγsξ
2N + CA = 0 where N is the total

number of vortices and A is the area of the sample cross
section perpendicular to the induction B; N/A = B/φ0 is the
density of vortices. Hence, C = −2πγsξ

2B/φ0 and we have
to look for solutions of

∇2χ = 2πγsξ
2

[∑
a

δ(r − a) − B

φ0

]
, (11)

an equation consistent with the equilibrium condition ∇2χ =
constant.

The general solution of this equation was discussed in
Ref. 11. Dealing with periodic solutions, one can consider
χ (r) in a single cell under the condition ∂χ/∂n = 0 at the
cell boundary (n is the normal to the boundary). The potential
within the cell centered at a = 0 satisfies

∇2χ = 2πγsξ
2

[
δ(r) − B

φ0

]
. (12)

The form of the unit cell depends on the vortex lattice
structure which is hexagonal (triangular) in isotropic case
of interest here. For this lattice, the boundary is a hexagon
which—in the Wigner-Zeitz approximation—can be replaced
with a circle. The cylindrically symmetric solution satisfying
χ ′(R) = 0 with πR2 = φ0/B is

χ = γsξ
2

(
ln

r

r0
− πB

2φ0
r2

)
; (13)

r0 is an arbitrary constant irrelevant for the following.
The crystal displacement has only one component:

ur = γsξ
2

(
1

r
− πB

φ0
r

)
. (14)

The strain tensor in cylindrical coordinates10 has two nonzero
components:

urr = ∂ur

∂r
= −γsξ

2

(
1

r2
+ πB

φ0

)
,

uϕϕ = ur

r
= γsξ

2

(
1

r2
− πB

φ0

)
. (15)

The elastic energy density averaged over the cell is

Fel = B

φ0

∫ R

ρ

2πr dr
[
λu2

αα(r)/2 + μu2
αβ (r)

]
, (16)

where the lower integration limit is the core radius on the
order of ξ . Within the London approach one cannot determine
the radius ρ; we will choose it below as to have the elastic
contribution to magnetization to vanish at the upper critical
field Hc2.

A straightforward evaluation gives

Fel = λ̃

2
γ 2

s b2

(
1 − ρ2

2ξ 2
b

)
, b = B

Hc2
, (17)

and

λ̃ = λ + μ + μ
2ξ 2

ρ2b
(18)

is a quantity on the order of the elastic constants.
Parameter ζ in terms of ∂Tc/∂p. The stress dependence

of the condensation energy ∂(H 2
c /8π )/∂p, to which the

coefficient γs is proportional, can be evaluated only within
a detailed microscopic theory to account for evolution of
the band structure and of the coupling responsible for su-
perconductivity with pressure. Such a calculation, if possible,
would be material specific. Instead, we resort to a qualitative
approach to see how the the vortex-induced strain could affect
macroscopic properties of type-II superconductors.

First, the derivative in Eq. (1) can be expressed in terms of
the measured ∂Tc/∂p:

∂
(
H 2

c /8π
)

∂p
= ∂

(
H 2

c /8π
)

∂Tc

∂Tc

∂p
. (19)

Unfortunately, there is no simple enough expression for the
condensation energy H 2

c /8π = Fn − Fs for arbitrary temper-
atures, fields, and scattering regimes. The exception is the case
of a strong pair-breaking considered originally by Abrikosov
and Gor’kov,12 who argued that due to extra suppression of the
order parameter by, e.g., spin-flip scattering, the GL energy
expansion holds for all temperatures down to 0. This argument
has recently been specified for order parameters with zero
Fermi surface averages (such as d-wave or ±s for iron-based
pnictides).13 This scheme will be used below mostly because of
its formal simplicity, although the qualitative results obtained
have a broader applicability.

The zero-field condensation energy for gapless state is

H 2
c

8π
= A

(
T 2

c − T 2
)2

, A ∼ N (0)τ 2
+

h̄2 , (20)

where N (0) is the density of states, and 1/τ+ = 1/τ + 1/τm

whereas 1/τ and 1/τm are the transport and pair-breaking
scattering rates. One then finds

∂H 2
c /8π

∂Tc

= H 2
c0

2πTc

(1 − t2), t = T/Tc. (21)

Thus, we estimate

ζ ≈ H 2
c0

2πTc

(1 − t2)
∂Tc

∂p
. (22)

Also, within the gapless state, the upper critical field and the
London penetration depth have simple T dependencies used
below:

Hc2 = Hc2,0(1 − t2), λ2
L = λ2

L,0

/
(1 − t2). (23)
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Magnetization. The free energy density of the mixed state
is

F = F0 + B2/8π + FL + Fel, (24)

where F0 is the zero-field energy. The London energy of the
vortex lattice in intermediate fields is given by

FL ≈ φ0B

32π2λ2
L

ln
ηHc2

B
(25)

with η ∼ 1. The elastic part is obtained with the help of
Eqs. (17), (22), and (23):

Fel ≈ λ

[
H 2

c0

2πTc

∂Tc

∂p

B

Hc2,0

]2 (
1 − ρ2B

2ξ 2Hc2

)
. (26)

Here, λ ∼ 1012 erg/cm3 is a new combination of λ and μ.
Both FL and Fel are evaluated here within the London

approach for Hc1 	 B 	 Hc2 and, therefore, fail near both
Hc2 and Hc1. Still, we can force the magnetization to be zero
at Hc2 by setting η = e ≈ 2.718 and ρ = 2ξ/

√
3. We then

obtain

M = B − H

4π
= B

4π
− ∂F

∂B
= ML + Mel, (27)

ML = − φ0

32π2λ2
L

ln
Hc2

B
, (28)

where ML is the London part. The average penetration length
λL, that governs the field distribution in the mixed state,
depends on B because the average order parameter � is sup-
pressed by the field. This dependence is relevant in particular
near Hc2, since there the averaged order parameter �2 ∝ (1 −
B/Hc2) which translates to λL ∝ 1/

√
1 − B/Hc2.14 We take

this field dependence to characterize qualitatively ML(T ,B).
The elastic contribution to M is

Mel = −2λ

[
H 2

c0

2πTcHc2,0

∂Tc

∂p

]2

B

(
1 − B

Hc2

)
. (29)

It is worth noting that this contribution is diamagnetic and has a
minimum at Bp = Hc2/2 in a reasonable agreement with data
of Refs. 4 and 5. The London part of M shifts the minimum to
smaller fields, but the stronger the elastic part relative to ML,
the closer Bp to Hc2/2.

Taking λ ≈ 1012 erg/cm3, Hc2,0 = 5.9 T, Hc0 = 0.35 T,
λL(0) ≈ 3.5 × 10−5 cm, Tc ≈ 10.5 K, and ∂Tc/∂p ≈ 3 ×
10−9 K cm3/erg = 30 K/GPa one obtains M(B) shown
in Fig. 1. These numbers roughly correspond to parameters
for La1.45Nd0.40Sr0.15CuO4.4 It should be noted that ∂Tc/∂p

for this particular material was not measured, but the data
on a similar crystal, La1.44Nd0.40Sr0.14CuO4,15 show that
∂Tc/∂p|p→0 exceeds 15 K/GPa.

Qualitatively, the calculated M(B) is similar to that
recorded by Ostenson et al.4 and shown in Fig. 2. The major
features of the data are reproduced by the model remarkably
well. One must bear in mind that the London-type isotropic
model cannot pretend for quantitative agreement with data
near Hc2 and for B → 0. Besides, in anisotropic materials
one cannot use the data on the Tc dependence of hydrostatic
pressure p as a fair representation of actual dependence of Tc

on the stress in the plane perpendicular to the applied field.16,17

Moreover, the use of temperature dependencies of quantities
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FIG. 1. (Color online) The magnetization M versus B according
to Eqs. (27)–(29) for parameters given in the text. The dot-dashed
line is the London contribution; the dashed line is the elastic part.

involved, which are characteristic of the gapless situation, was
only motivated by formal simplicity. Nevertheless, one may
conclude that the evidence for the vortex-induced strain as
responsible for the second peak of M(B) in materials with
large ∂Tc/∂p is strong.

Discussion. The elastic contribution to the vortex-vortex
interactions has been studied in a number of publications;
see Refs. 8, and 9 and references therein. It has been shown
that this contribution is responsible for the observed flux-
line lattice structures in fields tilted with respect to the c

axis of NbSe2. The observed structures cannot be explained
by London interactions alone; they in fact correspond to
the maximum of the London energy. Vortex lattices are
extremely sensitive to a number of factors, among which the
nonlocal corrections to London interactions were proven to
be important.18,19 Energy differences between various vortex
lattices are exceedingly small. It is shown in this work that the
elastic deformations caused by vortices may influence such a
quantity as magnetization involving much larger energies.
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La 1.45 Nd 0.4 Sr 0.15 CuO 4

FIG. 2. (Color online) The magnetization M(B) measured in
increasing and decreasing fields along the c crystal axis; the data
are compiled from Ref. 4. It is seen that M(B) is reversible for B >

0.4 T.
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The model suggested here is profoundly qualitative. Materi-
als to which the model is applied are anisotropic for which one
needs to know a number of elastic constants.20 We lumped
all this complexity to one number, λ ≈ 1012 erg/cm3. Our
estimates of material parameters and in particular of ∂Tc/∂p

needed for evaluation of elastic contribution to magnetization
are quite crude. In particular, it is hard to get reliable values of
∂Tc/∂p for p → 0 since usually people are interested in high
pressures.15

We model vortices as having normal cores surrounded
by a superconductor with an unperturbed order parameter
so that the condensation energy is just H 2

c /8π , which is so
only far from Hc2; see also Ref. 9. Hence, the model fails
in high fields approaching Hc2. We have used simplified T

dependencies of Hc2 and λL corresponding to the strong pair-
breaking situation. Still, simplifications notwithstanding, the
model reproduces qualitatively the behavior of M(B) with the
second peak.

The interpretation of the second peak in M(H ) as an
equilibrium thermodynamic property of deformable type-II
superconductors is new; it differs from traditional models
based on defects-related irreversible material properties. The
latter are always present, of course, and make it difficult to
extract relatively weak magneto-elastic properties of vortex
lattices. It should be noted, however, that well-pronounced
second peaks in reversible M(H ) must result in similar peaks

in irreversible magnetization loops; in other words, the fishtail
loops seen in layered materials may also be caused by the
vortex induced strain.

The elastic contribution to the vortex line energy may cause
enhancement of the low critical field Hc1, the problem for a
separate study. Near Hc2, however, the cores overlap whereas
the condensation energy goes as (Hc2 − B)2 so that one does
not expect changes of the phase transition at Hc2.

Layered materials having strong stress dependencies of
Tc are therefore good candidates not only for unmasking
equilibrium magneto-elastic phenomena from the background
of strong irreversibilities, but for understanding the irreversible
fishtails as well. Recently, the pressure dependence of Tc in
Ca(Fe1−xCox)2As2 has been found to reach ∂Tc/∂p ≈ −60
K/GPa, which is by a factor of 100 more than in “conventional”
superconductors. The present work suggests that magneto-
elastic effects should be studied in materials with large ∂Tc/∂p

with an emphasis on macroscopic magnetization, the problem
deserving more experimental and theoretical attention.
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7E. Gati, S. Köhler, D. Guterding, B. Wolf, S. Knöner, S. Ran, S. L.
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