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Cooper pairing between a conduction electron (c electron) and an f electron, referred to as the “c-f pairing,”
is examined to explain s-wave superconductivity in heavy-fermion systems. We first apply the Schrieffer-Wolff
transformation to the periodic Anderson model assuming deep f level and strong Coulomb repulsion. The
resulting effective Hamiltonian contains direct and spin-exchange interactions between c and f electrons, which
are responsible for the formation of the c-f Cooper pairs. The mean-field analysis shows that the fully gapped
c-f pairing phase with anisotropic s-wave symmetry appears in a large region of the phase diagram. We also find
two different types of exotic c-f pairing phases, the Fulde-Ferrell and breached pairing phases. The formation
of the c-f Cooper pairs is attributed to the fact that the strong Coulomb repulsion makes a quasiparticle f band
near the center of the conduction band.
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I. INTRODUCTION

Various types of heavy-fermion superconductors discov-
ered recently have attracted growing attention due to their
unconventional features. Some materials without inversion
symmetry have a superconducting phase in which the mixing
of spin-singlet and spin-triplet states is expected.1–4 It has also
been found that a multilayer material shows a strong-coupling
superconducting state where the ratio of the superconducting
gap to the transition temperature 2�/kBTc is quite large
compared to the conventional BCS value.5 Furthermore,
possible signatures of the Fulde-Ferrell-Larkin-Ovchinnikov
states have been observed in CeCoIn5.6 Although many
different heavy-fermion superconductors have been found, the
theoretical studies are still insufficient to deeply understand
the individual superconducting properties.

To reveal the mechanism of different types of supercon-
ductivity, first of all, identifying the pairing symmetry is of
crucial importance. In usual heavy-fermion superconductors,
the strong Coulomb repulsion between f electrons favors
the nodal d-wave symmetry, which has been the subject of
a number of theoretical studies, including the slave-boson
approximation with 1/N -expansion,7,8 the random-phase
approximation,9,10 the fluctuation-exchange approximation,11

and the third-order perturbation approaches.12–14 The ex-
perimental results also support the d-wave symmetry. The
nuclear magnetic and quadrupole resonances (NMR and
NQR) in typical heavy-fermion compounds show a power-law
temperature dependence of the spin-lattice relaxation rate and
the lack of the Hebel-Slichter peak,15,16 which indicate the
existence of line nodes. Moreover, the phase diagram has the
same feature as that of high-Tc cuprates with d-wave sym-
metry; superconductivity appears near the antiferromagnetic
phase.17

However, conventional s-wave superconductivity has also
been found in some compounds. In NQR measurements
on CeRu2

18 and CeCo2,19 the spin-lattice relaxation rate
exhibits an exponential decay at low temperatures and shows
the Hebel-Slichter peak. Moreover, the recent photoemission
spectroscopy (PES) experiment on CeRu2

20 has shown that

the density of states (DOS) has a clear superconducting
gap at the Fermi level. All these results were interpreted
as evidence for the fully gapped pairing state with s-wave
symmetry. Usually, this type of simple pairing symmetry
can be understood within the framework of the conven-
tional electron-phonon mechanism. However, it is unclear
whether the electron-phonon attraction can be dominant since
the Coulomb repulsion is rather strong in heavy-fermion
systems.

In this paper we propose another possible way to understand
s-wave superconductivity in heavy-fermion systems. The
essence of our idea is to consider the Cooper pairing between
a conduction electron (c electron) and a localized f electron,
which we call the “c-f pairing.” This type of Cooper pairing
was previously examined in the study based on a slave-boson
approach.21 In this study, since the constraints on the enlarged
Hilbert space are treated at the mean-field level, the effects of
unphysical states are included in the solution. Using another
theoretical treatment, we present a detailed analysis of the c-f
pairing state, including the derivation of the phase diagram,
from a different point of view. By performing the Schrieffer-
Wolff transformation to the periodic Anderson model, we
first derive an effective Hamiltonian for deep f level and
strong Coulomb repulsion. The resulting effective Hamiltonian
includes direct and spin-exchange interactions between c and
f electrons, which lead to the formation of the c-f Cooper
pairs. We analyze the effective Hamiltonian within the mean-
field approximation and obtain the phase diagrams involving
several types of c-f superconducting phases. Especially, we
find the fully gapped state with anisotropic s-wave symmetry
in a large region of the phase diagram. We also show that
more exotic c-f pairing phases, the Fulde-Ferrell (FF) and
breached pairing (BP) phases, can appear in the other regions
of the phase diagram.

This paper is organized as follows. In Sec. II we introduce
the periodic Anderson model and derive an effective Hamilto-
nian by using the Schrieffer-Wolff transformation. We obtain
the self-consistent equations for the order parameter of the c-f
pairing superconductivity and some other quantities within the
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mean-field approximation. In Sec. III we show the results of
our numerical calculations. We find three different types of
c-f pairing phases in the ground-state phase diagram. At the
end of the section we discuss the reason for the formation
of those c-f pairing states. Finally, Sec. IV is devoted to
conclusions.

II. MODEL AND CALCULATIONS

We consider a typical heavy-fermion system composed of
itinerant c electrons and nearly localized f electrons, which
hybridize with each other. Usually such a system is modeled
by the periodic Anderson Hamiltonian HPAM = H0 + HV ,

H0 = −t
∑
〈ij 〉

∑
σ

(c†iσ cjσ + H.c.) + εf

∑
iσ

n
f

iσ

+U
∑

i

n
f

i↑n
f

i↓ − μ
∑
iσ

(
nc

iσ + n
f

iσ

)
, (1)

HV = V
∑
iσ

(f †
iσ ciσ + H.c.), (2)

where c
†
iσ (f †

iσ ) is the creation operator of a c electron (an f

electron) with spin σ at site i, nc
iσ = c

†
iσ ciσ , and n

f

iσ = f
†
iσ fiσ .

Here t is the hopping integral of c electrons, εf is the position
of the bare f level, μ is the chemical potential, U is the on-site
Coulomb repulsion in the f orbital, and V is the hybridization
matrix element between c and f states. The sum 〈ij 〉 runs over
nearest-neighbor pairs of lattice sites. We consider the case of
a square lattice in this study.

In order to obtain an effective Hamiltonian describing the c-
f pairing superconductivity, we perform the Schrieffer-Wolff
transformation22 H̄ = eSHPAMe−S , where S is chosen so as
to eliminate all first-order terms in V . The generator S must
satisfy the condition [S,H0] = −HV , and is given by

S = 1√
N

∑
kiσ

[
V e−ik·Ri

εk − εf − U
n

f

iσ̄ c
†
kσ fiσ

+ V e−ik·Ri

εk − εf

(
1 − n

f

iσ̄

)
c
†
kσ fiσ − H.c.

]
, (3)

where σ̄ = ↑(↓) for σ = ↓(↑), N is the total number of
lattice sites, and εk = −2t(cos kx + cos ky). Here we set the
lattice constant a = 1. When |εf | and εf + U are large
compared to the effective kinetic energy of f electrons,
which is roughly proportional to ρV 2 (ρ is the c-electron
DOS at the Fermi level), the system is approximated by
keeping only the zeroth and second orders in V as H̄ ≈ H0 +
H2 ≡ H̄eff :

H2 = 1
2 [S,HV ] = Hdir + Hex + Hch + Hph, (4)

where

Hdir = 1

N

∑
k′kiσ

[
Wk′k − 1

4
Jk′k

(
n

f

i↑ + n
f

i↓
)]

e−i(k′−k)·Ri c
†
k′σ ckσ ,

(5)

Hex = 1

2N

∑
k′ki

Jk′ke
−i(k′−k)·Ri [S+

i c
†
k′↓ck↑ + S−

i c
†
k′↑ck↓

+ Sz
i (c†k′↑ck↑ − c

†
k′↓ck↓)], (6)

Hch = − 1

N

∑
kijσ

[
Wkk − 1

4
Jkk

(
n

f

iσ̄ + n
f

jσ̄

)]
e−ik·(Ri−Rj )f

†
jσ fiσ ,

(7)

Hph = 1

4N

∑
k′kiσ

Jk′k′(e−i(k′+k)·Ri c
†
k′σ̄ c

†
kσ fiσ fiσ̄ + H.c.). (8)

Here Si = 1
2

∑
σ ′σ f

†
iσ ′τ σ ′σ fiσ is the spin operator of f

electrons, and the coupling energies Jk′k and Wk′k are defined
as

Jk′k = −V 2

U
(Lk′ + Lk) , (9)

Wk′k = V 2

2U
(Mk′ + Mk) , (10)

with Lk = U 2(εk − εf )−1(εk − εf − U )−1 and Mk = U (εk −
εf )−1. As shown in Eqs. (4)–(8), the second term H2 consists
of four different interaction terms: the direct interaction Hdir,
the spin-exchange interaction Hex, the f -electron correlated
hopping Hch, and the pair hopping Hph.

We apply the mean-field approximation to many-body
terms in H̄eff . We first introduce the following order parameter
characterizing c-f superconducting phases:

�k ≡ 1

N

∑
k′

Jk′kBk′ , (11)

with

Bk′ = 〈f †
k′+q↑c

†
−k′↓ − f

†
−k′+q↓c

†
k′↑〉. (12)

By decoupling Hdir and Hex, one can extract the c-f super-
conducting order parameters, which means that these terms
play a crucial role for the formation of the c-f Cooper
pairs. The effective mass of c electrons is much smaller than
that of f electrons. Recently, this type of Cooper pairing
with unequal masses has been intensively studied in the
field of ultracold Fermi gases.23–27 Liu and Wilczek have
discussed this issue by assuming an attractive interaction
between fermions with different masses.23 They found that
the mean-field phase diagram contains two different types of
unconventional superfluid phases as well as the usual fully
gapped s-wave superfluid phase. One of them is the FF phase
with a finite center-of-mass momentum of the Cooper pairs,28

and the other is the BP phase,29–31 which was called the interior
gap superfluid phase in the original paper. In the BP phase, the
Cooper pairs have zero center-of-mass momentum, while the
Bogoliubov band has no gap unlike the case of the fully gapped
s-wave state. The name “breached pairing” comes from the fact
that the superfluid component is “breached” by the normal
fluid component.31 To take into account the possibility of the
FF state, we assume a finite center-of-mass momentum q of
the Cooper pairs in Eq. (12). The order parameter �k can be
chosen to be real without loss of generality.

In addition to the superconducting order parameter, we
also include all possible Hartree-type mean fields, which are
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defined as
nc

2
≡ 〈

nc
iσ

〉 = 1

N

∑
k

〈c†kσ ckσ 〉, σ = ↑,↓, (13)

nf

2
≡ 〈

n
f

iσ

〉 = 1

N

∑
k

〈f †
kσ fkσ 〉, σ = ↑,↓, (14)

φc ≡ 1

N

∑
k

Jkk〈c†kσ ckσ 〉, σ = ↑,↓, (15)

φf ≡ 1

N

∑
k

Jkk〈f †
kσ fkσ 〉, σ = ↑,↓, (16)

where n ≡ nc + nf is the total density of the system. Decou-
pling the Hubbard term in H0 and all the terms in H2, we
obtain the following mean-field Hamiltonian H̄MF:

H̄MF =
∑
kσ

ξ̄kc
†
kσ ckσ +

∑
kσ

ε̄
f

k f
†
kσ fkσ

+ 1

2

∑
k

�k(ck↑f−k+q↓ − f
†
k+q↑c

†
−k↓ + H.c.)

− 1

4
NUn2

f + 1

2

∑
k

�kBk + 1

2
Nnf φ, (17)

with ξ̄k = εk − μ + Wkk − nf Jkk/4, ε̄
f

k = εf − μ + Unf /

2 − φ/2 − Wkk + nf Jkk/4, and φ = φc − φf . Note that in
Eq. (17) the effective one-body energy of f electrons ε̄

f

k
depends on the wave vector k. This means that the correlations
between c and f states yield a finite bandwidth for f

electrons. From Eq. (17) we easily find the corresponding
thermodynamic potential

� =
∑

k

[
ξ̄k + ε̄

f

k − 1

4
Un2

f + 1

2
�kBk + 1

2
nf φ

]

− 2

β

∑
k,α=±

ln

(
2 cosh

βEα
k

2

)
, (18)

where

Ek =
√

(ξ̄k + ε̄
f

k+q)2 + �2
k, (19)

E±
k = 1

2

(−ξ̄k + ε̄
f

k+q±Ek
)
, (20)

and f (E) = 1/(eβE + 1), with β = 1/T is the Fermi distri-
bution function. The upper (ω+

k ) and lower (ω−
k ) Bogoliubov

bands are related to E±
k by ω+

k = max(|E+
k |,|E−

k |) and ω−
k =

min(|E+
k |,|E−

k |). The conditions ∂�
∂Bk

= 0, n = − 1
N

∂�
∂μ

, ∂�
∂φ

= 0,

and ∂�
∂nf

= 0 give the self-consistent equations for �k, μ, nf ,
and φ, respectively:

�k = − 1

N

∑
k′

Jk′k�k′
f (E+

k′ ) − f (E−
k′ )

Ek′
, (21)

n = 2 + 2

N

∑
k′

(
ξ̄k′ + ε̄

f

k′+q

)f (E+
k′ ) − f (E−

k′ )

Ek′
, (22)

nf = 1

N

∑
k′

[(
1 + ξ̄k′ + ε̄

f

k′+q

Ek′

)
f (E+

k′ )

+
(

1 − ξ̄k′ + ε̄
f

k′+q

Ek′

)
f (E−

k′ )

]
, (23)

φ = 1

N

∑
k′

Jk′ − 1

2N

∑
k′

{
(Jk′+q + Jk′)[f (E+

k′ ) + f (E−
k′ )]

+ (Jk′+q − Jk′ )
(
ξ̄k′ + ε̄

f

k′+q

)
Ek′

[f (E+
k′ ) − f (E−

k′ )]

}
, (24)

with Jk = Jkk. We can see from Eq. (9) that the order parameter
�k can be separated into constant and k-dependent parts as
�k = �0 + �1Lk. Substituting this expression, we derive the
equations for �0 and �1 instead of Eq. (21):

�0 = V 2

UN

∑
k′

Lk′(�0 + �1Lk′)
f (E+

k′ ) − f (E−
k′ )

Ek′
, (25)

�1 = V 2

UN

∑
k′

(�0 + �1Lk′)
f (E+

k′ ) − f (E−
k′ )

Ek′
. (26)

For a given total density n, the values of �0, �1, μ, nf ,
and φ are obtained by numerically solving Eqs. (22)–(26)
in a self-consistent way. At the same time, we also need to
minimize the free energy F = � + μnN with respect to q. In
the present study, the center-of-mass momentum q is assumed
as q = (q/

√
2,q/

√
2), and the Coulomb repulsion U is set to

be U/t = 12.

III. RESULTS

Before presenting the results of the calculations, we
briefly comment on the difference between our study and the
previous work by Hanzawa and Yosida.21 Hanzawa and Yosida
discussed the c-f pairing state on the basis of the periodic
Anderson model in the limit of strong Coulomb repulsion,
where the doubly occupied states in the f orbital are excluded
from the Hilbert space. They derived the gap equation and
estimated the order of the transition temperature for the c-f
pairing superconductivity. In our present study we further
take into account the effect of Hartree-type mean fields and
the possibility of the pairing state with finite center-of-mass
momentum. Since the Coulomb repulsion is large but finite
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FIG. 1. The phase diagrams in the (|εf |/t,V/t) plane at n = 2.2
and T/t = 0.005. The solid curves indicate the second-order phase
transitions between the fully gapped s wave, FF, BP, and normal
phases. The dashed curves indicate the position where the gap in the
lower Bogoliubov band of the FF phase vanishes. The dotted vertical
lines represent the lines of |εf |/t = 5.5 and 5.8, respectively.
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FIG. 2. The V/t dependencies of |�0|/t , |�1|/t , q, and �̃/t

at n = 2.2, T/t = 0.005, and |εf |/t = 5.8. The solid vertical lines
indicate the second-order phase transitions. The dashed vertical line
represents the position where the gap �̃ of the FF phase vanishes.

in our analysis, the influence of doubly occupied states is
included in the results. As a consequence, we find several
unconventional c-f pairing phases in addition to the simple
c-f pairing phase discussed by Hanzawa and Yosida.
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FIG. 3. (a) The absolute value of the superconducting order
parameter |�k| and (b) the lower Bogoliubov band ω−

k in the fully
gapped s-wave state at n = 2.2, T/t = 0.005, |εf |/t = 5.8, and
V/t = 1.8.
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FIG. 4. The lower Bogoliubov bands at n = 2.2, T/t = 0.005,
and |εf |/t = 5.8 for (a) V/t = 1.3 and (b) V/t = 1, respectively.

Figure 1 shows the |εf |-V phase diagram at n = 2.2, which
includes four different phases: the fully gapped s wave, FF,
BP, and normal phases. Let us discuss the phase transitions
between these phases along the line of |εf |/t = 5.8, which
is depicted by the dotted vertical line in Fig. 1. We show the
V/t dependencies of �0, �1, and q at |εf |/t = 5.8 in Fig. 2.
We also show the actual gap in the lower Bogoliubov band
�̃ ≡ mink(ω−

k ). Since the sign of �0 is always opposite to
that of �1 in the parameter range of Fig. 2, we plotted the
absolute values |�0| and |�1| in the figure. For large V , the
fully gapped s-wave phase is preferred. The order parameter
�k has anisotropic s-wave symmetry and the corresponding
lower Bogoliubov band ω−

k shows a finite gap, as shown in
Figs. 3(a) and 3(b). As V decreases, the FF state appears as
the ground state. Due to the existence of finite q, the lower
Bogoliubov band ω−

k has an asymmetry with respect to the
center of the Brillouin zone, as seen in Fig. 4(a). The band
is gapless, namely, �̃ = 0, in most of the FF region. Only
in a narrow region (1.508 � V/t � 1.524) of Fig. 2 do we
have the fully gapped FF state. As V is decreased further, the
transition to the BP phase occurs at V/t ≈ 1.025, where the
center-of-mass momentum q vanishes. As shown in Fig. 4(b),
the lower Bogoliubov band ω−

k of this phase touches the zero-
energy line, although it is symmetric about the center of the
Brillouin zone. For even smaller V , we have only the trivial
solution �k = 0, which is natural since the effective attraction
|Jkk′ | between c and f electrons [Eq. (10)] becomes smaller
as V is decreased.

It is worthy to note that the |εf |-V phase diagrams for
n = 2 + δ and n = 2 − δ are symmetric with each other
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FIG. 5. The T -V phase diagrams at n = 2.2 for (a) |εf |/t = 5.5
and (b) |εf |/t = 5.8. The solid curves indicate the second-order phase
transitions between the fully gapped s wave, FF, BP, and normal
phases. The dashed curves indicate the position where the gap �̃ of
the FF phase vanishes.

about |εf | = U/2 = 6t . For example, we can obtain the phase
diagram for n = 1.8 by the left-right inversion of Fig. 1. This
symmetric property comes from the fact that the periodic
Anderson model has particle-hole symmetry at εf = −U/2
in the case of bipartite lattices.

Next, let us examine the effect of temperature on the c-f
pairing phases. Figures 5(a) and 5(b) show the phase diagrams
in the (T/t,V/t) plane for |εf |/t = 5.5 and |εf |/t = 5.8,
marked by the dotted vertical lines in Fig. 1. We can see that
the fully gapped s-wave pairing state is more robust against
temperature than the nodal pairing states. Especially, the FF
phase completely disappears as the temperature is increased.
Such a sensitive temperature dependence of the FF phase has
been obtained in previous studies.32,33 The region of the BP
phase also gets smaller with increasing temperature, but it still
survives after the disappearance of the FF phase. For high
temperatures, the fully gapped s-wave phase occupies a large
region of the phase diagram.

Since the bare f level εf is rather deep below the Fermi
energy, we should clarify the reason why a c electron near the
Fermi level can form a pair with an f electron. We start the
discussion from the original periodic Anderson model given
by Eqs. (1) and (2). Because of the hybridization V between
c and f states, the effective f level has a finite dispersion,
namely, a finite effective mass, even if the bare f band is
completely flat. Furthermore, the strong Coulomb repulsion U

0.0
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FIG. 6. The PDOSs (a) of the c band and (b) of the f band in
the fully gapped s-wave state at n = 2.2, T/t = 0.005, |εf |/t = 5.8,
and V/t = 1.8. The dashed vertical lines represent the Fermi level.

splits the effective f level into the upper and lower Hubbard
bands and forms a quasiparticle f band in between them, as
in the case of the standard Hubbard model.34 The formation
of the quasiparticle f band has been shown by the previous
studies using the dynamical mean-field theory (DMFT).34–38

Especially near the half-filling, the quasiparticle f band is
generated in the vicinity of the Fermi level, i.e., near the
center of the conduction band. This allows us to propose that
a conduction electron forms a pair with an electron in the
quasiparticle f band and it causes superconductivity.

In the present work the effect of the Coulomb repulsion U

is treated within the mean-field approximation, in which the
splitting of the effective f level is not described. However,
the quasiparticle f band is approximately expressed by the
Hartree shift as ε̃f = εf + Unf /2. Figures 6(a) and 6(b) show
an example of the partial DOSs (PDOSs) of the c and f bands
in the fully gapped s-wave state. The PDOS of f electrons has
a large weight near the Fermi level and the superconducting
gap opens in both the PDOSs, which support our scenario
proposed above. It should be noted, however, that our mean-
field treatment may overestimate the PDOS of the effective f

level near the Fermi energy.
It is known that at half-filling the periodic Anderson

model has an insulating ground state,39–41 which exhibits
antiferromagnetic order when the Coulomb repulsion is larger
than the critical value Uc.42–44 In the case of finite doping,
the self-consistent second-order perturbation approach by
Mutou45 showed that this model favors a metallic ground state,
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in which the quasiparticle f band is located around the Fermi
level. However, this study did not take into account the c-f
pairing state. We expect that the c-f pairing state can appear
in a doped region of the periodic Anderson model. In order to
discuss the doping-induced phase transition from insulator to
c-f pairing state, it is required to perform a further analysis
which can treat the insulating states, e.g., the use of the DMFT,
although it is beyond the scope of the present study.

IV. CONCLUSION

We have studied the Cooper pairing between a conduction
electron (c electron) and an f electron, called the “c-f
pairing,”21 to understand s-wave superconductivity in heavy-
fermion systems. Considering a system with deep f level
and strong Coulomb repulsion, we first derived an effective

Hamiltonian by performing the Schrieffer-Wolff transfor-
mation to the periodic Anderson model. Within the mean-
field analysis of the effective Hamiltonian, we obtained the
ground-state phase diagrams including three different types
of c-f pairing phases: the fully gapped, FF, and BP phases.
Especially, we found that the fully gapped c-f pairing phase
with anisotropic s-wave symmetry occupies a large region of
the phase diagram. Moreover, we demonstrated that the fully
gapped c-f pairing state is more robust against temperature
than the FF and BP phases. Our results may be relevant to
the recent experiment which observed an anisotropic s-wave
superconducting gap in CeRu2.20
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