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Reading, writing, and squeezing the entangled states of two nanomechanical resonators
coupled to a SQUID
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We study a system of two nanomechanical resonators embedded in a dc superconducting quantum interference
device (SQUID). We show that the inductively coupled resonators can be treated as two entangled quantum
memory elements with states that can be read from, or written on, by employing the SQUID as a displacement
detector or switching additional external magnetic fields, respectively. We present a scheme to squeeze the even
mode of the state of the resonators and, consequently, reduce the noise in the measurement of the magnetic flux
threading the SQUID. We finally analyze the effect of dissipation on the squeezing using the quantum master
equation, and show the qualitatively different behavior for the weak and strong damping regimes. Our predictions
can be tested using current experimental capabilities.
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I. INTRODUCTION

In recent years, nanoelectromechanical systems1,2 (NEMs),
nanoscale mechanical oscillators coupled to electronic devices
of comparable dimensions have attracted substantial research
effort. A major motivation for this effort is the ability to
observe quantum behavior in a macroscopic system under
realizable experimental conditions.3,4 Indeed, NEMs today
can be fabricated with vibrational mode frequencies of
1 MHz–10 GHz and quality factors in the range of 103–105,
allowing the quantum regime to be reached at millidegrees
Kelvin temperatures for high-frequency oscillators.5,6 Possible
quantum effects in NEMs under such conditions include
quantized energy levels, superposition of states, entanglement,
and squeezing.7–9 In addition, NEMs are applied to high-
sensitive detection of mass,10–12 force13 and displacement,14

electrometers,15 and also to classical memory elements.16,17

Observing or changing the state of NEMs requires some
type of transducer that couples to them. Optical coupling18 can
be performed, e.g., by a microwave cavity,19 but is difficult to
integrate in circuits and suffers from the diffraction limit and
heating of the NEMS. Nonoptical coupling methods are there-
fore more common in experiments today. With magnetomotive
coupling,20 the magnetic force on a thin metallic layer on the
NEMS is measured. Capacitive coupling can take many forms,
one of which uses a normal or superconducting single-electron
transistor (SET).8,21 The NEMS changes the island charging
energy in the SET and hence the tunneling rates, which can
be read electronically. Other forms of capacitive coupling use
Cooper pair boxes,22,23 flux qubits,24 quantum point contacts,25

and quantum dots.26

An inductive coupling scheme with a potential for dis-
placement precision greater than the standard quantum limit
is obtained by integrating a doubly clamped micrometer-scale
beam within a superconducting quantum interference device
(SQUID). In a dc SQUID, the motion of the resonator changes
the area of the SQUID loop and hence the magnetic flux and the
current through it, which is then measured. This system was
only recently implemented.27,28 A more sophisticated design,
where the dc SQUID, and hence the resonator, is coupled
to a charge qubit, was also proposed.9 For an rf SQUID, it

was found29 that the change in the magnetic flux due to the
motion of the beam affects the visibility of Rabi oscillations
in the SQUID levels. The detection of discrete Fock states
in a resonator integrated with an rf SQUID was suggested in
another work.30

Squeezed states, originally introduced in quantum optics,31

are defined as minimum-uncertainty states with less noise in
one field quadrature than a coherent state.32 Several methods
to generate squeezing in NEMs were suggested. Coupling
to a charge qubit7,9 as means of generating squeezing was
proposed, while another work described squeezing by peri-
odic position measurement with a weakly coupled detector.8

Squeezing in nanoresonators can be applied to decrease the
noise in force or displacement measurements to below the
standard quantum limit, greatly improving the sensitivity of
the device.7,33

In this work, we present a scheme to create quantum
entanglement and squeezing in two nanoresonators integrated
in a dc SQUID. A previous study34 analyzed a similar system
but introduced many approximations that are difficult to
implement experimentally, whereas our present study is closer
to an experimentally realizable system. For instance, we do
not overlook the generally non-negligible self-inductance of
the SQUID as done in previous work,34 and we assume
megahertz frequency nanomechanical oscillators rather than
gigahertz frequency resonators, which are difficult to integrate
with a SQUID. Lastly, we do not require the SQUID to be
prepared in a high-|α| coherent state in order to have squeezing,
as the previous study does,34 and require instead a thermal
equilibrium state, which is easier to accomplish. Finally, we
consider different aspects of the system and draw conclusions,
e.g., on the reading and writing processes, that were not
advanced in previous literature.

The paper is organized as follows. In Sec. II, we present
the system model and its classical Lagrangian and Hamiltonian
formulations. We then proceed to quantize the Hamiltonian for
the nondissipative case and derive the effective Hamiltonian.
Next, in Sec. III, we treat the system as a quantum memory and
explain how one can read its quantum state or write on it. In
Sec. IV, we put forward a scheme for generating quadrature-
squeezed states of the nanomechanical beams when dissipation
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FIG. 1. Schematic of the device we study: two nanomechanical
beams oscillating in plane are embedded in a dc SQUID with area A

when beams are at rest. Uniform magnetic field B threads the SQUID,
and bias current Ib is assumed. The two identical Josephson junctions
on the SQUID have phase drops γi (i = 1,2). The currents I3 and I4

create additional magnetic fields B1 and B2 at the resonators.

is neglected, whereas in Sec. V, we use a quantum master
equation approach to test the range of validity of our results in
the presence of dissipation. Lastly, we discuss our results and
present the conclusions in Sec. VI.

II. SYSTEM MODEL AND HAMILTONIAN

Our system consists of a dc SQUID, shown schematically
in Fig. 1, in which each arm includes a Josephson junction
and an integrated doubly clamped beam of length li and mass
mi that can oscillate mechanically in the plane of the SQUID
with an angular frequency ω̃i (i = 1,2). The notation we use
is similar to the one in Ref. 35. A uniform magnetic field B

is applied perpendicularly to the plane of the loop, and a dc
bias current Ib flows through it after splitting to I1 and I2 in
the lower and upper arms, respectively. Two current-carrying
wires with currents I3 and I4 create additional magnetic fields
B1 and B2 at the positions of the first and second beams,
respectively. The beam amplitudes are much smaller than the
beam-wire distance, allowing these fields to be approximated
as being spatially uniform. For simplicity, the two Josephson
junctions on the SQUID arms are taken to be identical and their
gauge-invariant phase changes are denoted by γi . The critical
current and shunting capacitance of each junction are taken as
Ic and C, respectively, and are used to define the characteristic
junction energy scales: the Josephson energy EJ = h̄Ic/2e

and the charging energy EC = e2/2C. The plasma frequency
ωpl = √

2EJ EC/h̄ sets the typical time scale for the SQUID
dynamics.

The area of the SQUID loop depends on the center of mass
positions of the nanomechanical resonators, denoted by xi and
defined as zero when the beam is at rest, and positive when it
is inside the loop. Since the superconducting order parameter
is single valued, we must have

γ1 − γ2 − 2π�

�0
= 2πp, (1)

� = BA −
∑

i

(B + Bi)lixi + L(I1 − I2)/2, (2)

where p is an integer, � is the total magnetic flux threading the
loop, A is the loop area when the beams are at rest, �0 = h/2e

is the flux quantum, L is the self-inductance of the loop, and Ii

is the current in its ith arm. The first term in Eq. (2) comes from

the external magnetic field and the second, responsible for the
coupling of the mechanical and magnetic degrees of freedom,
from the oscillation of the beams. The difference between lixi

and the actual area enclosed by the ith beam is negligible,
being of third order in the ratio of the beam amplitude to its
length. Lastly, the third term originates from the magnetic flux
induced by the circulating current in the SQUID.

The kinetic and potential energies of the system are
functions of four dimensionless variables defined by γ =
(γ1 + γ2)/2, φ = �/�0 and ξi = (B + Bi)lixi/�0. They are

T =
∑

i

(
h̄2

4EC

1

	2
i

1

A2
i

ξ̇ 2
i

)
+ h̄2

2EC

γ̇ 2 + π2h̄2

2EC

φ̇2, (3)

U = EJ

{
−2 cos γ cos(πφ) − Ib

Ic

γ

+
∑

i

[
(−1)iπ

Ib

Ic

ξi + ξ 2
i

2A2
i

]

+ 2π

βL

(φ − ξ1 − ξ2 − φe)2

}
, (4)

where mechanical dissipation was assumed to be negligible,
and where we define the screening parameter βL = 2LIc/�0

and external flux φe = BA for the SQUID, while the dimen-
sionless magnetic field

Ai =
√

EJ

mi

(B + Bi)li
ω̃i�0

(5)

and oscillation frequencies 	i = ω̃i/ωpl are defined for each
of the beams. The first term in Eq. (3) corresponds to the
kinetic energy of the beams, while the second and third terms
to the capacitive energy of the junctions. The first term in
Eq. (4) relates to the Josephson junctions energy, while the
second term is the washboard potential term.36 The third term
corresponds to the Lorentz force on the beams in the classical
equations of motion (EOMs), and the fourth term to the beams’
elastic potential, taken to be harmonic, as nonlinear terms are
negligible at the amplitudes concerned.37 Lastly, the fifth term
corresponds to the inductive energy of the SQUID.

The classical EOMs for the four variables γ, φ, ξ1, and ξ2

are the Euler-Lagrange equations for the system Lagrangian
L = T − U . Before writing the Hamiltonian, we expand the
potential in series about a minimum (φ,γ ,ξ 1,ξ 2), around
which the system oscillates. Under current experimental
conditions,27,28 such a minimum exists, as the Hessian matrix
for U there, proportional to the one in Eq. (8), is positive
definite. The well containing the minimum can accommodate
∼20 states in γ and ∼900 in φ. If we take these two parameters
to be “frozen” at their respective ground states, as we will
later assume, we find the well to be infinitely deep for the
ξi parameters. This assumption also allows us to neglect in
the series expansion of U terms higher than quadratic ones
in φ − φ and γ − γ . With these approximations in mind, the
Hamiltonian H reads

H = T + U =
∑

i

EC

2h̄2 p2
i +

∑
i,j

EJ Vij qiqj , (6)
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where the coordinates qi are given by

q1 = γ − γ , q2 = π (φ − φ), q2+j = 1√
2	jAj

(ξj − ξ j )

(7)

(j = 1,2), and the canonically conjugate momenta pi are pi =
(h̄2/EC)q̇i . In addition,

V =

⎛⎜⎜⎜⎜⎜⎝
r −s 0 0

−s r + 2
πβL

− 2
√

2	1A1
βL

− 2
√

2	2A2
βL

0 − 2
√

2	1A1
βL

	2
1(1 + 4πA2

1
βL

) 4π	1A1	2A2
βL

0 − 2
√

2	2A2
βL

4π	1A1	2A2
βL

	2
2(1 + 4πA2

2
βL

)

⎞⎟⎟⎟⎟⎟⎠ ,

(8)

where r = cos γ cos(πφ) and s = sin γ sin(πφ) were in-
troduced. We see that the beam oscillations are coupled
inductively via the V34 term. This coupling can be used to
generate squeezed states in the beams as we will show below.

The Hamiltonian is quantized in the standard way by
converting the coordinates qi and their canonically conjugate
momenta pi to operators and postulating the canonical
commutation relation [̂qi,p̂j ] = ih̄δij . In terms of creation and
annihilation operators, q̂i and p̂i are

q̂i = 1

2

(
2EC

EJ Vii

)1/4

(a†
i + ai), (9)

p̂i = ih̄

(
EJ Vii

2EC

)1/4

(a†
i − ai), (10)

and the quantized Hamiltonian is given by

H =
∑

i

h̄ωi

(
a
†
i ai + 1

2

)
+ 1

4
h̄ωpl

∑
i �=j

ωpl√
ωiωj

×Vij (ai + a
†
i )(aj + a

†
j ), (11)

where ωi = ωpl

√
Vii . We note that the frequencies ω3 and

ω4 are the same as the resonators frequencies, ω̃1 and ω̃2,
apart from each having a factor due to the magnetic field
at the resonator. Thus we see that the Lagrangian classical
memory variables ξ1 and ξ2, in complete analogy with memory
variables in electronic circuits,38 become memory quanta in the
Hamiltonian.

Taking the same experimental conditions27,28 and tuning B

to make r of order unity results in h̄ω1 � kBT and h̄ω2 �
kBT . Consequently, the first and second harmonic oscillators
are “frozen” at their respective ground states. Moreover, since
ω1,ω2 � ω3,ω4, exciting the nanomechanical oscillators will
not budge them from their ground state. Removing constant
terms, we are then left with the effective Hamiltonian

H = h̄ω3a
†
3a3 + h̄ω4a

†
4a4 + Ṽ (a3 + a

†
3)(a4 + a

†
4), (12)

where the interaction coefficient reads

Ṽ = 2πh̄
√

ω̃1ω̃2A1A2

βL

(
1 + 4πA2

1
βL

)1/4(
1 + 4πA2

2
βL

)1/4
. (13)

III. READING AND WRITING QUANTUM INFORMATION

We now wish to employ this system to create entangled
nanomechanical quantum memory that can be read from and
written on. We assume the beams are cooled to a temperature
low enough so as to reduce the equilibrium state to the ground
state for each of the beams. This is possible today, e.g., by
coupling to a superconducting microwave resonator,39 even if
the environment of the beams, which includes the SQUID, has
a higher temperature.

If the interaction term in Eq. (12) is small relative to the
other two terms, perturbation theory gives first-order energy
corrections in Ṽ only when |ω3 − ω4| � Ṽ /h̄. Thus we will
henceforth assume the beams are identical. The Hamiltonian
(12) is quadratic in the ladder operators and is thus amenable
to an exact solution at all interaction strengths.40 This solution
is found by moving to the differential representation and then
diagonalizing the quadratic form of the potential by a canonical
transformation to even and odd coordinates,

xe,o = 1√
2

(x1 ± x2), pe,o = 1√
2

(p1 ± p2), (14)

where xi and pi are the position and momentum coordinates
of the ith beam.

Applying Eq. (14) on the ladder operators, we find

a5 = 1

2
√

2

[(√
ω5

ω3
+

√
ω3

ω5

)
(a3 + a4)

+
(√

ω5

ω3
−

√
ω3

ω5

)
(a†

3 + a
†
4)

]
, (15)

a6 = 1

2
√

2

[(√
ω6

ω3
+

√
ω3

ω6

)
(a3 − a4)

+
(√

ω6

ω3
−

√
ω3

ω6

)
(a†

3 − a
†
4)

]
, (16)

where a
†
5 corresponds to creation of an even mode quantum in

which both beams oscillate in phase, and a
†
6 to creation of an

odd mode quantum, where the beams oscillate in antiphase.
The even and odd oscillation frequencies are given by

ω5,6 =
√

ω2
3 ± 2Ṽ ω3/h̄. (17)

Using this transformation and omitting constant terms, the
Hamiltonian (12) is reduced to

H = h̄ω5a
†
5a5 + h̄ω6a

†
6a6. (18)

We see that the even mode is decoupled from the odd mode
in this Hamiltonian, which is thus separable to an even and an
odd part. The energy spectrum of this Hamiltonian is given by

Enm = nh̄ω5 + mh̄ω6, (19)

while the eigenstates are

|nm〉 = 1√
n!m!

(a†
5)n(a†

6)m|00〉, (20)

which, upon substitution of Eqs. (15) and (16), are seen to be
highly entangled states of the two beams.

The quantum state of the system is read by measuring the
magnetic flux threading through the SQUID, which is done by
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a current measurement in the standard way.36 The operator for
this observable is

�̂ = −(B + B1)l1x1 − (B + B2)l2x2, (21)

where the constant term BA was omitted. With the assumption
of B1 = B2, we have

�̂ = −
√

2(B + B1)l1λ3(a5 + a
†
5), (22)

where the zero-point fluctuation, the resonator displacement
uncertainty at the ground state, is defined as λi = √

h̄/2m1ωi+2

with the definition extended also for i = 3,4.
We thus see, as expected, that the measurement of the

magnetic flux cannot detect the odd mode, since oscillations
in this mode do not amount to a change in the area of the
SQUID loop. We therefore set to read and write quantum
information only in the n quantum number in the state |nm〉.
Moreover, we note that for the eigenstates of the Hamiltonian
we have 〈�̂〉 = 0, implying that a better observable would
be the standard deviation 〈�̂〉. This is indeed true, with the
values of this observable on the eigenstates being

〈�̂〉 =
√

2(B + B1)l1λ3

√
1 + 2n, (23)

enabling us to measure the value of n.
Having established the reading process, we now set to

describe how to write quantum information on this system. It
would seem the best way to excite the system is via a resonant
ac current of frequency ω5 in the external wires that, according
to the Hamiltonian (18), will pump the beams to their excited
state. However, such a current will also pump the beams to
even higher excited states, since the energy level difference is
fixed in this system. A better method would be to use constant
currents in the external wires. The addition to the potential (4)
due to such currents, keeping only first-order terms in B1/B

and B2/B, is

H1 = πEJ l1

IcβL�0
{−B1x1[4Ic(φ − φe) + IbβL]

+B2x2[IbβL − 4Ic(φ − φe)]}, (24)

where constant terms were omitted and only linear terms in
xi were kept, owing to the quadratic terms being smaller by
several orders of magnitude.

Since reading can be done only for the even mode, and the
Hamiltonian (18) is separable into odd and even components,
we do not consider the odd part in Eq. (24), and by choosing
also B1 = B2, the even part of Eq. (24) is

H1,e = −4
√

2π
EJ l1λ3(φ − φe)

βL�0
B1(a5 + a

†
5)

≡ f (B1)(a5 + a
†
5), (25)

where constant terms were again omitted. The even part of the
total Hamiltonian H + H1 is therefore

He = h̄ω5a
†
5a5 + f (B1)(a5 + a

†
5). (26)

The idea of writing is then the following: we create a
constant magnetic field B1, which shifts the harmonic potential
and then let the system relax to its new ground state. We then
suddenly revert B1 to zero thereby obtaining an excited state
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FIG. 2. Graph of the maximum probability of the ground state of
the shifted harmonic potential having a |n〉 component in the unshifted
potential. We have P00 = 1 and P11 = e−1. The values for noninteger
n were interpolated by n! = �(n + 1).

of the original system. The Hamiltonian in the differential
representation is

He = − h̄2

2m1

d2

dx2
+ 1

2
m1ω

2
5x

2 + λ−1
3 f (B1)x, (27)

where the mass m1 is the beam mass. Apart from a constant,
the Hamiltonian (27) is

He = − h̄2

2m1

d2

dx2
+ 1

2
m1ω

2
5(x + x)2, (28)

x = f (B1)

m1λ3ω
2
5

. (29)

According to the scheme described above, we wish to
maximize the probability Pnn = |〈ψ0(x + x)|ψn(x)〉|2, with
ψn(x) being the nth harmonic oscillator wave function, to
obtain the desired state |n〉 by tuning B1 and with it x. Using
standard results of the quantum harmonic oscillator to write
the integral 〈ψ0(x + x)|ψn(x)〉 and then using the generating
function of the Hermite polynomials to find its value for
every n, we find the maximum value of Pnn is reached when
x = 2

√
nλ3 with the probability then to measure k phonons

after B1 is removed given by

Pkn = (k!)−1e−nnk, (30)

which is a Poisson distribution with mean n. The Pnn function
is plotted in Fig. 2. We see that the probability drops sharply for
small n and evens out for larger values. The limit at n → ∞ is
0. Although the writing process does not create a pure number
state |n〉, the standard deviation in the number of phonons,
by the properties of the Poisson distribution, is

√
n, which is

reasonably low.

IV. SQUEEZED STATES

Having shown how to read and write quantum information
in this system, we now wish to demonstrate the possibility of
creating squeezed states. In an effort to mimic the Hamiltonian
of a degenerate parametric amplifier from quantum optics,32

we set the external wires magnetic fields to oscillate at double
the frequency of the even mode, namely,

B1 = B1,0e
2i〈ω5〉t + c.c, B2 = B2,0e

2i〈ω5〉t + c.c, (31)

where 〈ω5〉 denotes the time average of ω5, and the oscillations
of ω5 about this average are small since Bi � B.
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The noninteracting Hamiltonian is found from Eq. (18) to be

H0 = h̄〈ω5〉a†
5a5 + h̄〈ω6〉a†

6a6. (32)

Keeping only terms to first order in Bi/B, the addition to
the potential (4) due to the oscillating magnetic field in the
rotating wave approximation (RWA), valid here due to the
weak damping, is

H1 = 4πEJ l2
1B

�2
0βL

[
(B1 + B2)x1x2 + B1x

2
1 + B2x

2
2

]
. (33)

We write this addition in terms of ladder operators, take
B1,0 = B2,0 to be pure imaginary and eliminate constant terms
to find the interaction picture Hamiltonian in the RWA to be

HI = 8πi〈λ3〉2EJ l2
1B|B1,0|

�2
0βL

[
a2

5 − (a†
5)2], (34)

which is the squeezing Hamiltonian. In writing Eq. (34), we
neglected the time-dependent term (ω5 − 〈ω5〉)a†

5a5 + (ω6 −
〈ω6〉)a†

6a6, since it is negligible relative to the squeezing term
under the assumed experimental conditions. It is interesting
to note that squeezing of the odd mode is not possible using
this scheme, even if ω5 is replaced with ω6 in Eq. (31). The
fundamental reason for this is Lenz law, which makes the
coefficient of x1x2 in Eq. (33) positive and thus excludes
terms proportional to a2

6 in Eq. (34). The coefficient is positive
because moving both beams in the positive direction costs
energy, since both movements decrease the magnetic flux.

We now consider the effect of squeezing in this system and
devise means to observe it. We assume dissipation is weak,
and both beams are initially in the ground state. Conforming
to standard notation, the squeezing parameter is

g = 16π〈λ3〉2EJ l2
1B|B1,0|t

h̄�2
0βL

, (35)

which is real, and the squeezing operator reads

S(g) = exp
{
g
[
a2

5 − (a†
5)2

]/
2
}
. (36)

The time evolution of the a5 operator in the interaction picture
is given by

S†(g)a5S(g) = a5 cosh g − a
†
5 sinh g. (37)

In the rotating frame, the uncertainty in the positions and
momenta of the beams are

〈xi〉 = λ4{1 + tanh[g + ln(ω5/ω6)/2]}−1/2, (38)

〈pi〉 = h̄

2
λ−1

4 {1 − tanh[g + ln(ω5/ω6)/2]}−1/2, (39)

where Eqs. (7), (9), (15), (16), and (37) were used. We see that
we have limited squeezing to below the standard quantum limit
in the positions and unlimited antisqueezing in the momenta,
as the even mode is squeezed, while the odd mode is not. The
interaction modifies the squeezing by adding the positive term
of ln(ω5/ω6)/2 to the squeezing parameter. In addition, with
the product of the uncertainties being

〈xi〉〈pi〉 = h̄

2
cosh[g + ln(ω5/ω6)/2], (40)

we see that due to the interaction the minimum uncertainty is
no longer attained before squeezing takes place.

It is interesting to write the wave function for the beams
in the differential representation in the presence of squeezing.
This wave function can be found by using the relation between
the two-photon coherent states and the squeezed states32 to
write for the squeezed state |g〉:

(cosh ga5 + sinh ga
†
5)a6|g〉 = 0. (41)

After moving to the differential representation, Eq. (41) is
solved to find a wave function of the form

ψ(xe,xo) = C1e
− m1ω5

2h̄ e2gx2
e e− m1ω6

2h̄ x2
o , (42)

with C1 being a normalizing constant. When we transform this
wave function to the beam coordinates via Eq. (14), we find that
the new wave function is in a jointly Gaussian form, namely,

ψ(x1,x2) = C1 exp

[
−

x2
1

σ 2
1

+ x2
2

σ 2
2

− 2rx1x2
σ1σ2

2(1 − r2)

]
, (43)

where σ1 = σ2 = √
2〈x1〉, with 〈x1〉 given by Eq. (38),

and the correlation coefficient given by

r = − tanh[g + ln(ω5/ω6)/2]. (44)

We note that the factor of
√

2 in σi comes from |ψ(x1,x2)|2,
rather than ψ(x1,x2), being the probability distribution. In
addition, we see that, as before, the beam interaction results
in an addition to the squeezing parameter, which gives
negative correlation even at t = 0. The correlation due to the
squeezing is negative, because the influence of the odd mode,
which is not squeezed, increases with time, producing perfect
anticorrelation when the squeezing parameter goes to infinity.

Lastly, we consider the effect of the squeezing on the
measurement of the magnetic flux in the SQUID. Using
Eq. (22), we find the standard deviation of �̂ in the rotating
frame to be

〈�̂〉 =
√

2(B + B1)l1λ3e
−g, (45)

which is fully squeezed, while in the laboratory frame, we have

〈�̂〉 =
√

2(B + B1)l1λ3

√
cosh(2g) − sinh(2g) cos(2ω5t),

(46)

which characteristically oscillates between fully squeezed
values at t = (π/ω5)p, corresponding to Eq. (45), and fully
antisqueezed values at t = (π/ω5)(p + 1/2), where p is an
integer. We conclude that the squeezing effect is measurable
and that the squeezing parameter can be found from the
measurements.

V. EFFECT OF MECHANICAL DAMPING

In reality, the damping of the beam oscillations is weak
but nonzero. With regard to reading and writing quantum
information, this is not a problem, so long as the reading or
writing is performed within a period much shorter than the
characteristic decay time. The squeezed states, however, are
measurably degraded even by very weak dissipation, as we
show in this section.

Many models were devised for describing dissipation in
quantum systems.41 We choose here to work with the quantum
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master equation. In the interaction picture with the Hamilto-
nian (34), the quantum master equation takes the form42

∂

∂t
ρ(t) = LSρ(t) + Ldisρ(t), (47)

LSρ(t) = 1

2
ζ [a2 − (a†)2,ρ(t)], (48)

Ldisρ(t) = −γ

2
(ncav + 1){[a†,aρ(t)] + [ρ(t)a†,a]}

− γ

2
ncav{[a,a†ρ(t)] + [ρ(t)a,a†]}, (49)

where ζ = g/t is the squeezing rate and for brevity we write a

instead of a5 and ω instead of ω5. In Eqs. (47)–(49), ρ(t) is the
statistical operator for the system,LS andLdis are the Liouville
operators for the squeezing and dissipation, respectively,
γ = ω/Q is the damping rate of the even mode, where Q

is the beam quality factor, and ncav = (eh̄ω/kBT − 1)−1 is the
average phonon occupation in the even mode.

The system can be equivalently described by the Wigner
quasiprobability distribution W (α,α∗) instead of by the statis-
tical operator ρ(t), where we omit the explicit time dependence
in W (α,α∗) to make the notation concise. The parameter
α = X1 + iX2 is a complex number that is related to the phase
space coordinates via α = 1

2λ
x + iλ

h̄
p, where x and p are the

even mode position and momentum coordinates, respectively,
and λ = √

h̄/2m1ω as before. We convert7,41 Eq. (47) to an
equation for the Wigner distribution to find

∂W (X1,X2)

∂t

=
[
ζ

(
X1

∂

∂X1
− X2

∂

∂X2

)
+ γ

2

(
∂

∂X1
X1 + ∂

∂X2
X2

)
+ 1

4
γ

(
ncav + 1

2

)(
∂2

∂X2
1

+ ∂2

∂X2
2

)]
W (X1,X2), (50)

where we note that the original Wigner function W (x,p)
is related to the one used here by W (α,α∗) = W (X1,X2) =
2h̄W (x,p).

Equation (50) is seen to be a special case of the Fokker-
Planck equation with W (u) corresponding to the probability
distribution P (u; t), where u = (X1,X2). Put in this form, the
equation can be formally written as

∂W (u)

∂t
= −∇ · [F(u)W (u)] + D0

2
∇2W (u), (51)

where F = [−(ζ + γ

2 )X1,(ζ − γ

2 )X2] and D0 = 1
2γ (ncav + 1

2 )
are the force and diffusion constant, respectively. Due to the
form of the force in Eq. (51), we can use separation of variables
to break this equation into two one-dimensional Fokker-
Planck equations with solutions W1(X1) and W2(X2), where
W (X1,X2) = W1(X1)W2(X2). These solutions are given by
(i = 1,2)

Wi(Xi) = 1√
2πσi(t)

exp

[
− X2

i

2σ 2
i (t)

]
, (52)

σi(t) =
√(

1

4
− D0

ki

)
e−ki t + D0

ki

, (53)

k1 = 2ζ + γ, (54)

k2 = γ − 2ζ, (55)

where ki are the decay rates.
Equations (52)–(55) indicate that a steady-state solution

always exists for W1(X1) and is given by Eq. (52) with
σ1(t) = √

D0/k1. This finite distribution width corresponds to
a saturation in the squeezing in contrast with the dissipationless
case, when the field quadrature X1 is squeezed without limit.32

For W2(X2) on the other hand, we have a steady-state solution
only at the strong damping regime, γ > 2ζ , and this solution
exhibits σ2(t) = √

D0/k2. When the strong damping condition
is not satisfied, k2 is negative, there is no steady state, and X2

is antisqueezed as in the dissipationless case,32 but at a slower
pace since the leading behavior in X2 is e(ζ−γ /2)t instead of
eζ t as in the dissipationless case.

The knowledge of the Wigner function in Eq. (52) enables
us to calculate system properties via the relation41

〈{ar (a†)s}sym〉 =
∫

d2ααr (α∗)sW (α,α∗), (56)

where {·}sym indicates the average of all the permutations of the
ladder operators, and d2α = dX1dX2. Working in the rotating
frame, the resulting uncertainties in the positions and momenta
of the beams read (i = 1,2)

〈xi〉 =
√

2λ3

√
1

4

ω5

ω6
+ σ1(t)2, (57)

〈pi〉 = 1√
2
h̄λ−1

3

√
1

4

ω6

ω5
+ σ2(t)2, (58)

which reduce to Eqs. (38) and (39) when γ = 0.
We see that the squeezing in the position coordinates,

already limited to
√

ω3/2ω6 of the standard quantum limit, λ1,
in the dissipationless case of Eq. (38), is limited here as well
with the same limit, where we take ncav = 0 due to the previous
assumption of h̄ω � kBT . The momenta uncertainties, in
comparison, are antisqueezed only in the weak damping
regime, γ < 2ζ , compared with being always antisqueezed
in Eq. (39), when there is no damping. As with the quadrature
field X2, the momenta antisqueezing in the weak damping
regime has a slower rate relative to the dissipationless case with
a leading behavior of e(ζ−γ /2)t versus eζ t for the dissipationless
case. The product of the position and momentum uncertainties
in Eqs. (57) and (58) gives the lowest uncertainty at t = 0 and
higher values afterwards.

As in Sec. IV, we wish to find here the effect of
squeezing on the measurement of the magnetic flux. Using
Eq. (22), we find the standard deviation in the rotating frame
to be

〈�̂〉 = 2
√

2(B + B1)l1λ3σ1(t), (59)

which is squeezed, though only to a finite extent unlike the
dissipationless case in Eq. (45), where it is fully squeezed. In
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FIG. 3. Normalized deviation in the SQUID magnetic flux
�(t)/�(t = 0) as a function of t/T1, where ncav = 0, T1 = 2π/ω

and ζ = 0.1/T1. (a) No damping (γ = 0): lower and upper limits are
0 and ∞. (b) Weak damping (γ = ζ ): lower and upper limits are
1/

√
3 and ∞. (c) Strong damping (γ = 3ζ ): lower and upper limits

are
√

3/2 and
√

3.

the laboratory frame, we have

〈�̂〉 = 2
√

2(B + B1)l1λ3

√
cos2(ωt)σ 2

1 (t) + sin2(ωt)σ 2
2 (t),

(60)

which oscillates between squeezed values at t = (π/ω)p,
corresponding to Eq. (59), and squeezed/antisqueezed values,
depending on the damping regime, at t = (π/ω)(p + 1/2),
where p is an integer. In the dissipationless limit of γ = 0,
Eq. (60) reduces to Eq. (46). Equation (60) is plotted in Fig. 3
with normalized units for the no-damping, weak-damping, and
strong-damping cases. We conclude again that the squeezing
effect is detectible and leads to a reduced variation in the
measured magnetic flux in the SQUID.

VI. CONCLUSIONS

In this work, we have demonstrated that a system composed
of two nanomechanical resonators embedded in a dc SQUID

can be used as two units of quantum memory and that
only the even mode in these two units is readable by the
SQUID. We showed how the state of the beams can be
altered, corresponding to writing quantum information, and
proved the amplitude distribution of the number states in
the resulting state is Poisson distributed. We then proposed
a scheme to squeeze the even mode of the resonators and
thus decrease the noise in the SQUID magnetic flux. Taking
dissipation into account, we found a criterion that separates
the weak-damping regime, where a steady state exists only in
one field quadrature, from the strong-damping one, where both
field quadratures exhibit steady states. We then predicted the
form of the fluctuations in the magnetic flux in the SQUID, by
which squeezing can be observed.

The approximations and assumptions made during our
derivations hold well for reasonable experimental values. For
instance, for two identical 8-MHz resonators of length 25 μm
and quality factor Q = 2 × 104, an external magnetic field of
10 T, beam temperature of 0.1 mK, SQUID temperature of 20
mK, and other parameter values similar to the ones in Refs. 27
and 28, we find the energy level differences in the Hamiltonian
(18) to be much larger than both kBT and the level widths.
Moreover, for the reading process, Eq. (23) gives a required
SQUID sensitivity of 1.3 × 10−5 �0√

Hz
for n ∼ 1 and sensitivity

of 1.3 × 10−5 1√
2n

�0√
Hz

for n � 1. A typical SQUID with a

flux sensitivity of 10−6�0/
√

Hz satisfies these conditions for
n < 80.

Regarding the squeezing, a major question is whether
substantial squeezing can be achieved within the decoherence
time for the states. The decoherence time for the resonators
here can be made to be at least 5 μs,19,43,44 while substituting
the parameters above in Eq. (35) gives a characteristic
squeezing time of τsq ∼ 2 μs. We therefore conclude that
substantial squeezing is achievable within the dephasing
time.

The experimental realization of this system will be an
important demonstration of macroscopic quantum behavior
and squeezing in a nanomechanical system. In addition, it
can be used for detecting the position of the embedded
nanomechanical beams with accuracy higher than the standard
quantum limit. Stacking such SQUIDS in series, with the
upper arm of the lower SQUID being also the lower arm
of the upper one, can form a quantum data bus,45,46 lead
to a multimode entangled state,47 and possibly multimode
squeezing.32 Another application of this system or a close
variant of it is that of a quantum gate47 acting on the two
states by means of currents in the external wires. A series of
such quantum gates can form the basis of a nanomechanical
quantum computer.48,49 We leave the development of these
ideas for future studies.
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