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Two-dimensional electron systems with spin-orbit coupling in the proximity of a superconductor and a magnetic
insulator have recently been considered as promising candidates to realize topological superconducting phases.
Here we discuss electromagnetic response properties of these systems. Breaking of time-reversal symmetry leads
to an anomalous Hall effect with a characteristic nonmonotonic gate voltage dependence and a Hall conductivity
that can change a sign as temperature is varied. The imaginary part of the Hall conductivity at finite frequency,
which shows up for example in the Kerr rotation or photoabsorption, can distinguish different topological phases.
In addition, we demonstrate the existence of magnetoelectric effects associated with the Hall effect; in-plane
electric fields induce a parallel magnetization and in-plane time-dependent magnetic fields induce parallel electric
current.
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I. INTRODUCTION

A spin-orbit coupling of electrons in solid-state systems
provides an important link between spin and orbital degrees
of freedom, resulting in a wide variety of phenomena that
enable spintronics applications and realizations of novel
phases of matter. It has been envisioned that spin-active
components could serve as building blocks of future electronic
components.1 Electrical manipulation of spin, enabled by the
spin-orbit coupling, plays a central role in these developments.
Moreover, spin-orbit effects are a crucial ingredient of recently
discovered topological insulator materials.2,3 New phenomena
and potential for applications have attracted enormous interest
in topological insulator physics.

Interesting topological properties exist not only in insula-
tors but also in so-called topological superconductors (TS).
Perhaps the most interesting property of TS is the existence
of Majorana fermions which could serve as a platform for
topological quantum computation. One quantum bit can be
encoded in two localized Majorana zero modes and computa-
tion operations can be carried out by braiding such objects.
Recently it was proposed that topological superconductors
can be realized in spin-orbit coupled electron systems in the
proximity of a superconductor and a ferromagnetic insulator
or in the presence of magnetic fields.4–8 Besides the interests
in TS, the interplay of superconductivity, a spin-orbit coupling
and magnetization is interesting in its own right since there
already exists a number of experimental realizations coupling
a two-dimensional electron gas with a superconductor.9

In this paper we study unusual electromagnetic properties of
a Rashba-coupled superconducting two-dimensional electron
gas (2DEG) in the presence of magnetization perpendicular to
the plane. One the most important phenomenon resulting from
the Rashba coupling and time-reversal symmetry breaking
due to the magnetization is the anomalous Hall effect.10

Previously the anomalous Hall effect in a spin-orbit coupled
superconducting system has been studied only numerically
in a lattice model with a single magnetic impurity.11 Here we
find that the studied system exhibits a characteristic anomalous
Hall effect which is nonmonotonic as a function of chemical

potential. The Hall conductivity can even change sign when
temperature or chemical potential are varied. In stark contrast
to translationally invariant chiral p-wave systems which also
break time-reversal symmetry,12–15 the Hall conductivity of
the studied system remain finite in the low-frequency limit.
Moreover, the onset frequency of the dissipative part of the
ac Hall conductivity behaves qualitatively differently in topo-
logically trivial and nontrivial phases, enabling an electrical
characterization of phases. Topological nature of TS manifests
in the quantized thermal conductivity,16 measurement of
which is challenging in experiments. The electromagnetic
response studied here provides a signature of topological phase
transition which should be easier to measure. Intriguingly,
there exists also magnetoelectric responses intimately related
to the Hall effect; in-plane electric fields induce parallel
magnetization and in-plane time-dependent magnetic fields
induce parallel electric currents. These magnetoelectric effects
are unique properties of Rashba systems in the presence of
magnetization and have no counterparts in chiral p-wave
systems.

II. MODEL AND ELECTROMAGNETIC ACTION

In this paper we study a 2DEG with a Rashba spin-
orbit coupling and magnetization in the proximity of a
s-wave superconductor (Fig. 1). The system is described by a
Bogoliubov–de Gennes Hamiltonian,4

H (k,ϕ) = [εk + α(kxσy − kyσx)]τz

+Mσz + �cos ϕ τx + �sin ϕ τy, (1)

where εk = h̄2k2

2m
− μ and σi and τi are Pauli matrices

operating in the spin and the particle-hole space, respec-
tively. Hamiltonian (1) is written in the Nambu basis � =
(ψk↑,ψk↓,ψ

†
−k↓,−ψ

†
−k↑)T . The first term corresponds to the

kinetic energy of electrons and holes including the Rashba
coupling, the second term is the Zeeman splitting due to out-
of-plane magnetization, and the last two terms are proximity-
induced superconducting pairing terms for the order param-
eter �eiϕ . Fundamental properties of the model have been
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FIG. 1. (Color online) Studied heterostructure formed by 2DEG
with a Rashba spin-orbit coupling, sandwiched by a ferromagnetic
insulator and a superconducting layer. The coordinates are chosen so
that the induced magnetization, which is perpendicular to the 2DEG,
coincides with the z axis and the 2DEG lies in the x − y plane.

discussed in detail in Refs. 8 and 17 and the effects of disorder
have been considered in Refs. 18 and 19. In the absence of
superconducting order, the energy bands are illustrated in
Fig. 2 for various magnetizations and spin-orbit energies ER =
α2m/2h̄. We will see below that qualitative features of the Hall
response depend heavily on the location of chemical potential.
The spectrum of (1) consists of four bands and is symmetric
with respect to zero energy E = 0 due to the presence of
a particle-hole symmetry. The positive energy bands E1(k),
E2(k) and the negative energy bands E−1(k), E−2(k) satisfy
E−i(k) = −Ei(k) for i = 1,2. The energies are given by

E2
1/2(k) = ε2

k + α2k2 + M2 + �2

∓ 2
√

M2
(
ε2
k + �2

) + ε2
kα

2k2, (2)

with k = |k|, so the spectrum is rotationally symmetric.
The effective action involving only electromagnetic fields

can be derived by integrating out electronic as well as the
superconducting phase degrees of freedom, as detailed in
Ref. 12 in the context of a chiral p-wave system. The advantage
of this procedure is that it yields an action which is explicitly
gauge invariant. The starting point is the action corresponding
to Eq. (1) which is S = ∫

d2x dτ�† [∂τ − H (k,ϕ)] �/2. The
system is coupled to electromagnetic potentials through the

FIG. 2. Normal state spectrum as function of the in-plane mo-
mentum k for different values of perpendicular magnetization M .
The strength of the Rashba coupling is characterized by ER =
α2m/2h̄, and chemical potential is measured from the middle of the
magnetization-induced gap.

substitution ∂τ → ∂τ − ieA0τz and k → k − eAτz/h̄, where
A0 is the scalar potential and A = (Ax,Ay) is the vector
potential. Below we combine the potentials to a single quantity
A = (A0,A). It is convenient to perform a gauge transforma-
tion through the unitary rotation U = ei

ϕ τz
2 �, which leads to

the action

S = 1

2

∫
d2x dτ�†[∂τ − ieÃ0τz − H (k − e Ãτz/h̄,0)

− B · σ ]�, (3)

where Ã0 = A0 − ∂τ ϕ

2e
, Ã = A − h̄∇ϕ

2e
. We have included the

Zeeman coupling due to in-plane magnetic fields with B =
1
2gμB(bx,by), where g is the effective g factor, μB is the Bohr
magneton, and (bx,by) the in-plane magnetic field. Integrating
out electronic degrees of freedom yields

∫
D�†D�e−S =

e−S ′[Ã,B], where S ′[Ã,B] is given by the determinant of the
kernel in Eq. (3). The saddle-point expansion up to the second
order in the field variables produces

S ′[Ã,B] = 1

2

∑
q

[
Ãμ(−q)Q(1)

μν(q)Ãν(q) + Bi(−q)Q(2)
ij (q)Bj

+ 2Bi(−q)Q(3)
iμ (q)Ãμ(q)

]
,

where we have adopted a convention that repeated indices
should be summed. Quantities Q(1)

μν are the standard current-
current correlation functions describing the response to the
dressed electromagnetic fields Ã which also contains dynamic
of the superconducting phase ϕ. The spin-spin and the spin-
current correlation functions defined as Q

(2)
ij (q) = 〈σiσj 〉(q)

and Q
(3)
iμ (q) = 〈σiJμ〉(q), where the angular brackets stand for

two-point functions calculated for vanishing fields Aμ = 0,
Bi = 0, and ϕ = 0 and Jμ denotes the appropriate current op-
erator discussed below. The true response is obtained by further
integrating out ϕ, leading to

∫
Dϕe−S ′[Ã,B] = e−Seff [A,B], where

the effective electromagnetic action is

Seff[A,B] = 1

2

∑
q

[
Aμ(−q)K (1)

μν (q)Aν(q)+Bi(−q)K (2)
ij (q)Bj

+ 2Bi(−q)K (3)
iμ (q)Aμ(q)

]
.

The kernels are given by

K (1)
μν (q) = Q(1)

μν(q) − qαqβQ(1)
μα(−q)Q(1)

βν(q)

qαqβQ
(1)
αβ(q)

,

K
(2)
ij (q) = Q

(2)
ij (q) − qαqβQ

(3)
iα (−q)Q(3)

βj (q)

qαqβQ
(1)
αβ(q)

, (4)

K
(3)
iμ (q) = Q

(3)
iμ (q) − qαqβQ

(1)
iα (−q)Q(3)

βμ(q)

qαqβQ
(1)
αβ(q)

,

where q = (ω,qx,qy). The density and current responses
are given by δJμ(q) = K (1)

μν (q)Aν(q) + K (3)
μν (q)Bν(q), where

δJμ = (iδρ,δ J). We have now arrived at purely elec-
tromagnetic action which is explicitly current conserving
qμδJμ(q) = 0.

So far the manipulation has been formal and independent
of the detailed form of Eq. (1). Physical properties of the
electromagnetic response (4) are encoded in the specific form
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of functions Q(i)
μν . Below we are mainly interested in the case

where the in-plane Zeeman field is absent and the response
is given by Q(1)

μν . For superconductors the diagonal responses
Q(1)

μμ are nonzero in the limit q → 0 and ω → 0. The spatial
components at low frequencies are given by the diamagnetic
term Q

(1)
ii = e2ns

m
, where ns is the superfluid density. The

elements Q
(1)
ii give rise to the Meissner effect which screens

the magnetic field in the bulk. The density-density component
Q

(1)
00 is given by the density-of-states in the normal state. In

the following we are concentrating on effects arising from the
off-diagonal spatial components Q

(1)
ij (i 
= j ) which contain

signatures from the time-reversal symmetry breaking and are
responsible for the anomalous Hall effect. We are interested
in the current response in the long-wavelength limit q → 0 at
finite ω. According to (4), the off-diagonal physical response
functions are given by K

(1)
ij = Q

(1)
ij , K

(1)
i0 = Q

(1)
ij qj /ω, and

K
(1)
0i = Q

(1)
ji qj /ω (i 
= j ) in this limit.

III. OFF-DIAGONAL RESPONSE Q(1)
x y

In this section we calculate the off-diagonal current-current
response functions Q

(1)
ij (i 
= j ) in the long-wavelength limit.

The expression for the current operator is Ji = e( h̄ki

m
+

α
h̄
εij σj ), where the antisymmetric tensor εij is defined as

ε11 = ε22 = 0, ε12 = −ε21 = 1. The off-diagonal response

function in the imaginary-time representation is

Q(1)
xy (iωm) = 1

2�β

∑
k,n

Tr{JxG[i(ωm + νn)]JyG(iνn)}. (5)

In the above expression G(iωn) = ∑
i

Pi

iωn−Ei
is the 4 × 4 Mat-

subara Green’s function of the Hamiltonian H = H (k,ϕ = 0),
β is the inverse temperature, and � is the area of the system.
The summation over i is performed over the four energy bands
and Pi is a 4 × 4 projection operator to the Ei subspace.
The trace is evaluated over the spin and Nambu indices.
Inserting the expressions for Green’s functions, performing
the summation over n, and analytical continuation to real
frequencies yields

iQ(1)
xy (ω) = i

2�

∑
k,i,j

Tr(JxPiJyPj )

ω − Ei + Ej + iδ
(nj − ni), (6)

where ni is a Fermi function at energy Ei . The projection op-

erators are given by P±1 = 1
2 (1 ± H

E1
)H 2−E2

2

E2
1−E2

2
, and analogously

for P±2 with indices 1 and 2 interchanged. With these results
the evaluation of the traces is straightforward but tedious. The
evaluation is slightly simplified by noting that only the terms
that involve spin operators in Ji contribute to Eq. (6). Also,
contributions for which i = −j in the sum vanish due to the
property 〈Ei |Jx/y |E−i〉 = 0. Collecting all the nonvanishing
terms and converting the k summation to integration leads to
expression

iQ(1)
xy (ω)

ω
= e2

h
4α2M

∫
dkk

1

E1E2

[(
− �2 + ε2

k

E1 + E2
+ E1 + E2

4

)
(n1 + n2 − 1)

(E1 + E2)2 − (ω + iδ)2

+
(

�2 + ε2
k

E2 − E1
− E2 − E1

4

)
(n1 − n2)

(E2 − E1)2 − (ω + iδ)2

]
. (7)

The expression Eq. (7) is proportional to M and α2 indicating
that both magnetization and the spin-orbit coupling are crucial
for the off-diagonal term. This also implies that the Hall effect
is independent of the sign of spin-orbit coupling α. This is
expected since spatial inversion takes α → −α but it does
not change the sign of the Hall conductivity. The off-diagonal
functions satisfy Q(1)

xy (ω) = −Q(1)
yx (ω) which is a signature of

the Hall effect.

IV. ANOMALOUS HALL EFFECT

Here we consider properties of the off-diagonal current
response to spatially uniform, slowly varying electric fields.
As discussed above, the off-diagonal response Kij is given
by Q

(1)
ij (i 
= j ) which leads to the Hall effect δJi(ω) =

− iQ
(1)
xy (ω)
ω

εijEj (ω). For frequencies ω � mink[E2(k) − E1(k)],
the Hall conductivity is given by σ 0

xy = limω→0 Q(1)
xy (ω)/iω.

Quantity σ 0
xy is plotted in Figs. 3(a)–3(b) as a function of

chemical potential at different temperatures. In experiments,
chemical potential could be varied through a gate voltage. For
simplicity we have assumed that the proximity effect is nearly

perfect and the induced superconducting gap obeys a standard

BCS temperature relation �(T )/�0 =
√

1 − T
Tc

, where �0 is
the gap at zero temperature and Tc satisfies �0 = 1.76kBTc.

The intuition of the behavior of σ 0
xy can be obtained by

considering the spectrum in the absence of superconductivity
plotted in Fig. 2. When chemical potential is below ∼−ER ,

fi

FIG. 3. (Color online) (a) Low-frequency Hall conductivity as a
function of the chemical potential. The temperature dependence of
� is assumed to be of the BCS form �(T )/�0 =

√
1 − T

Tc
. (b) Same

quantities as in (a) but for different parameters.
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the Hall conductivity is suppressed since the electron density
vanishes. As in the normal state systems,10 the band curvature
effects giving rise to the Hall conductivity reach maximum
for chemical potentials located between the two bands in
Fig. 2. For larger chemical potentials the absolute value
of the Hall conductivity decreases monotonically. The Hall
conductivity can change significantly even when temperature
and chemical potential variations are small compared to the
energy scale of superconductivity � since magnetization
competes with superconductivity and suppresses the excitation
gap. Interestingly, the sign of the Hall conductivity can change
as a function of chemical potential and temperature due to the
different contributions of band curvatures of the four bands.

The result (7) reduces in the limit � → 0 and ω → 0 to
the well-known expression of the Berry-curvature contribution
to the anomalous Hall conductivity of the magnetic Rashba
model. To see this, first consider the first term inside the
integral. In the � → 0 limit the energy bands are given by
E1/2 = ||εk| ∓ √

M2 + α2k2|. Using this result one can show
that

σ1 = e2

h
4α2M

∫
dkk

1

E1E2

×
(

− �2 + ε2
k

E1 + E2
+ E1 + E2

4

)
(n1 + n2 − 1)

(E1 + E2)2

= e2

2h
α2M

∫
�1

dkk
(n1 + n2 − 1)

(M2 + α2k2)3/2
, (8)

where �1 denotes part in the k space which satisfy |εk| <√
M2 + α2k2. Using the property n(x) + n(−x) = 1 of the

Fermi function we can write n(E2) + n(E1) − 1 = n(E2) −
n(−E1) which further reduces to n(E2) − n(−E1) = n(|εk| +√

M2 + α2k2) − n(−|εk| + √
M2 + α2k2) in the studied pa-

rameter regime. Finally, using the property n(x1) − n(x2) =
n(−x2) − n(−x1), we can drop the absolute value signs from
|εk| and write n(E2) + n(E1) − 1 = n(ε2) − n(ε1), where
ε1/2 = εk ∓ √

M2 + α2k2. Thus we obtain

σ1 = e2

2h

∫
�1

dkk
α2M

(M2 + α2k2)3/2
[n(ε2) − n(ε1)] . (9)

Similarly one can show that the second term inside the integral
of Eq. (7) reduces to (9) in the complementary region in the k

space where |εk| >
√

M2 + α2k2. Adding both contributions
together lead to

σxy = e2

h̄

∫
d2k
8π2

α2M

(M2 + α2k2)3/2
[n(ε2) − n(ε1)], (10)

which exactly coincides with the previously known
expression10 arising from the Berry curvature in a clean
system. Thus we see that our general expression for Hall
conductivity is in perfect agreement with the known expression
of the normal system. The Hall conductivity is a continuous
function through the superconducting transition.

The system undergoes a topological phase transition be-
tween a trivial and a topological phase when μ, �, and M

satisfy the condition μ2 + �2 = M2.4 Unfortunately, σ 0
xy is

not sensitive to the phase transition. The phase transition is
accompanied by a closing of the energy gap in the center
of the Brillouin zone such that E1(0) = 0. The vanishing

denominator in Eq. (7) at the transition point is compensated
by the vanishing numerator, so σ 0

xy is a smooth continuous
function at the phase transition point. Even though the
parameters corresponding to Fig. 3(b) are chosen so that
the system undergoes a phase transition at finite chemical
potential, the precise point of the transition is not visible.
However, we show below that the dissipative part of the Hall
conductivity at finite frequency can clearly detect the phase
transitions.

V. IDENTIFYING TOPOLOGICAL PHASES

At zero temperature the contribution on the third line of
Eq. (7) vanishes, so the imaginary part of the Hall conductivity
is finite only for frequencies ω > ω0 = mink[E1(k) + E2(k)].
In the topologically nontrivial phase where M2 − �2 −
μ2 > 0, the minimum always takes place at k = 0 and the
threshold frequency is ω0 = 2|M|, which is independent
of the chemical potential. In contrast, in the trivial phase
M2 − �2 − μ2 < 0 the threshold frequency ω0 is always an
increasing (decreasing) function of μ for μ > 0 (μ < 0).
In the trivial phase for small chemical potentials |μ| � �

the minimum mink[E1(k) + E2(k)] also takes place at k = 0
but the threshold frequency is ω0 = 2

√
�2 + μ2. Thus the

nontrivial phase is characterized by horizontal plateaus in the
plot ω0 vs μ, terminating at critical values μc = ±√

M2 − �2

corresponding to phase transitions to the trivial phase, as
illustrated in Fig. 4. By measuring the onset frequency ω0 while
varying chemical potential, it is possible determine whether the
system is in the topological or in the trivial phase.

Experimentally it has been verified that the proximity-
induced gap in 2DEG may be at least of the order of
�0 ∼ 0.1 meV.9 Assuming that M can be made also be of that
order (and somewhat larger to enter the topological phase),
the threshold frequency ω0 is of the order of few tens of GHz.
This provides the upper limit of the frequencies of the interest
in the identification of the topological phases.

Characterization of TS phases by electrical means, like
proposed here, or in tunneling experiments, proposed in
Ref. 20, is important since measurement of quantized ther-
mal conductivity, the natural topological invariant of TS,

(a) (b)

FIG. 4. (Color online) (a) Imaginary part of the Hall conductivity
as a function of frequency at T = 0.1�0, where �0 is the gap at
T = 0. For all curves M = 1.3�0 and ER = 2�0. The threshold
frequency for the nontrivial phase (solid line) is ω0 = 2M above
which the imaginary part is finite at T = 0. Dashed lines correspond
to trivial phases. Thermal excitations show up in the positive peaks
that are more pronounced for trivial phases. (b) Zero temperature
threshold frequency as a function of chemical potential. Existence of
a plateau signals a nontrivial phase.

014512-4



ANOMALOUS ELECTROMAGNETIC RESPONSE OF . . . PHYSICAL REVIEW B 87, 014512 (2013)

is very difficult. Both the real and imaginary part of the
Hall conductivity can be probed optically through the Kerr
effect, which has been employed to characterize broken time-
reversal symmetry in the p-wave candidate Sr2RuO4.21,22 This
technique requires comparing polarizations of incident and
reflected electromagnetic waves.

VI. MAGNETOELECTRIC EFFECTS

An interesting consequence of the nonzero Hall conductiv-
ity is the existence of unusual magnetoelectric effects. First we
consider the response of the system to in-plane electric fields
Ei(ω) = iωAi(ω), which results in magnetization parallel to
the applied fields. To derive this effect, we consider induced
magnetization ρSi

= h̄
2

〈σi 〉
�

which can be expressed in the
standard linear-response theory as

ρSi
(ω) = h̄

2
K

(3)
ij (ω)Aj (ω), (11)

where K
(3)
ij (ω) is the spin-current response function (4). In

the long wavelength limit q → 0 at finite ω the response
function reduces to K

(3)
ij (ω) = Q

(3)
ij (ω) with the imaginary-

time representation given by

Q
(3)
ij (iωm) = 1

2�β

∑
k,n

Tr{σiG[i(ωm + νn)]JjG(iνn)}. (12)

Since the off-diagonal current response (5) arises solely from
the spin part of the current operator, we see that the diagonal

component of expression (12) is give by Q(3)
yy (ω) = h̄Q

(1)
xy (ω)
eα

.
Therefore the magnetization parallel to the electric field is
related to the Hall conductivity as

ρSy
(ω) = h̄2

2eα

iQ(1)
xy (ω)

ω
Ey(ω) = h̄2

2eα
σ 0

xyEy(ω), (13)

where we took the low-frequency limit. Since the system
is rotationally invariant, similar relation holds also in the x

direction. This effect can be intuitively understood as follows.
The application of electric field induces Hall current in the
perpendicular direction. Because of Rashba coupling, current
is accompanied by magnetization perpendicular to current.23

Thus the application of an electric field results in magnetization
parallel to it. This phenomenon is a consequence of the Rashba
coupling and a finite out-of-plane magnetization M 
= 0. No
analogous effect exists in chiral p-wave superconductors.
The Rashba coupling also results in a previously discovered
magnetization perpendicular to applied electric fields which
remains finite also for vanishing out-of-plane magnetization
M = 0.23

There exists also a Zeeman-type magnetoelectric effect
closely related to the Hall effect. Suppose that the system is
exposed to an in-plane magnetic field Bx which couples to the

spin of the particles through a Zeeman term Bxσx . Similarly
as before, we can analyze the linear response of the current to
the Zeeman field. Analogously we find

δJi(ω) = K
(3)
ij (ω)Bj (ω). (14)

Therefore, for similar reasons than discussed above, the
relevant response function can be expressed in the long

wavelength limit as K (3)
xx (ω) = Q(3)

xx (ω) = − h̄Q
(1)
xy (ω)
eα

. Thus the
parallel part of the current response to the applied Zeeman
field is given by

δJx(ω) = − h̄

eα

Q(1)
xy (ω)

iω
iωBx(ω) = − h̄

eα
σ 0

xy∂tBx(ω), (15)

where the last form is valid for low frequencies. The magnitude
of the effect depends on the Hall conductivity and the
ratio of the magnetic moment and the spin-orbit constant
α. Interestingly, this magnetoelectric response flips the sign
upon the changing of the sign of α, in contrast to the
Hall effect which is insensitive to the sign. It should be
noted that the parallel current (15) can be distinguished
from the field-induced Meissner current and the previously
studied paramagnetic current23 by its different directional and
functional dependence on the magnetic field. For a linearly
polarized in-plane magnetic field current (15) is parallel (or
antiparallel) to the applied field, not perpendicular to it like
the other contributions. In further contrast, for static magnetic
fields current (15) vanish.

VII. CONCLUSIONS

We studied electromagnetic response properties of super-
conducting two-dimensional electron systems with Rashba
spin-orbit coupling and perpendicular magnetization. We
focused on the anomalous Hall effect and closely related
magnetoelectric effects. The anomalous Hall effect is finite in
the low-frequency limit, exhibiting a nonmonotonic behavior
as a function of chemical potential. Moreover, the frequency-
dependent Hall conductivity enables a purely electrical char-
acterization of different topological phases. We found two
magnetoelectric effects directly related to the Hall effect, one
leading to a parallel magnetization as a response to in-plane
electric fields and the other giving rise to electric currents
parallel to time-dependent in-plane magnetic fields.
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