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Chiral CP2 skyrmions in three-band superconductors
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It is shown that under certain conditions, three-component superconductors (and, in particular, three-band
systems) allow stable topological defects different from vortices. We demonstrate the existence of these
excitations, characterized by a CP 2 topological invariant, in models for three-component superconductors with
broken time-reversal symmetry. We term these topological defects “chiral GL(3) skyrmions,” where “chiral” refers
to the fact that due to broken time-reversal symmetry, these defects come in inequivalent left- and right-handed
versions. In certain cases, these objects are energetically cheaper than vortices and should be induced by an
applied magnetic field. In other situations, these skyrmions are metastable states, which can be produced by a
quench. Observation of these defects can signal broken time-reversal symmetry in three-band superconductors
or in Josephson-coupled bilayers of s± and s-wave superconductors.

DOI: 10.1103/PhysRevB.87.014507 PACS number(s): 74.70.Xa, 74.20.Mn, 74.20.Rp

I. INTRODUCTION

Experiments on the recently discovered iron pnictide
superconductors suggest the existence of positive coefficient
of Josephson coupling between superconducting components
in two bands (s± state) and possibly more than two supercon-
ducting bands.1 Under these circumstances, new physics can
appear. That is, frustration of competing interband Joseph-
son couplings in three-component superconductors can lead
to spontaneously broken time-reversal symmetry (BTRS)2,3

(another scenario for BTRS states in pnictides was discussed
in Refs. 4 and 5). There, the ground state explicitly breaks
the discrete U(1) × Z2 symmetry.6,7 Related multicomponent
states were also recently discussed, in connection with other
materials.8 If superconductivity in iron pnictides is described
by just a two-band s± model, BTRS states can nonetheless be
obtained in a Josephson-coupled bilayer of s± superconductor
and ordinary s-wave material.2 Such bilayer systems can be
effectively described by a three-component model where the
third component is coupled through a “real-space” interlayered
Josephson coupling.

Due to a number of unconventional phenomena, which
are not possible in two-band superconductors, the possible
experimental realization of three-component superconductors
(either with or without BTRS) recently started to attract
substantial interest.3,6,7,9–14 These phenomena include exotic
collective modes, which are different from the Leggett’s
mode,7,10,15 the existence of a large disparity in coherence
lengths even when intercomponent Josephson coupling is very
strong, leading to type-1.5 regimes7 (where some coherence
lengths are smaller and some are larger than the magnetic
field penetration length),16 and the possibility of flux-carrying
topological solitons different from Abrikosov vortices.6

This paper is a follow-up to Ref. 6 where we introduced new
flux-carrying topological defects. Here we study in detail these
topological solitons, which we term chiral GL(3) skyrmions
(chiral skyrmions for short). They are magnetic flux-carrying
excitations characterized by a CP 2 topological invariant (by
contrast, this invariant is trivial for ordinary vortices). The
topological properties, motivating the denomination skyrmion

are rigorously discussed. As the terminology suggests, the
soliton itself has a given chiral state of the BTRS. More
precisely, different arrangements of the fractional vortices
constituting a skyrmion carrying integer flux define differ-
ent chirality of the skyrmion. Finally, GL(3) refers to the
physical context of the three-component Ginzburg-Landau
theory. The thermodynamic and energetic (meta)stability of
chiral skyrmions are discussed as well as their perturbative
stability. In scanning superconducting quantum interference
device (SQUID), scanning Hall or magnetic force microscopy
experiments, chiral GL(3) skyrmions can (under certain
conditions) be distinguished from vortices by their very
exotic magnetic field profile. Figure 1 shows examples of
such exotic magnetic field signatures of chiral skyrmions in
three-band superconductors with various parameters of the
model.

The paper is organized as follows. In Sec. II, we introduce
a Ginzburg-Landau model for three-component superconduc-
tors where phase frustration due to competing Josephson
interactions leads to BTRS states. The structure of the domain
walls that are possible due to this new spontaneously broken
Z2 symmetry is discussed in Sec. II A. The essential concepts
of the topological excitations in multiband superconductors
are discussed in Sec. II C. After that, the new kind of
topological excitations, chiral GL(3) skyrmions, are discussed
in Sec. II D. The physical properties: (i) energy of formation
of a skyrmion versus vortex lattice, (ii) thermodynamical
stability of the chiral skyrmions, and (iii) their perturbative
stability are investigated in Sec. III. In the next part, Sec. IV,
the very rich interactions between the chiral skyrmions
and between skyrmions and vortices are investigated. The
model has many interesting mathematical aspects as well.
Section V is devoted to the most formal aspects and rigorous
justifications of the physics and mathematical properties of the
three-component Ginzburg-Landau model and the skyrmionic
excitations therein. This section aims at a more mathematical
audience. Thus, readers less interested in formal justification
of the physics can skip these discussions, and go straight after
Sec. IV to our conclusions in Sec. VI. There we conclude this
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FIG. 1. (Color online) Example of unusual observable magnetic field configuration of chiral skyrmions.

paper by addressing, in more detail, the possible experimental
signatures of our chiral GL(3) skyrmions.

II. THE MODEL

In this paper, we consider various realizations of three-
component superconductivity described by the following
three-component Ginzburg-Landau (GL) model:

F = 1

2
(∇ × A)2 +

∑
a

1

2
|Dψa|2 + αa|ψa|2 + 1

2
βa|ψa|4

+
∑

a,b>a

γab|ψa|2|ψb|2 − ηab|ψa||ψb| cos(ϕb − ϕa).

(2.1)

Here, D = ∇ + ieA and ψa = |ψa|eiϕa are complex fields
representing the superconducting components. The compo-
nent indices a and b take the values 1,2,3. In the particular
case of a three-band superconductor, different superconducting
components arise due to Cooper pairing in three different
bands. The bands are coupled by their interaction with the
vector potential A and also through potential interactions. The
coefficients ηab are the intercomponent Josephson couplings.
We also consider the more general case that includes bi-
quadratic density interactions with the couplings γab. Here, the
London magnetic field penetration length is parametrized by
the gauge coupling constant e. Functional variation of the free
energy (2.1) with respect to the fields gives Ginzburg-Landau
equations:

D Dψa = 2
∂V

∂ψ∗
a

, ∂i(∂iAj − ∂jAi) = Jj , (2.2)

where the potential energy V is the collection of all nongradi-
ent terms and the supercurrent is defined as

J ≡
∑

a=1,2,3

J (a) =
∑

a=1,2,3

eIm(ψ∗
a Dψa). (2.3)

In multiband superconductors, a Ginzburg-Landau expansion
of this kind can in certain cases be formally justified micro-
scopically (see, e.g., corresponding discussion in two-band
case).17 In what follows, different physical realizations of the
model (2.1) with different broken symmetries are considered.
Note that in some of the physical realizations of multicom-
ponent GL models, some of the couplings are forbidden
(for example, on symmetry grounds). This can occur for
intercomponent Josephson couplings, in some realizations.18

More terms, consistent with symmetries, can be included
to extend the GL functional. Alternatively, a microscopic
approach can provide a more quantitatively accurate pic-
ture at lower temperatures. However, the properties of the
topological objects, which are discussed, should then differ
only quantitatively and not qualitatively in the framework of,

e.g., microscopic approach for a system with a given sym-
metry (some examples of how phenomenological multiband
GL models give good results even at low temperature can
be found in Ref. 17). The field configurations considered
in the following are two-dimensional as well as three-
dimensional systems with translation invariance along the third
axis.

A. Broken time-reversal symmetry, the U(1) × Z2 states

For a given parameter set (αa,βa,ηab,γab), the ground state
is the field configuration that minimizes the potential energy.
The corresponding values of |ψa|’s and ϕa’s, together with
the gauge coupling e determine the physical length scales
of the theory. The particularly interesting property of the
model (2.1) is that the ground state can be qualitatively
different from its two-band counterparts. While in two-band
systems with Josephson interactions the phase locking is trivial
(either 0 or π ), the phase locking in three bands can be
much more involved. Indeed, competition between different
phase-locking terms possibly leads to phase frustration. When
ηab > 0, the corresponding Josephson term is minimal for
zero phase difference, while if ηab < 0, it is minimal for
ϕab ≡ ϕb − ϕa = π . Now if the signs of ηab’s are all positive
(we denote it as [+ + +]), the ground state has ϕ1 = ϕ2 = ϕ3.
Similarly for [+ − −] couplings, the phase-locking pattern
ϕ1 = ϕ2 = ϕ3 + π . However, for [+ + −] or [− − −], the
phase-locking terms are frustrated. That is, all three Josephson
terms cannot simultaneously attain their minimal values.
As a result, ground-state phase differences are neither 0
nor π . For example, consider the case αa = −1, βa = 1,
and ηab = −1. Symmetry under global U(1) phase rotations
allows to set ϕ1 = 0 without loss of generality (for the
below considerations). There, two ground states are possible:
ϕ2 = 2π/3, ϕ3 = −2π/3 or ϕ2 = −2π/3, ϕ3 = 2π/3. The
two ground states are each other’s complex conjugate. The
actual values of the ground-state phases depend on the potential
parameters.

Note that the free energy is invariant under complex
conjugation, (ψ1,ψ2,ψ3) �→ (ψ∗

1 ,ψ∗
2 ,ψ∗

3 ), which takes it to
a state with different phase locking. Thus the theory has a
spontaneously broken discrete (Z2) symmetry, called time-
reversal symmetry. That is, the free energy is still invariant
under complex conjugation, but the ground state is not. By
“picking” one of the two inequivalent phase-locking patterns,
the ground state explicitly breaks the discrete Z2 symmetry.
Such states are termed BTRS states.

B. Domain walls in BTRS states

BTRS systems have topological excitations related to the
broken discrete symmetry in the form of domain walls. The
domain-walls interpolate between domains of inequivalent
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FIG. 2. (Color online) Representation of the vacuum submanifold
(top) for (αa,βa) = (−1,1) and ηab = −3. The image shows the
potential energy as a function of the phase differences: ϕ2 and ϕ3,
minimized with respect to all moduli degrees of freedom [while
ϕ1 is set to zero by U(1) invariance associated with simultaneous
change of all phases]. Red and green dots show inequivalent
Z2 ground states, and the lines connecting them represent four
different kinds of domain-wall trajectory over the field manifold.
Black dots are ground states located farther than 2π in the phase
differences. The second line gives a schematic representation of
variousZ2 domain walls in three-band superconductors with different
frustrations of phase angles, shown by arrows of different colors.
The pink line schematically shows the phase difference between red
and green arrow, interpolating between the two inequivalent ground
states.

ground states. In other words they are walls separating
regions of different phase locking. It is instructive to display
more quantitatively the structure of the ground state (or
“vacuum”) manifold, see Fig. 2. There, the potential energy
is minimized with respect to the densities |ψa| for uniform
fixed phase difference configurations. This provides a map of
the ground state manifold. It appears clearly that there are
disconnected inequivalent ground states (the red and green
dots). Interestingly, there is not a unique path to connect
inequivalent ground states with inequivalent phase locking, but
four. The four corresponding domain walls will have different
line tension (energy per unit length). Note that investigating
the vacuum manifold with fixed ground-state densities |ψa| (at
their true ground-state value) provides a qualitatively similar
picture. Namely, this approximation preserves the positions of
the minima. However, the actual values of Fpot are obviously
different if |ψa|’s are held constant to the ground state, so this
approximation does not allow one to calculate the energy of the
domain walls. In particular, the sharp angles appear there for
strong Josephson couplings, when the ground-state densities
are not fixed. This property is absent when densities are held
to their actual ground-state values.

C. Flux-carrying topological defects in three-component
Ginzburg-Landau model

As previously stated, the three-component Ginzburg-
Landau model can exhibit BTRS and domain-wall excitations
associated with the broken Z2 symmetry. There are also
different topological defects, associated with the other broken
symmetries.

Our main interest here is three-component skyrmionic
solutions of the Ginzburg-Landau model. Here, skyrmions are
topological defects characterized by a topological invariant
that classifies the maps R2 → CP 2. In contrast to the
topological invariant characterizing vortices (i.e., the winding
number, which is defined as a line integral over a closed path),
the topological index associated with skyrmionic excitations
is given as an integral over the xy plane:

Q(
) =
∫
R2

iεji

2π |
|4 (|
|2∂i

†∂j
 + 
†∂i
∂j


†
)d2x,

(2.4)

with 
† = (ψ∗
1 ,ψ∗

2 ,ψ∗
3 ). A detailed derivation of this formula

is given in Sec. V. An axially symmetry vortex with a core
where all superconducting condensates simultaneously vanish,
has Q = 0. On the other hand, if singularities happen at
different locations, then Q �= 0 and the quantization condition
Q = B/�0 = N holds (�0 being the flux quantum and N

the number of flux quanta). This is rigorously discussed in
Sec. V B.

1. Fractional vortices

In order to understand the physical properties of the later
introduced chiral skyrmions, it is good to remind oneself of the
basic features of multicomponent superconductors and their
topological excitations. The elementary vortex excitations in
this system are fractional vortices. They are defined as field
configurations with a 2π phase winding only in one phase (e.g.,
ϕ1 has ϕ1 ≡ ∮ ∇ϕ1 = 2π winding while ϕ2 = ϕ3 = 0).
To better illustrate their physical properties, the Ginzburg-
Landau free energy (2.1) can be rewritten as

F = 1

2
(∇ × A)2 + J2

2e2ρ2
(2.5a)

+
∑

a

1

2
(∇|ψa|)2 + αa|ψa|2 + βa

2
|ψa|4 (2.5b)

+
∑

a,b>a

|ψa|2|ψb|2
ρ2

[
(∇ϕab)2

2
− ηabρ

2 cos ϕab

|ψa||ψb|
]

(2.5c)

+
∑

a,b>a

γab|ψa|2|ψb|2, (2.5d)

where ϕab ≡ ϕb − ϕa are the phase differences and ρ2 =∑
a |ψa|2. The indices a and b again denote the different su-

perconducting condensates and take value 1,2,3. The identity

n∑
a=1

n∑
b=1

|ψa|2|ψb|2∇ϕa(∇ϕa − ∇ϕb)

=
n∑

a=1

n∑
b=a+1

|ψa|2|ψb|2(∇ϕa − ∇ϕb)2 (2.6)
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is used to derive this expression. Here, the supercurrent (2.3)
reads, more explicitly,

J/e = eρ2 A +
∑

a

|ψa|2∇ϕa. (2.7)

Consider now a vortex for which the phase of only one
component changes by 2π :

∮ ∇ϕa = 2π . Such a configuration
carries a fraction of flux quantum18

�a =
∮

σ

Ad� = |ψa|2
ρ2

1

e

∮
σ

∇ϕa = |ψa|2
ρ2

�0, (2.8)

where |ψa| denotes the ground-state density of ψa , σ is a
closed curve around the vortex core, and �0 = 2π/e is the flux
quantum. For vanishing Josephson interactions, the symmetry
is [U(1)]3 and each fractional vortex has logarithmically
diverging energy.18 This can be seen easily in the London
limit by setting ψa = const everywhere except a sharp cutoff
in the vortex core. There, the terms (2.5d) and (2.5b) give
trivial contribution to the free energy, so that the relevant parts
now reads

FLondon = 1

2
(∇ × A)2 + J2

2e2ρ2
+

∑
a,b>a

|ψa|2|ψb|2
2ρ2

×
[

(∇ϕab)2 − 2ηabρ
2

|ψa||ψb| cos ϕab

]
. (2.9)

In a [U(1)]3 symmetric model, one fractional vortex gives
logarithmically divergent contribution to the energy through
the term∫ r

rc

r ′dr ′
∫ 2π

0
dθ

|ψa|2|ψb|2
2ρ2

(∇ϕab)2 = π
|ψa|2|ψb|2

ρ2
ln

r

rc

,

(2.10)

rc being a sharp cutoff corresponding to the core size of
a vortex. However, a bound state of three such vortices
(where each phase a = 1,2,3 have 2π phase winding) has
finite energy. Indeed, such a bound state has no winding
in the phase differences. This finite-energy bound state is
a “composite” vortex having one core singularity where
|ψ1| + |ψ2| + |ψ3| = 0. Around this core, all three phases
have similar winding ϕa = 2π . A vortex carrying one
quantum �0 of flux is thus a logarithmically bound state of
fractional vortices. For nonzero Josephson coupling, fractional
vortices interact linearly, so they are bound much more
strongly.18 It can be seen that, for nonzero Josephson coupling,
the phase difference sector (2.5c) or the second line in
Eq. (2.9) is a sine-Gordon model. There, a given fractional
vortex excites two Josephson strings (one per phase difference
sector). Cross sections of a string, at a large distance from a
vortex, are sine-Gordon kinks. Such a Josephson string has an
energy proportional to its length. Thus for nonzero Josephson
coupling, one fractional vortex has linearly diverging energy
(see Appendix A for a detailed derivation). Note that the
Josephson strings are different topological excitations than the
domain walls previously discussed. Having linearly diverging
energy, fractional vortices interact linearly. As a result, an
(composite) integer flux vortex can be seen as a strongly bound
state of three co-centered fractional vortices. This binding is

thus much stronger for nonzero Josephson couplings. Because
of their diverging energies, the fractional vortices are not
thermodynamically stable in bulk samples:18 a group of three
different fractional vortices is energetically unstable with
respect to collapse into an integer flux composite vortex. Note,
however, that under certain conditions, in a finite sample,
they can be thermodynamically stable near boundaries19 with
strings terminating on a boundary.

Note that in a London limit, magnetic field of fractional
vortices is exponentially localized. However, in a [U(1)]3

Ginzburg-Landau model, the magnetic field of a fractional
vortices is in a general localized only according to a power
law and, moreover, can invert direction.20

D. Chiral three-component Ginzburg-Landau skyrmions

Domain walls such as those discussed in Sec. II A can
form dynamically in physical systems by a quench. Because
of its line tension, a closed domain wall collapses to zero
size. From the term (2.5c), in the rewritten Ginzburg-Landau
functional, it is clear that in order to decrease the energy
cost associated with a gradient in the relative phase ϕab, the
densities of the components |ψa|, |ψb| should be suppressed on
the domain wall. Furthermore, on a domain wall, the cosines of
phase differences cos(ϕb − ϕa) are energetically unfavorable.
Indeed, by definition, it is where they are the farthest from their
ground-state values. As a result, if an integer composite vortex
is placed on the domain wall, the Josephson terms should tend
to split it into fractional flux vortices, allowing it to attain
more favorable phase difference values in between the split
fractional vortices. As a consequence of these circumstances,
the domain wall can trap vortices. Recall that away from
domain walls, fractional vortices are linearly confined by
Josephson terms.

When the magnetic field penetration length is sufficiently
large (e small enough), the repulsion between the fractional
vortices confined on the domain wall can become strong
enough to overcome the domain-wall’s tension. It thus results
in a formation of a topological soliton made up of 3N fractional
vortices, stabilized by competing forces. Such “composite”
topological solitons are made of a closed domain-wall along
which there are N singularities in each condensate |ψa|.
Around each singularity, the phase ϕa changes by 2π . The
total phase winding around the soliton is then

∮ ∇ϕ1d� =∮ ∇ϕ2d� = ∮ ∇ϕ3d� = 2πN . Therefore it carries N flux
quanta. TheCP 2 topological invariant (2.4) computed for such
objects is found to be integer, whereas it is zero for ordinary
composite vortices. As a result, the composite configuration
made out of a domain wall between two Z2 domains stabilized
by repulsion between trapped vortices, is in fact a distinct
topological defect: chiral GL(3) skyrmion (chiral skyrmion for
short).

It was previously demonstrated that these topological
defects exist and are indeed at least metastable.6 Here, we
further investigate these objects. To investigate the existence
and stability of the so-called chiral skyrmions, we adopt
an energy minimization approach, using nonlinear conjugate
gradient algorithm. More details about the employed numer-
ical schemes are provided in Appendix B. The topological
charge (2.4) was computed numerically for all configurations

014507-4



CHIRAL CP 2 SKYRMIONS IN THREE-BAND . . . PHYSICAL REVIEW B 87, 014507 (2013)

FIG. 3. (Color online) Single-charge chiral skyrmion for three mirror passive bands (αa,βa) = (1,1) and Josephson coupling constants
ηab = −3. Here, γab = 0.8 and the gauge coupling constant is e = 0.6. Displayed quantities are the magnetic flux (A) and the sine of
phase differences sin(ϕ12) (B), sin(ϕ13) (C). Condensate densities |ψ2

1 |, (D), |ψ2
2 |, (E) and |ψ2

3 |, (F) are represented on the second line. The
corresponding supercurrent densities |J1|, (G), |J2|, (H) and |J3|, (I) are displayed on the third line. To avoid redundant informations, the total
energy density is not displayed. It qualitatively follows the magnetic flux shown in panel (A).

and was found to be integer within small numerical errors, less
than 0.1%, thus providing an estimate of the accuracy of our
solutions.

Figure 3 shows a Q = 1 chiral skyrmion in a supercon-
ductor with three passive bands (i.e., the quadratic terms have
positive prefactors αa). The fact that the bands are passive is
not important for the soliton’s existence. It consists of three
fractional vortices, each one carrying a fraction |ψa|2/ρ2 of
magnetic flux which adds up to a flux quantum �0. Since the
fractional vortices are located quite close to each other they
cannot be distinguished in the magnetic field profile in this
case. Single-charge skyrmions are more difficult to obtain than
higher-charge skyrmions in this model. As will be explained
later, increasing the number of flux quanta N , usually makes
the solution more stable (which contrasts with vortices where,
in the type-II regime only N = 1 vortices are stable). The
biquadratic density interactions in the model (2.1) help to
stabilize Q = 1 solutions. Single-charge solitons are thus
usually supported by bi-quadratic density interactions. Clearly,
from the density plots in Figs. 3(D)–3(F), each component has
a nonoverlapping zero (the blue spots). A feature that can be

observed in this regime is the strong density overshoot opposite
to the cores (the red spots).

Higher-charge skyrmions are easily formed in many cases
even when there is no bi-quadratic density interaction. There,
the stability of the skyrmion against collapse of the domain
wall is supported only by the electromagnetic repulsion and
Josephson interactions. In different numerical simulations, we
quite easily constructed thousands of different skyrmionic
configurations, for very different parameter sets. A sample
of the various skyrmions is given in Figs. 3–7. More regimes
are given in Appendix C. For all such configurations, the CP 2

topological charge (2.4) is integer with very good accuracy
(|Q/N − 1| < 10−3).

One key feature, in Figs. 3–7, is seen in the phase
differences on panels (B) and (C). In each of these various
regimes, the phase-locking pattern “inside” the skyrmion
is different from “outside,” thus corresponding to either of
the two Z2 inequivalent ground states. As a result, the
chiral skyrmions (in contrast to nonchiral) feature a domain
wall separating the regions of different BTRS states. As
discussed below, in Sec. IV B, the choice of one of the
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FIG. 4. (Color online) Skyrmion with Q = 6 topological charge (which implies that it carries six flux quanta and consists of 18 fractional
vortices). Displayed quantities are the magnetic flux (A) and the sine of phase differences sin(ϕ12) (B), sin(ϕ13) (C). Condensate densities |ψ2

1 |
(D), |ψ2

2 | (E), and |ψ2
3 | (F) are represented on the second line. The corresponding supercurrent densities |J1| (G), |J2| (H), and |J3| (I) are

displayed on the third line. Parameters are the same as in Fig. 3.

Z2 ground states inside the skyrmion dictates a clockwise
versus counter-clockwise arrangement of fractional vortices,
thus motivating the terminology “chiral” for these topological
defects.

Chiral skyrmions exhibit very unusual signatures of the
magnetic field, which can be seen from the panel (A) in
all of the Figs. 3–7 or in Fig. 1. If the bands have similar
density, each fractional vortex carries a similar fraction of flux
quantum. As a result, the magnetic flux is almost uniformly
spread along the domain-wall, as in Fig. 4. On the other
hand, when the condensates have quite different densities, the
magnetic flux is carried nonuniformly by fractional vortices
in different condensates. Consequently, the magnetic flux is
inhomogeneously distributed along the soliton. This can be
seen in Fig. 5 where the third component carries a great fraction
of the flux. The remaining fraction of flux is spread along the
components having less density. The overall configuration can
easily be mistaken for a vortex pair in such a superconductor.
For higher topological charge, the same system exhibits
geometric structures (a pentagon as in Fig. 6) where the
vertices are occupied by the fractional vortices of the band
with bigger density. There again, geometrical arrangement

of apparent vortices is a very typical signature of the chiral
skyrmions.

Among possible observable signatures of chiral skyrmions,
is the varying fraction of magnetic flux carried by fractional
vortices, as in Fig. 7. There, the magnetic field exhibits spots of
different magnitude, larger spots associated to the two similar
bands with more density while the small spots are associated
with the active band.

E. Chiral multiskyrmions

Besides having nontrivial CP 2 topological invariant (2.4),
the chiral skyrmions in three-component Ginzburg-Landau
theory with BTRS have a given chirality. Namely, there is a
difference whether one or the other broken Z2 state is “inside.”
Here, we report bound states of chiral skyrmions with opposite
chirality, which can be called multiskyrmions. More precisely,
a bound state of a skyrmion with a given chirality, carrying
some topological charge say Q1 and a skyrmion with the
opposite chirality carrying Q2, see Fig. 8. There, the inner
skyrmion has a smaller charge than the outer one, Q1 < Q2

since the chiral skyrmion’s size is controlled by the number
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FIG. 5. (Color online)Q = 2 quantum soliton in a system with two identical passive bands (αa,βa) = (1,1) (a = 1,2) coupled to a third active
band with substantial disparity in the ground-state densities (α3,β3) = (−2.75,1). Josephson coupling constants are η12 = η13 = η23 = −3.
The system is in a strongly type-II regime e = 0.08, the solutions here are stable even in the absence of biquadratic density interaction, i.e.,
γab = 0. Displayed quantities are the magnetic flux (A) and the sine of phase differences sin(ϕ12) (B) sin(ϕ13) (C). Condensate densities |ψ2

1 |
(D), |ψ2

2 | (E), and |ψ2
3 | (F) are represented on the second line. The corresponding supercurrent densities |J1| (G), |J2| (H), and |J3| (I) are

displayed on the third line.

of enclosed quanta. The bigger is the difference between Q1

and Q2, the weaker is the interaction between the two chiral
skyrmions. Conversely, as Q1 → Q2, the chiral skyrmions
interact progressively more strongly. For very close values of
Q1 andQ2, the chiral skyrmions fall into each other’s attractive
basins and the domain walls annihilate. This allows decay to
ordinary vortices.

Note that “opposite chirality” should not be confused with
opposite flux, i.e., these objects have opposite chirality because
they interpolate between two different Z2 ground states. In
that respect in the BTRS case, an additional Z2 topological
charge like those of ordinary domain walls can be attributed to
skyrmions. However, having opposite Z2 topological charges
does not mean that these objects represent a skyrmion and an
antiskyrmion. This is because they have similar signs ofQ1 and
Q2 charges as well as similar signs of the total phase winding
in the local U(1) sector. That is, they carry magnetic flux in
the same direction. For a given skyrmion, one can construct
an antiskyrmion from similar number of antivortices. Using

antivortices changes, the overall phase winding and thus the
direction of carried flux. As will be clear from the discussion
below, an antiskyrmion with the same Z2 charge as a skyrmion
will also have fractional vortices arranged in a different
order.

Similarly, there exist also a “russian-nesting-doll”-like mul-
tiskyrmions made of larger number of alternating skyrmions
of opposite chiralities. Such a multiple skyrmion can be seen
in Fig. 9, which shows tri-ring solutions of skyrmion with
alternating chiralities. This kind of numerical solution is quite
easily obtained given a good initial guess. However, this
configuration can also spontaneously form from “collisional
dynamics” of energy minimization of an initial configuration
of closely spaced ordinary vortices. This indicates that the
formation of multiskyrmion solutions does not in general
require fine tuning. Instead, these solutions have a substantial
“attractive basin” in the GL energy landscape indicating they
could also be observed in three-component superconductors
with BTRS.
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FIG. 6. (Color online) Q = 5 quantum soliton in a system with two identical passive bands as in Fig. 5 coupled to a third active band with
disparity in the ground-state densities (α3,β3) = (−1.5,1). Josephson coupling constants are η23 = −3 and η12 = η13 = 1. Here, e = 0.2 and
there is no density-density interaction term γab = 0. The system is shaped as a pentagon deformed by the vortices of the strong active band
carrying larger fractions of flux quantum. Displayed quantities are the same as in the previous pictures, e.g., Fig. 5.

III. PHYSICAL PROPERTIES OF CHIRAL SKYRMIONS

It is important to know the energetic properties of skyrmions
compared to ordinary vortices as well as their stability prop-
erties. Indeed, if skyrmions are thermodynamically stable and
form as the ground states in magnetic field, their experimental
signatures are straightforward to detect. However, if they form
as states with higher energy than, e.g., a vortex state, they are
only metastable. When they are metastable states, skyrmions
are protected against decay by an energy barrier. The height
of this barrier depends nontrivially on the parameters of
the potential and on the number of enclosed flux quanta.
Metastable chiral skyrmions could be produced by quenching
the system under applied magnetic field. In this section, we
discuss these aspects.

A. Energy of chiral skyrmions versus vortices

For vanishing biquadratic density interaction couplings
(i.e., γab = 0), in all the regimes which we investigated,
chiral skyrmions are always more expensive energetically than
vortices. However, as suggested in Ref. 6, biquadratic density
interaction decreases the energy of chiral skyrmions relative

to that of vortices. For sufficiently strong biquadratic density
interaction, chiral skyrmions are ground-state excitations, i.e.,
energetically cheaper than vortices and, for certain parameters,
thermodynamically stable.

The energy properties of the chiral skyrmions are displayed
on the left panels of Figs. 10 and 11. There, the energy per flux
quantum of a given configuration is given in units of the single
quantum flux carrying ground state. Namely, E(N )/[NE(N =
1)] is represented as a function of N , the number of flux quanta.
The corresponding energies are sublinear functions of enclosed
flux quanta for all solutions with N > 2. This means that the
energy cost per flux quantum decreases as N grows.

Two different regimes can be distinguished. If a configu-
ration has E(N )/[NE(N = 1)] > 1 (where E(N = 1) is the
energy of a single vortex), then it is energetically preferable
to have N isolated type-II integer flux vortices. As discussed
below, there, skyrmions should be understood as metastable
objects. That is, they can decay into type-II (composite)
vortices, e.g., in case of strong enough perturbations. On
the other hand, when E(N )/[NE(N = 1)] < 1, then isolated
vortices are no longer energetically preferred over a skyrmion.
In the first case, (corresponding to the upper curves of Fig. 10),

014507-8



CHIRAL CP 2 SKYRMIONS IN THREE-BAND . . . PHYSICAL REVIEW B 87, 014507 (2013)

FIG. 7. (Color online) Q = 5 quantum soliton in a system with within the same parameter set as in Fig. 6 apart from (α3,β3) = (−0.5,1).
Displayed quantities are the same as in the previous pictures, e.g., Fig. 5.

chiral skyrmions can exist as metastable excitations. In the
second situation (the lower curves of Fig. 10), chiral skyrmions
could form as true ground-state topological excitations. Note
also that there is a regime where lower charge skyrmions are
more expensive than type-II integer vortices, while higher
charge ones are cheaper (see Fig. 10). In the regimes
where there is density-density interaction, even the smallest
skyrmions with Q = N = 1 can be energetically cheaper than
vortices.

The relative cost of including an additional flux quantum
into a chiral skyrmion is evaluated by computing E(N)−E(N−1)

E(N=1) .
When this quantity is less than one, it is globally beneficial
to merge an additional flux-quantum-carrying object with a
skyrmion. It is displayed in Figs. 10(B) and 11(B). Note that it
does not tell about the real work the system has to provide for
bringing the isolated single quantum defect from infinity into
the skyrmion, but only on global cost or benefit.

B. Thermodynamical stability of chiral skyrmions

The first critical field is defined as the applied magnetic field
at which the formation of a single flux carrying defect (vortex
or skyrmion) becomes energetically favorable. It is defined in
analogy with the first critical field for ordinary vortices Hc1 =

Ed/�d , where Ed and �d are the energy and magnetic flux
of the topological defect Ed = ∫

[F(ψa,A) − FGS] andFGS ≡
F(〈ψa〉,0) is the ground-state energy. That is, it is energetically
preferred to form a topological defect carrying flux �d in
external field H0 if the Gibbs free energy Ed − �dH0 < 0. The
external field H0 should be smaller than the thermodynamical
critical magnetic field Hct = 2

√
F(0,0) − FGS. The criterion

for thermodynamical stability is investigated in Figs. 10(C)

and 11(C). For all these regimes, H 2
c1

2 − |FGS| < 0. In all
displayed cases, skyrmions satisfy this criterion. That means
that under certain conditions they can be induced by an applied
external field.

C. Perturbative stability of chiral skyrmions

Chiral skyrmions can appear as thermodynamically stable
ground states or metastable states in superconductors with
BTRS. In this work, they are obtained by minimizing the
energy. Consequently, they are always minima (at least local)
of the free energy landscape. When the chiral skyrmions are
metastable states they are protected against decay into type-II
vortices by a finite energy barrier. The analysis carried out
in this section concerns the metastable solutions. In all the
regimes, which we considered, metastable chiral skyrmions
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FIG. 8. (Color online) Q = 11 quantum multisoliton in a system with three identical passive bands as in Fig. 13. The current soliton is not
made out of one but two stabilized domain walls thus being a homogeneous bi-ring configuration.(B) and (C) clearly display the alternating
different ground states. Since the three bands are identical, the magnetic field rather homogeneously spreads all along the solitons. Displayed
quantities are the same as in the previous pictures, e.g., Fig. 5. Note that while going counterclockwise along the outer ring, the fractional
vortices have order band-“1,2,3”. For the inner ring they are ordered as band-“1,3,2”. The origin of this is discussed in Sec. IV B.

are found to be very robust. They are easily formed during
the energy minimization, e.g., in closely spaced groups of
vortices. The energy barrier preventing them from decay to
type-II vortices is typically quite high. Although difficult to
quantify, it is interesting to have a qualitative insight into the
behavior of metastable skyrmions against fluctuations.

One possible approach to study the stability of skyrmions
is the linear stability analysis, which consists of applying
infinitesimally small perturbation to the fields, and investi-
gating the eigenvalue spectrum of the (linear) perturbation
operator, on the background of a given solution. When the
background solution is (meta) stable, all infinitesimally small
perturbations are positive modes and thus can only increase the
energy. As a result, linear stability analysis cannot tell anything
especially interesting about the properties of skyrmions. A
strong perturbation should cause a decay of a metastable
chiral skyrmion to ordinary vortices. Here, the stability is
investigated numerically by perturbing the chiral skyrmion by
white noise. This allows one to investigate the full nonlinear
response where the meaningful information belongs. The
white noise applied to all degrees of freedom is generated

as follows:

ψa = ψ (0)
a + P max(|ψ |)μψ

a (x,y),
(3.11)

Ai = A
(0)
i + P max(|A|)μA

i (x,y).

Here, superscript (0) denotes the fields of the initial skyrmionic
state, P is a ratio giving the relative magnitude of the
perturbation with respect to the maximal amplitude of a
given field of the initial state. μ

ψ
a (x,y), and μA

i (x,y) are
(independent) random functions of the space. They satisfy
|μψ

a | < 1 and |μA
i | < 1. As a result all fields initially receive

a noise whose relative amplitude is P . The perturbation
has very large field gradients since it is applied locally on
the mesh. After applying noise the system is then relaxed
using the same minimization scheme as for constructing the
skyrmions. Despite the strong field gradients, if the white
noise does not exceed a certain threshold, the configuration
relaxes back to the initial chiral skyrmion solution. This can
be seen from the upper panel of Fig. 12. The noise was
gradually increased, confirming that, indeed, a sufficiently
strong perturbation drives the metastable solution over the
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FIG. 9. (Color online) Triring chiral skyrmion. The configuration carries total charge Q = 36 in a system with two identical passive bands
(α1,β1) = (α2,β2) = (1,1) coupled to a third active band with (α3,β3) = (−1,1). Josephson coupling constants are η23 = −3 and η12 = η13 = 1.
e = 0.7. Panels are the same as usual, e.g., Fig. 5.

barrier, in the energy landscape, thus leading to its decay to
ordinary vortex solutions as shown on the bottom panel of
Fig. 12. The precise value of the relative amplitude required
to destabilize a given chiral skyrmion, obviously depends on
the parameters of the Ginzburg-Landau functional and on the
number of flux quanta of the solution.

As expected, if a perturbation is strong enough, the
metastable chiral skyrmion decays to the configuration with
less energy, i.e., isolated type-II vortices. The observed
behavior confirms the expectations from energy arguments
Sec. III A. Moreover, the deeper in the type-II regime, the
less breakable are the skyrmions. One of the easiest ways
for a skyrmion to decay is to deform it enough so that the
domain-wall self-intersects. The configuration then can decay
to skyrmionic configurations with lower Q that are less stable
and can further decay into integer vortices.

IV. INTERACTIONS OF CHIRAL SKYRMIONS

The analysis of the energetic properties of chiral skyrmions
suggests they should have quite nontrivial interactions. Gener-
ally, the energy per flux quantum decreases with the topologi-
cal charge (see e.g., Fig. 10). In some cases, it is also preferable

to absorb isolated vortices into a skyrmion, i.e., the energy of
an N -quantum vortex is less than that of an (N − 1)-quantum
vortex and an isolated vortex. In those cases, the interaction
at short range should be attractive. On the other hand, they
exist in regimes where vortices usually exhibit repulsive
interaction (type-II or even type-1.5). Moreover, the lack of
axial symmetry and complicated internal structure featuring
fractional vortices can provide very nontrivial contribution to
the interaction of skyrmions in BTRS superconductors.

A. Chiral skyrmion-vortex interaction

Chiral skyrmions can have very nontrivial, nonmonotonic
interaction with vortices. As seen from the numerically
obtained solutions shown on Figs. 10 and 11, in applied field,
chiral skyrmions can be either ground states (for a given phase
winding) or represent metastable states. For some regimes, as
seen from the middle panels of Figs. 10 and 11, a vortex placed
sufficiently close to a chiral skyrmion should be absorbed in the
domain wall and split into fractional vortices, thus increasing
the charge of the skyrmion and then decreasing its energy per
flux quantum. Consequently, the interaction is expected to be
attractive at short range. Indeed, as we observe in numerical
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FIG. 10. (Color online) Energies per flux quantum of the skyrmions carrying N flux quanta. The energy is given in units of the energy of
the energetically cheapest (either vortex or skyrmion) single quantum excitation (A). (B) shows E(N)−E(N−1)

E(N=1) as a function of the number of flux
quanta. When this quantity is less than one, it is energetically preferred to have an N -quantum skyrmion than having a (N − 1) skyrmion plus

one isolated vortex. The criterion for thermodynamical stability
H 2

c1
2 − |FGS|, where the condensation energy is FGS ≡ F (〈ψa〉,0), is shown

on (C). Here, the dependence of the solutions on γ and N is investigated, while the gauge coupling is fixed at e = 0.3. Other parameters are
(αa,βa) = (1,1) and ηab = −3. Colors and symbols associated to different values of γab (shown on the picture) are the same over three panels.
Note that the reason why curves with high γab terminate for smaller N is that the size of the skyrmion becomes comparable to the size of the
numerical domain. To avoid any finite size effect, we chose to skip the corresponding points.

calculations, if vortices are placed close enough to a domain
wall, they are easily trapped to form a skyrmion of larger
topological charge. However, the long-range forces between
skyrmions and vortices can be repulsive. This is clearly seen
from the existence of stable configurations where a number
of integer flux vortices are confined within a chiral skyrmion,
as shown on Fig. 13. That figure demonstrates that there is a
repulsion between inner “ordinary vortices,” and the fractional
vortices comprising the chiral skyrmion, which follows from
(i) the stability of the configuration and (ii) the fact that
the type-II vortices visibly stretch the skyrmion. Thus the
interaction here is nonmonotonic, being long-range repulsive,
but short-range attractive.

The repulsive long-range skyrmion-vortex interaction fol-
lows from the following considerations. In the ground state,
a vortex is an axially symmetric object with all phases
winding around the same core. Thus in the type-II limit,
its energy and long-range interactions are dominated by the
supercurrent J term in Eq. (2.5a). At long separations when
linearized theory applies, the interaction between a skyrmion
and a vortex is dominated by this current-current J-mediated
interaction, resulting in repulsion. The attractive interaction

at short distances is a nonlinear effect where split fractional
vortices in a skyrmion can deform a vortex by “polarizing”
it, i.e., they can split its constituent fractional vortices thus
inducing “dipole”-like interactions. This interaction attracts
the vortex so that it merges into the skyrmion.

B. Skyrmion-skyrmion interaction

In contrast to ordinary vortices in Ginzburg-Landau theory,
chiral skyrmions do not exhibit rotational symmetry. An
important consequence is that intersoliton interactions should
in general depend on the relative orientation of the solitons.
First, note that the orientation and position of a soliton can
be described by the position of the fractional vortices. The
shape of a soliton, including the positions of the constituting
fractional vortices is determined by energy minimization. The
energy of the skyrmion is invariant under overall rotation and
translation.

Finally, note that there are two orders in which the fractional
vortices can be arranged. Going counterclockwise along the
domain wall, the vortices can be ordered 1,2,3 or 1,3,2. We
denote this order o = εabc, ε being the Levi-Civita symbol
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FIG. 11. (Color online) Energies per flux quantum of the chiral skyrmions in the units of the energy of the energetically cheapest (either
vortex or skyrmion) single quantum excitation (A). Curves with same color and symbols on different panels have same parameters. (B) shows
that it is always beneficial (within a parameter range) to have a higher-charge skyrmion than a lower charge one plus an isolated one quantum

vortex. The criterion for thermodynamical stability of N -quantum solitons
H 2

c1
2 − |FGS|, where FGS ≡ F(〈ψa〉,0) is the condensation energy

(C). The dependence of the solutions on e and N is investigated, for a strength of the density-density interactions γab = 0.8. Other parameters
are the same as in Fig. 10. Here again, curves are truncated when the soliton’s size becomes comparable to the numerical domain.
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FIG. 12. (Color online) Relaxation of a randomly perturbed chiral skyrmion. Displayed quantities are the energy density, Im(ψ∗
1 ψ2) and

|ψ1|2. The parameters are the same as in Fig. 3, but vanishing biquadratic density interactions γab = 0 and e = 0.3. Thus it is only metastable.
The snapshots show the state of the system at different stages of the energy minimization algorithm after the applied perturbation. (Top) Q = 6
chiral skyrmion with initial white noise of 70% of the ground-state values. The configurations relaxes to a chiral skyrmion. On the bottom
panel, a perturbation of a metastable charge Q = 3 soliton with an initial noise P = 0.8. Here, the noise is strong enough to break up the
domain wall. The soliton thus relaxes to ordinary type-II vortices (one can clearly see the disappearance of the domain wall between blue and
red area in the middle row). The last snapshot in the lower configuration does not represent a stationary configuration: the vortices repel each
other and are in process of drifting apart.

and a,b,c are the band indices of the fractional vortices. For a
skyrmion carrying integer flux, o = ±1 (note that this ordering
closely relates to the concept of chirality). As illustrated in
Fig. 14(a), a system of two solitons is thus described by the
distance between them R, their relative orientation v together
with the ordering (chirality) of each individual skyrmion.

1. Chirality of skyrmions: inequivalence of left- and
right-handed solutions

In general, for a chiral skyrmion, the energy is not indepen-
dent of the ordering o. For a given Z2 ground state outside of
a skyrmion, the system allows only one particular ordering o

of the fractional vortices in the skyrmion. The mechanism that
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FIG. 13. (Color online) Q = 9 quantum configuration of mixed vortices and skyrmions in a system with three identical passive bands as
in Fig. 12. This configuration is made out of a skyrmion surrounding two ordinary vortices. It is known, from energy considerations, that the
interaction is short-range attractive. The interaction with vortices deforms the skyrmions. This shows that it is long-range repulsive.

gives rise to this behavior is illustrated in Fig. 14(b); for a given
external phase-locking pattern (a Z2 state), only a particular
ordering o gives the oppositeZ2 state inside. In the illustration,
the two solitons (case 1 and 2) differ in the ordering of the
fractional vortices (represented by red blue and green dots
with band index 1,2,3 respectively)—the corresponding phase
configurations are shown by the arrows. Thus the ordering of
the first one (case 1) is o = ε132 = −1, while the ordering of
the second (case 2) is o = ε123 = +1. Now, for a same given
ground state outside both solitons, the phase locking inside is
determined consistently with the phase gradients of each frac-
tional vortex. In the first case, it results in a phase arrangement
inside the soliton that is not a ground state. However, in the
second case, the state obtained inside is a different Z2 ground
state. As a result, there is a synergy effect where the phase
gradients due to the fractional vortices go from one Z2 state
to another. Therefore o = +1 is energetically cheaper than
o = −1 for which the inner phase locking is the farthest from
the ground state. This is indeed confirmed in our numerical
simulations where a skyrmion o = −1 decays into a skyrmion
o = +1. Thus the ordering of the fractional vortices does mat-
ter in BTRS superconductors. It results in the discrimination
of one ordering. This further motivates the terminology chiral.

2. Numerical calculations on interskyrmion forces

As illustrated in Fig. 14(a), intersoliton forces are computed
according to the following procedure. First, the structure of the
soliton is determined by unconstrained energy minimization,
thus determining the actual position of the fractional vortices
constituting the skyrmion. Then, two skyrmions (x and y in
Fig. 14) are placed at a distance R and a relative orientation
v. There, the energy is minimized with respect to all degrees
of freedom, except the position of the singularities of each
fractional vortex. As shown in Fig. 14(a), the energy is
computed for every distance and relative orientation R and v.
While allowing computation of long-range intersoliton forces,
this procedure has an important limitation. It does not take
into account one of the nonlinear effects: deformation of
interacting solitons in the form of changes of the position
of the fractional vortices. However, this is primarily a problem
at short separation, where the deformation is generally the
strongest.

Figure 15(a) shows the interaction energy of two single
quanta skyrmions, identical to the one in Fig. 3. From Fig. 11,
it is clear that the energy per flux quanta decreases with the
number of flux quanta. For the solitons to merge, they need
to have opposite orientation, see Fig. 14(c). The computed
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FIG. 14. (Color online) (a) Schematic picture of how soliton
interactions are computed. This figure shows the interaction between
two single quanta solitons, each consisting of three fractional vortices
shown in green, blue, and red. This generalizes easily to larger
solitons. One soliton (x) is placed in the origin, while the second
(y) is placed at a distance R at an angle v. Consequently, as v is
varied, the relative orientation of the solitons changes. Case 1 shows
a system of two solitons with identical chiralities (same ordering o),
while case 2 shows two solitons with opposite chiralities (different o),
although the mirrored soliton is not necessarily stable. A schematic
comparison of solitons with different ordering o is displayed in (b). In
case 2, the gradients in phase difference due to the fractional vortices
naturally interpolate between two Z2 states. For this reason, case 2 is
energetically preferable over case 1, and it was verified numerically.
Finally, (c) gives a schematic view of the merging of two single
quanta solitons. In order to merge, they should have same ordering
but opposite orientation.

interaction energy, Fig. 15(a), is indeed consistent with this
picture. When the relative orientation, v is not optimal, i.e., v �=
π , the solitons exert a torque on each other, so that they attain
this optimal orientation. Then, an attractive channel opens in
the potential, allowing them to get closer where nonlinear
effects are strong, ultimately leading to a merger.

The interaction energy of a slightly more complex soliton
is shown in Fig. 15(b). There, each skyrmion carries two
flux quanta (i.e., their topological charge is Q = 2). The
parameters are the ones of Fig. 5 from which we know
that superconducting components are not identical and that
the skyrmion is more or less elliptic. Global orientation of
the skyrmion is chosen so that when v = 0, the major axis
of both solitons lies along the horizontal axis. Note that
these skyrmions are not only invariant under global rotation
by 2π , but also by π . Within the numerical accuracy, the
interskyrmion interaction is always repulsive. Note that this
approach can accurately determine the interaction only at
sufficiently long distances. Indeed, by fixing the positions
of the fractional vortices, it assumes that the skyrmions are

(a)

(b)

R

v

FIG. 15. (Color online) (a) Interaction energy of two single
quantum skyrmions. One soliton is placed at the origin, the interaction
energy is plotted as a function of the position and relative orientation
of the second soliton. The interaction energy is maximal when v = 0,
while it is minimal for the opposite orientation, v = π . The strength of
the interaction decreases with the separation R. The model parameters
are the same as in Fig. 3. (b) Interaction energy of two Q = 2
quanta solitons, for the same parameters as in Fig. 5. Note that the
skyrmion has two-fold symmetry (it is invariant under global rotations
of π ). The minimum energy is found for the relative orientation
v ± π/2.

almost-rigid bodies. The relative position of singularities in
each fractional vortex is fixed once for all, but the fields
can deform around this rigid “skeleton.” This neglects the
possibility of mutually induced deformations of the skeleton,
which can open an attractive channel. Since our “almost-rigid
body” approximation holds only at large enough distances,
short range data are irrelevant and not displayed in Fig. 15.
We also derive general long-range intersoliton forces in the
more formal framework of Sec. V C. In Sec. V E, the formal
long-range interactions are applied to the particular case of
a BTRS superconductor. The predictions derived there are
consistent with the numerical results presented in this section.
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V. MATHEMATICAL ANALYSIS OF LONG-RANGE
INTERSOLITON FORCES

The model considered in this paper has many properties that
are interesting from a formal, mathematical point of view. In
this section, we show how, by rewriting the free energy in terms
of gauge-invariant fields, we can identify a hidden topological
charge, associated with the topology of the complex projective
space CP 2, and devise a mathematically satisfactory scheme
for deducing the nature (attractive or repulsive) and range of
the dominant force between well separated solitons (either
vortices or skyrmions). For generic parameter choices, the
final step in this scheme (finding the spectrum of a symmetric
real matrix) must be done numerically, but there are several
symmetric cases and parametric limits where all calculations
can be completed explicitly. After treating the general case, we
consider two such special cases, both of potential phenomeno-
logical interest.

A. Reduction to a supercurrent coupled C P k−1 model

In this section, we consider a general k component GL
model, with no restriction on the potential terms V . The k

complex fields ψa may be collected into a complex k vector

 : M → Ck , where M = R2 denotes physical space. It is
convenient to use polar coordinates on Ck by defining


 =: ρZ, (5.12)

where ρ =
√


†
 � 0 and Z†Z = 1. Let π : Ck\{0} →
CP k−1 denote the canonical projection that takes a point in Ck

to the complex line through 0 containing that point, and for any
X ∈ Ck , X �= 0, denote by [X] its projective equivalence class
(so [X] = π (X)). By gauge invariance, the potential V (
) can
actually depend only on ρ and [Z] ∈ CP k−1, the projective
equivalence class of Z, or, equivalently, of 
. Let � = π ◦ 
.
This is a CP k−1-valued field that maps each p ∈ M to
[
(p)] = [Z(p)] ∈ CP k−1. By construction it is, like ρ, gauge
invariant. We may rewrite the free energy entirely in terms of
the gauge-invariant quantities ρ,� and J = eIm(
†D
), the
total supercurrent. To do so, it is convenient to think of the
gauge field A and the supercurrent J as one-forms rather than
vector fields (so we use the metric on physical space M = R2

to “lower the indices” on vectors Ai and J i). In this language,
the covariant derivative of 
 is, likewise, a one-form

D
 = d
 + ieA
 (5.13)

with values in Ck .
On Ck\{0}, let us define the real one-form

ν = −Im
X†dX

|X|2 , (5.14)

where X = (X1, . . . ,Xk) is a global coordinate on Ck\{0}
and dX = (dX1, . . . ,dXk) are the corresponding holomorphic
one-forms. Then the total supercurrent is

J = eρ2{eA − 
∗ν}, (5.15)

where 
∗ν denotes the pullback of ν ∈ �1(Ck\{0}) to M by
the map 
 : M → Ck\{0}. In less compact notation, this is
the one-form on M whose dxi component is −ρ−2Im
†∂i
.

It follows that the magnetic field (thought of as a two-form) is

B = dA = 1

e

[
d(
∗ν) − 1

e
d

(
J

ρ2

)]
. (5.16)

It is a general fact that the exterior differential operator d
commutes with pullback of differential forms, so d(
∗ν) =

∗(dν). Note that dν is a closed two-form on Ck\{0}. Let
h denote the Fubini-Study metric on CP k−1 with constant
holomorphic sectional curvature 1, and ω denote its associated
Kähler form. Then the pullback of ω by π : Ck\{0} → CP k−1

is, like dν, a closed two-form on Ck\{0}. In fact, ω is defined21

by the requirement that

π∗ω = 2dν. (5.17)

Hence

d(
∗ν) = 
∗(dν) = 1
2
∗(π∗ω)

= 1
2 (π ◦ 
)∗ω = 1

2�∗ω, (5.18)

and so

B = 1

e

[
1

2
�∗ω − 1

e
d

(
J

ρ2

)]
. (5.19)

Similarly, we may rewrite |D
|2 entirely in terms of the
gauge invariant quantities ρ,� and J . From (5.15), we see that

D
 = d
 + i

(

∗ν − J

eρ2

)



= (dρ)Z + ρdZ + i

(

∗ν − J

eρ2

)
ρZ. (5.20)

Let e1,e2 denote an orthonormal frame on M (for example,
ei = ∂/∂xi) and Xi = dZ(ei) ∈ TZS2k−1. Then Re(Z†Xi) = 0
since Xi is tangent to the unit sphere in Ck at Z. Hence

|D
|2 =
∑

i

[D
(ei)]
†D
(ei)

=
∑

i

{
[dρ(ei)]

2 + ρ2|Xi |2

+ 2Im(X†
i Z)ρ2

[
J (ei)

eρ2
− 
∗ν(ei)

]
+ ρ2

[
J (ei)

eρ2
− 
∗ν(ei)

]2}
= |dρ|2 + 1

e2ρ2
|J |2 + ρ2

∑
i

[|Xi |2 − ν(Xi)
2],

(5.21)

since Im(X†
i Z) = ν(Xi) = (
∗ν)(ei). Consider π∗h, the pull-

back by π of the Fubini-Study metric on CP k−1 to Ck\{0}.
Given any tangent vector X ∈ TZS2k−1,

(π∗h)(X,X) = h(dπX,dπX) = ω(dπX,idπX)

= ω(dπX,dπiX) = π∗ω(X,iX)

= 2dν(X,iX) = 4[|X|2 − ν(X)2], (5.22)
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where we have used the fact that π : Ck\{0} → CP k−1 is
holomorphic (so dπ commutes with i). Hence∑

i

(|Xi |2 − (
∗ν)(ei)
2) = 1

4

∑
i

π∗h(Xi,Xi)

= 1

4

∑
i

π∗h(d
ei,d
ei)

= 1

4

∑
i

h(d�ei,d�ei) = 1

4
|d�|2,

(5.23)

where |d�| denotes the norm of the linear map d�p :
TpM → T�(p)CP k−1 with respect to the metric h. Substituting
Eq. (5.23) into Eq. (5.21), one sees that

|D
|2 = |dρ|2 + |J |2
e2ρ2

+ ρ2

4
|d�|2. (5.24)

Finally, we obtain an expression for the total free energy:

F =
∫

M

[
1

2
|dρ|2 + ρ2

8
|d�|2 + |J |2

2e2ρ2

+ 1

2e2

∣∣∣∣d(
J

eρ2

)
− 1

2
�∗ω

∣∣∣∣2

+ V (ρ,�)

]
. (5.25)

The above expression for F is valid for any number of
condensates k, and for all field configurations where 
−1(0) ⊂
M has measure zero, i.e., where the set of points in physical
space at which the condensates ψa all simultaneously vanish
is negligible. This condition holds for skyrmions [
−1(0) is
empty], and for (multi)vortices [
−1(0) is finite], so we can
use (5.25) for questions involving either type of soliton, though
one should note that, for vortices, the CP k−1-valued field �

is undefined at the finite collection of vortex positions.
In the special case k = 2, we may identify CP k−1 with the

unit two-sphere S2, by mapping [Z1,Z2] ∈ CP 1 to the point
on S2 with stereographic coordinate Z2/Z1, so that � can be
interpreted as being two-sphere valued. The Kähler form ω

coincides with the area form on S2 under this identification, so
that the expression for F (5.25) reduces to the decomposition in
Ref. 22. In the general k case [which was previously discussed,
in somewhat different mathematical language, in context of an
SU(N ) model in Ref. 23], the field � takes values in CP k−1,
which we cannot identify with any sphere.

B. Flux quantization and the topological charge

In order for a configuration on M = R2 to have finite
total energy, � and ρ should tend to constants �0 ∈ CP k−1,
ρ0 ∈ (0.∞), and J should tend to 0 as |x| → ∞. It follows,
from (5.19) and Stokes’s theorem, that the total magnetic flux
of a finite energy configuration is∫

M

B = 1

2e

∫
M

�∗ω =:
2π

e
Q(�), (5.26)

which is a homotopy invariant of the map � : M → CP k−1,
because ω is closed. In the case k = 2,Q is the winding number
of the map � : M → S2. For k > 2, Q is still an integer, but
its geometric interpretation is more subtle: the image of M

under � is homologous to Q(�) copies of the generator of

H2(CP k−1). This gives an alternative interpretation of Q, to
augment the physical interpretation, described in Sec. II C, of
the magnetic flux being carried by an integer number of sets
of k fractional-flux vortices.

It is straightforward to give an integral formula for Q(�)
in terms of the original condensates 
, using the fact that
π∗ω = 2dν:

�∗ω = (π ◦ 
)∗ω = 
∗(π∗ω) = 2
∗dν

= 2

i

∗

(
dZ† ∧ dZ

|Z|2 + Z†dZ ∧ dZ†Z

|Z|4
)

= 2

i|
|4 (|
|2d
† ∧ d
 + 
†d
 ∧ d
†
). (5.27)

Hence

Q(
) =
∫
R2

iεji

2π |
|4 [|
|2∂i

†∂j
 + 
†∂i
∂j


†
]d2x.

(5.28)

One should note that the flux-quantization condition (5.26)
and the integral formula for the topological chargeQ above are
valid only for field configurations for which 
 never vanishes.
Note that flux is also quantized for ordinary vortices, for which

 vanishes, but then it is no longer associated with the the
topological charge Q, but with a U(1) topological charge
associated with the total phase winding at spatial infinity.
This expression for Q can be easily discretized for use on a
numerical lattice. A comparison of Q with the total number of
flux quanta gives a convenient way of distinguishing between
vortices and skyrmions numerically.

C. Long-range intersoliton forces

The key to understanding long-range forces between
solitons is to identify the point sources which replicate, in
the linearization of the field theory about the vacuum, the
asymptotic fields of an isolated soliton.24 Assuming that the
vacuum is not 
 = 0, we can use the gauge-invariant variables
ρ,�,J , and expression (5.25) for this purpose. So, let the
vacuum (i.e., minimum of V ) occur at ρ = ρ0, � = �0. To
identify the linearization of the theory about this vacuum,
we set ρ = ρ0 + σ , � = �0 + Y , where Y ∈ T�0CP k−1, and
expand F to quadratic order in the small quantities σ,Y and J :

Flin =
∫

M

{
1

8
ρ2

0 |dY |2T�0CP k−1 + 1

2
|dσ |2

+ 1

2
Hess(ρ0,�0)[(σ,Y ),(σ,Y )]

+ 1

2e4ρ4
0

(|dJ |2 + e2ρ2
0 |J |2)

}
, (5.29)

where Hess(ρ0,�0) is the Hessian of the function V : (0,∞) ×
CP k−1 → R about its minimum (ρ0,�0), which we now
define. Let P = (0,∞) × CP k−1 and p0 = (ρ0,�0), so that
p0 is the minimum of V : P → R. Let p(t) be any smooth
curve in P with p(0) = p0, and let ṗ(0) = X ∈ Tp0P . Since
p0 is a critical point of V , dVp0X = (V ◦ p)′(0) = 0. Now
Hessp0 is, by definition, the unique symmetric bilinear form
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on Tp0P such that

d2V [p(t)]

dt2

∣∣∣∣
t=0

= Hessp0 (X,X) (5.30)

for all curves p(t). Since p0 is a minimum of V , Hessp0 is
nonnegative, that is, Hessp0 (X,X) � 0 for all X. The vector
space Tp0P is equipped with an inner product,

〈(σ,Y ),(σ ′,Y ′)〉T(ρ0 ,�0)P = σσ ′ + 1
4ρ2

0 〈Y,Y ′〉T�0CP k−1 , (5.31)

so we can uniquely identify Hessp0 with a self-adjoint linear
map Hp0 : Tp0P → Tp0P such that

Hessp0 (X,X′) = 〈X,Hp0X
′〉. (5.32)

Let Ei , i = 1, . . . ,2k − 1 be an orthonormal basis of eigen-
vectors of Hp0 with corresponding eigenvalues m2

i � 0. Then
we can expand (σ,Y ) ∈ Tp0P relative to this basis

(σ,Y ) =
2k−1∑
i=1

αiEi, (5.33)

whereupon we obtain

Flin = 1

2

∫
M

[
1

e4ρ4
0

(|dJ |2 + e2ρ2
0 |J |2)

+
2k−1∑
i=1

(|dαi |2 + m2
i α

2
i

)]
. (5.34)

This is the energy functional of a set of decoupled fields,
consisting of a Proca (vector boson) field J of mass

mJ = eρ0 (5.35)

and (2k − 1) real Klein-Gordon (scalar boson) fields αi , of
masses mi .

In general, the asymptotic fields of a soliton will have
all these degrees of freedom nonzero, and the dominant
force between well-separated solitons will be mediated by
whichever mode has longest range, that is, lowest mass. So
the first task in predicting long-range intersoliton forces is to
compute the spectrum of the self-adjoint linear map H(ρ0,�0).
For a generic choice of V in the family, we are considering
Eq. (2.1), it is not possible to compute even the vacuum (ρ0,�0)
explicitly, so the matrix H(ρ0,�0), and hence its spectrum, is
perforce known only numerically. There are, however, some
interesting cases where explicit analytic progress is possible.

D. The sigma model limit

In this section, we consider the k-component GL model
with potential

V = 1
2�(1 − |
|2)2 − 1

2
†η
 (5.36)

in the limit � → ∞, where η is a real-symmetric k × k

matrix, with zero diagonal, parametrizing a general collection
of Josephson interactions. In the notation of Sec. II, this is the
case −αa = βa = γab = � for all a,b. The special case where
η = 0, � → ∞ and e → ∞, which reduces to a pure sigma
model, was considered in Refs. 25 and 26. It is possible to
find explicit formulas for the topological solitons in that case.
The case of finite � and e, with η = 0, has also been treated
previously.27–29 The field equations for the model (5.25) in

the σ model limit (in fact, in the case where � is valued in
any compact Kähler manifold) were studied in detail, from a
geometric viewpoint, in Ref. 30. Our focus here is on the new
phenomena introduced by the Josephson terms η.

In terms of the polar coordinates ρ,Z, the limit � → ∞
amounts to the constraint ρ ≡ 1, and the potential V reduces,
in this limit, to

V ([Z]) = −1

2
Z†ηZ = −1

2

Z†ηZ

|Z|2 . (5.37)

We have included the factor of |Z|2 in the denominator of
this expression (which, of course, equals 1 since |Z| = 1
by definition) so that the right-hand side is manifestly a
function of the projective equivalence class of Z only, not
Z per se, that is, V ([cZ]) = V ([Z]) for all c ∈ C\{0}. This
is convenient when one comes to compute the Hessian of V .
Since η is real symmetric, it has a unitary basis of eigenvectors
e1,e2, . . . ,ek , with corresponding real eigenvalues λ1 � λ2 �
· · · � λk . Expanding Z relative to this basis,

Z =
k∑

i=1

χiei, χ ∈ Ck, |χ | = 1, (5.38)

we see that

V = −1

2

k∑
i=1

λi |χi |2. (5.39)

Hence, the U(k) symmetry of the model, which is preserved
by the sigma-model limit, is broken by η generically to
U(1)k . In the case where the spectrum of η is degenerate,
the breaking may be partial. For example, if λ1 = λ2 and all
other λi are distinct, the free energy remains invariant under
U(2) × U(1)k−1, where U(2) acts in the obvious way on the
span of {e1,e2}.

Clearly, V : CP k−1 → R attains its minimum at [Z] =
[e1], and this minimum is unique if λ1 �= λ2. If λ1 = λ2 =
· · · = λj > λj+1 � · · · � λk , then any Z in the span of
{e1, . . . ,ej } minimizes V , so the set of minima of V is aCP j−1

submanifold of CP k−1. In this case, there can be no energy
minimizer on R2 with Q �= 0, by Derrick’s scaling argument31

(i.e., solitons are unstable against expanding indefinitely), so
let us assume, henceforth, that λ1 �= λ2, so that the vacuum
of the model, [e1], is unique. If the field � = π ◦ 
 : R2 →
CP k−1 has topological charge Q = 1 then it wraps R2 once
around some submanifold homologous to CP 1 in CP k−1. In
order to minimize the contribution of V , it should be the CP 1

on which 
 lies in the span of {e1,e2}, the sum of the two
highest eigenspaces of η. So we predict that


 ≈ χ1e1 + χ2e2 (5.40)

everywhere, where χi = e
†
i 
 are complex valued functions on

R2. From the pair (χ1,χ2) we can construct a S2-valued field
using the usual identification of CP 1 with S2, that is

n = (χ1 χ2)τ

(
χ1

χ2

)
, (5.41)

where τ = (τ1,τ2,τ3) are the Pauli spin matrices. In this way, a
Q = 1 energy minimizer can, conjecturally, be identified with
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FIG. 16. (Color online) Q = 1 soliton for the U(3) symmetric model broken by Josephson interactions of the form (5.42), with � = 20
and η0 = 1. The quantities |1 − |ψ |2| (A), and |e†3
| (B), measure the deviation from the σ model. They converge to zero as � is increased.
(C) Energy density of the skyrmion. (D) Texture of the field n, which is similar to that of a baby skyrmion.

a degree 1 texture n : R2 → S2. Since 
 is parallel to e1 at
|x| = ∞, we see that χ2(∞) = 0, and hence n(∞) = (0,0,1)T .

We present numerical evidence in favor of this conjecture
in Fig. 16, in the case k = 3,

η = η0

⎛⎝ 0 −1 −1
−1 0 −2
−1 −2 0

⎞⎠ , (5.42)

η0 = 1 and � = 20. It is found that 
 approximately
satisfies the sigma-model constraint, more precisely, ε1 =
maxx∈R2 |1 − |
|2| < 0.04. For this choice of η,

λ1 = 2η0, e1 = 1√
2

⎛⎝ 0
1

−1

⎞⎠ ,

λ2 = (
√

3 − 1)η0, e2 = 1√
6 + 2

√
3

⎛⎝√
3 + 1
−1
−1

⎞⎠ ,

λ3 = −(
√

3 + 1)η0, e3 = 1√
6 − 2

√
3

⎛⎝√
3 − 1
1
1

⎞⎠ .

We expect the Q = 1 energy minimizer to have 
 in the
span of {e1,e2} which, since the eigenvectors form a unitary
frame, is equivalent to satisfying e

†
3
 = 0. Again, this turns out

to be approximately true: ε2 = maxx∈R2 |e†3
| < 0.03. We find
that both the errors ε1 and ε2 become smaller as � increases
with η0 held fixed. This indicates that the sigma model limit
is well founded and should be a reliable approximation for
� large but finite. Qualitatively, in this special case of the
three-component model, the n field we find numerically is
similar to the field of a so-called baby skyrmion.32

If we place two Q = 1 energy minimizers a long-distance
apart and allow the system to relax, do they repel one another
and escape to infinity, or do they attract one another and
coalesce into a Q = 2 bound state? To predict this, we
need to compute the spectrum of the Hessian of V about
�0 = [e1], as described in Sec. V C. In this case, ρ is frozen
by the constraint, so P = CP k−1. It is useful to identify
the tangent space T[e1]CP k−1 with the (k − 1)-dimensional
complex vector space:

V = {Y ∈ Ck : e
†
1Y = 0}. (5.43)

Then the natural metric on Tp0P (5.31) reduces to

〈Y,Y ′〉V = Re(Y †Y ′), (5.44)

the restriction of the Euclidean metric on Ck to V . To compute
the Hessian of V about [e1], we consider a curve Z(t) in Ck

with Z(0) = e1 and Ż(0) = Y ∈ V . Then

Hess[e1](Y,Y ) = d2

dt2

∣∣∣∣
t=0

V [
(t)]

= Y †[λ1Ik − η]Y

= 〈Y,(λ1Ik − η)Y 〉V , (5.45)

where we have used the fact that λ1Ik − η is self-adjoint with
e1 in its kernel, so that e†1(λIk − η)Y = 0. Hence the associated
self-adjoint linear mapH[e1] : V → V is the restriction toV of
λ1Ik − η. It follows that the eigenvalues of H[e1] are λ1 − λi ,
i = 2, . . . ,k, each of multiplicity 2, and that the corresponding
eigenspaces are two real-dimensional, spanned by {ei,iei},
i = 2, . . . ,k. So there are 2k − 2 real scalar bosons in this
model, occurring in pairs, having mass

mi =
√

λ1 − λi. (5.46)

This should be compared with the mass of the supercurrent
field, i.e., the inverse London penetration length,

mJ = e. (5.47)

Numerics suggest that the supercurrent of a Q = 1 energy
minimizer is, at large |x|, similar to that of a vortex, while
the lightest (complex) Klein-Gordon mode χ2 is similar to
the asymptotic field of a baby skyrmion. Hence we expect J

to mediate a repulsive force of range 1/e and χ2 to mediate
a short-range scalar dipole-dipole force. The range of this
force is 1/

√
λ1 − λ2. The latter force is attractive provided the

two solitons are appropriately aligned; see the discussion of
baby-Skyrme models33 for a detailed analysis. The dipolelike
interaction is also natural from the viewpoint of the fractional-
vortex picture of skyrmions (see discussion in Sec. IV and in
Refs. 18). Hence we predict that a pair of Q = 1 solitons, in
the model that we consider in this section, always repel (for
all relative orientations) if e2 < λ1 − λ2, so higher Q bound
states cannot form. On the other hand, if e2 > λ1 − λ2, well-
separated solitons have an attractive channel, and we predict
that they can coalesce into higher-Q bound states. Numerical
evidence of this predicted dichotomy in the three-component
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case is presented in Fig. 17 and direct numerical evidence of
dipolar interaction of two Q = 1 skyrmions is presented in
Fig. 18.

E. Symmetric case with BTRS

In this section, we consider the GL(3) model with three
identical active bands, coupled through identical Josephson
terms. The potential is

V (
) = λ

8

3∑
a=1

(1 − |ψa|2)2 + η

2

†N
, (5.48)

where N denotes the symmetric coupling matrix

N =
⎛⎝0 1 1

1 0 1
1 1 0

⎞⎠ . (5.49)

Note that, in contrast to Sec. V D, η denotes a real parameter
here, not a matrix. In terms of the notation of Sec. II, this
is the special case α1 = α2 = α3 = − λ

4 , β1 = β2 = β3 = λ
4 ,

γab = 0, and η12 = η13 = η23 = −η. The vacuum manifold
for this potential is a disjoint union of two circles, the gauge
orbits of


 = ρ0v0 and 
 = ρ0v1, (5.50)

where

ρ0 =
√

3 + 6η

λ
, (5.51)

and (with ξ = e2πi/3)

v0 = 1√
3

⎛⎝ 1
ξ

ξ 2

⎞⎠ , v1 = 1√
3

⎛⎝ 1
ξ 2

ξ

⎞⎠ , v2 = 1√
3

⎛⎝ 1
1
1

⎞⎠
(5.52)

are simultaneous unit eigenvectors of the symmetric coupling
matrix N and the permutation matrix P ,

P =
⎛⎝0 0 1

1 0 0
0 1 0

⎞⎠ . (5.53)

Note that

Nv0 = −v0, Nv1 = −v1, Nv2 = 2v2, (5.54)

Pv0 = ξv0, P v1 = ξ 2v1, P v2 = v2. (5.55)

We shall, without loss of generality, choose the vacuum ρ0v0

(rather than ρ0v1). Since [
] �= [
] for this vacuum, the model
has broken time-reversal symmetry.

There are axially symmetric vortex solutions, which in-
terpolate between (0,0,0) at r = 0 and the above vacuum at
r = ∞. To construct them, one only needs to solve a single
component GL model:

F∗ =
∫
R2

{
1

2
|dA|2 + 1

2
|Dφ|2 + λ

24

(
ρ2

0 − |φ|2)2
}
. (5.56)

Given a vortex solution (φ,A) of Eq. (5.56),


 = φv0, A (5.57)

is a vortex solution of the symmetric GL(3) model (5.48). The
numerical results of Sec. II strongly suggest that (5.48) also
supports skyrmion solutions, at least for Q and 1/e sufficiently
large.

Once again, we wish to compute the spectrum for the
Hessian of V about the vacuum (ρ0,[v0]). The potential is,
in polar coordinates (5.12),

V (ρ,Z) = λ

8

3∑
a=1

(1 − ρ2|Za|2)2 + η

2
ρ2Z†NZ (5.58)

= 3λ

8
− λ

4
ρ2 + λ

8
ρ4U ([Z]) + η

2
Ũ ([Z]), (5.59)

where

U ([Z]) = 1

|Z|4
3∑

a=1

|Za|4, (5.60)

Ũ ([Z]) = Z†NZ

|Z|2 . (5.61)

We have included the factors of |Z|2 in the denominators of
these expressions (which, of course, equals 1 by definition)
so that the right-hand sides are manifestly functions [Z] only.
Recall that Hess is a symmetric bilinear form on the tangent
space to (0,∞) × CP 2 at the vacuum (ρ0,[v0]). In general,
there is no reason why this bilinear form should not couple
the direction tangent to (0,∞) with directions tangent to CP 2.
We shall see that in this case, permutation symmetry prevents
such coupling.

First, we note that [v0] is a fixed point of the permutation
map

P : CP 2 → CP 2, [Z] �→ [PZ], (5.62)

and that dP[v0] : T[v0]CP 2 → T[v0]CP 2 has maximal rank, so
it follows that [v0] is a critical point of any function CP 2 → R
invariant under P . In particular,

dU[v0] = dŨ[v0] = 0. (5.63)

Consider now a two-parameter variation p(s,t) =
{ρ(s),[Z(t)]} through p0 = (ρ0,[v0]) in P = (0,∞) × CP 2,
with ∂sp(0,0) = (σ,0) and ∂tp(0,0) = (0,Y ). Then,

Hessp0 [(σ,0),(0,Y )] = ∂2V [p(s,t)]

∂s∂t

∣∣∣∣
s=t=0

= λ

4
ρ3

0σdU[v0]Y + ηρ0σdŨ[v0]Y = 0

(5.64)

by Eq. (5.63). Hence

Hess = (λ + 2η)dρ2
ρ0

+ λ

8
ρ4

0H + η

2
ρ2

0H̃ , (5.65)

where H,H̃ : T[v0]CP 2 × T[v0]CP 2 → R are the Hessians
of the functions U,Ũ respectively. It follows that one of the
real scalar bosons αi in Eq. (5.34) is just σ (the linearization
of ρ about ρ0) and that this has mass

mρ =
√

λ + 2η. (5.66)
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FIG. 17. (Color online) Results of energy minimization with charge Q = 2 for � = 20, and e = 1.0 and varying η0. First row shows
the energy density while the second and third row displays the corresponding texture field. (A) η0 = 0.1, (B) η0 = 0.2, and (C) η0 = 0.3)
are for η0 < η∗

0 where interaction between skyrmions is attractive. Two Q = 1 skyrmions coalesce into either one Q = 2 skyrmion (A)–(C).
Configuration displayed in (C) resemble bound state of two Q = 1 skyrmions. (D), η0 = 0.8, has η0 > η∗

0 , then in the repulsive channel. Here,
the two Q = 1 skyrmions are repelling each other. So the snapshot in (D) shows a late but unconverged iteration (i.e., it represents a fairly
converged pair of individual skyrmions that are, however, still drifting apart).
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FIG. 18. (Color online) Interaction energy of two single quantum
solitons. The the GL parameters are αa = −20, βa = 20, γab = 20,
ηab = −1, and e = 1. Thus the potential part of the free energy
density can be written as U = λ(1 − |ψ1|2 − |ψ2|2 − |ψ3|2)2 −
ηab|ψa ||ψb| cos(ϕa − ϕb) with λ = 10, i.e., the Hamiltonian features
SU(3) symmetry broken by Josephson interaction term.

It remains to compute H and H̃ . For this purpose, we
identify the tangent space T[v0]CP 2 with the two-dimensional
complex vector space

V = {Y ∈ C3 : v
†
0Y = 0}, (5.67)

which is spanned by {v1,v2}, and giveV the induced Euclidean
metric

〈X,Y 〉V = 1
2 (X†Y + Y †X) = 1

4 〈X,Y 〉FS, (5.68)

where 〈·,·〉FS denotes the Fubini-Study metric, used to compute
|dY |2 in Eq. (5.25).

In fact, we already know H̃ , since this is a special case of
the general Josephson coupling matrix considered in Sec. V D:

H̃ (X,Y ) = 2〈X,(N + 1)Y 〉V . (5.69)

It is convenient to expand X,Y relative to the unitary (for
〈·,·〉V ) basis v1,v2, which are eigenvectors of N . Namely, if

X = (x1 + ix2)v1 + (x3 + ix4)v2,
(5.70)

Y = (y1 + iy2)v1 + (y3 + iy4)v2,

then

H̃ (X,Y ) = 6xT

⎛⎜⎜⎜⎝
0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠ y. (5.71)

Note that this is a hermitian bilinear form on V , that is
H̃ (iX,iY ) = H̃ (X,Y ).

Turning to H , one should not expect it to be hermitian, be-

cause U contains terms like Z2
1Z

2
1. Consider a two-parameter

variation Zs,t in S5 ⊂ C3 with Z0,0 = v0 and ∂sZs,t |0,0 = X ∈
V , ∂tZs,t |0,0 = V . By definition,

H (X,Y ) = ∂2U (Zs,t )

∂s∂t

∣∣∣∣
s=t=0

. (5.72)

Using the explicit formula (5.60) for U (Z), we find that

H (X,Y ) = 2
3∑

a=1

(XaZa + ZaXa)(Y aZa + ZaYa), (5.73)

where Z = v0. Note this is not Hermitian because, for example,
H (iv1,iv2) = −H (v1,v2). Again, we can express this as a 4 ×
4 real matrix, by expanding X,Y relative to v1,v2. One finds
that

H (X,Y ) = 4

3
xT

⎛⎜⎜⎜⎝
1 0 1 0

0 1 0 −1

1 0 1 0

0 −1 0 1

⎞⎟⎟⎟⎠ y. (5.74)

Substituting Eqs. (5.74) and (5.71) into Eq. (5.65), then
Eq. (5.65) into Eq. (5.29), we obtain

Flin =
∫

M

{
1

2e4ρ4
0

(‖dJ‖2 + e2ρ2
0‖J‖2

)
+ 1

2
[|dσ |2 + (λ + 2η)σ 2] + 1

2
ρ2

0 (|dy|2 + yT My)

}
,

(5.75)

where the mass matrix is

M = λρ2
0

6

⎛⎜⎜⎜⎝
1 0 1 0

0 1 0 −1

1 0 1 0

0 −1 0 1

⎞⎟⎟⎟⎠ + 3η

⎛⎜⎜⎜⎝
0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠ .

(5.76)

The squared masses of the bosons tangent to CP 2 are the
eigenvalues of this matrix, namely,

m2
± = λρ2

0

6

[
1 + 9η

λρ2
0

±
√

1 +
(

9η

λρ2
0

)2]
, (5.77)

each of multiplicity two. These should be compared with the
mass of the J vector and ρ scalar bosons:

m2
J = e2ρ2

0 , m2
ρ = λ + 2η. (5.78)

To extract information about intersoliton forces, note that
the embedded vortex (5.57) excites only the (repulsive) J

mode and the (attractive) ρ mode, so one predicts the usual
behavior (i.e., for the example considered here where there is
degeneracy in couplings between components, at long-range
vortices repel if mρ > mJ , and attract if mρ < mJ ). Note that
in the case when the components have different prefactors
in V , there are also type-1.5 regimes with nonmonotonic
intervortex (long-range attractive, short-range repulsive) in-
tervortex forces.7 Skyrmions, on the other hand, should in
all cases excite all six modes, with a monopole source for
ρ and dipole (or higher) sources for the four (mixed) Y

modes. So an interesting regime would be m− < mJ < mρ

since then intervortex forces should be long-range repulsive,
while interskyrmion forces should have an attractive channel
for a certain relative orientations of skyrmions.
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VI. CONCLUSIONS

We discussed a new kind of topological soliton, which
we term chiral GL(3) skyrmions. These solitons occur in
three-component superconductors when time-reversal sym-
metry is spontaneously broken. In contrast to vortices, these
skyrmions are characterized by a CP 2 topological charge.
These skyrmions have a definite chirality associated with them:
i.e., the order of the constituent fractional vortices matters,
different orders giving inequivalent solutions. We described
two situations. (1) A type-II BTRS superconductor can form
a vortex lattice as a ground state in applied magnetic field.
However, in contrast to usual vortex states, all the regimes
investigated by us possessed other flux-carrying topological
defects of a higher energy: metastable GL(3) skyrmions charac-
terized by aCP 2 topological charge. The system thus can form
infinitely many complex metastable states in external fields
where vortices coexist with the GL(3) skyrmions solitons.
Thermal, or magnetic field quench can force the system to fall
into one of these states. (2) BTRS three-band superconductors,
in principle, can have also a different regime where in external
field CP 2 solitons are energetically cheaper than vortices.
In that case, the system cannot form vortices since they are
unstable against decay into skyrmions. Such regimes occur,
for example, when the free energy has biquadratic interaction
terms of the form γab|ψa|2|ψb|2.

In the regimes where chiral GL(3) skyrmions are metastable,
they can spontaneously form from “collisions” of vortices,
where intervortex interaction energy can be larger than the
energy of potential barrier of forming a skyrmion. We
investigated several hundred regimes and found that skyrmions
typically easily form in the energy minimization process where
a system is relaxed from various higher energy states (such as
dense groups of ordinary vortices). Our study indicates that
the “capture basin” of these solutions can in certain cases be
very large. We find that these defects very easily form during a
rapid expansion of a vortex lattice (which should occur when
magnetic field is rapidly lowered. Formation of solitons in
this process can signal a state with Broken Time Reversal
Symmetry. Also the potential barriers between skyrmions
and vortices or between different skyrmionic states can be
overcome due to thermal fluctuations.

As shown in Fig. 1, these skyrmions have very particular
magnetic signature and thus, under certain conditions, may
be observed in high-resolution scanning SQUID, Hall, or
magnetic force microscopy measurements. A tendency for
vortex pair formation, yielding magnetic profile similar to that
shown on Fig. 5 was observed in Ba(Fe1−xCox)2As2

34 as well
as vortex clustering in BaFe2−xNixAs2.35 These materials have
strong pinning, which can naturally produce disordered vortex
states,35 although the possibility of “type-1.5” scenario for
these vortex inhomogeneities was also voiced in Ref. 35. [Note
that in three-band (or higher number of bands) superconductors
with frustrated Josephson coupling, type-1.5 regimes are easily
obtainable even if Josephson coupling is very strong.7] The
vortex pairs observed in Ref. 34 can be discriminated from
Q = 2 solitons by quenching the system in a stronger magnetic
field and observing whether or not it forms vortex triangles,
squares, pentagons, such as shown on, e.g., Fig. 1, which
correspond to a flux profile of higher-Q solitons. Besides

multiband superconductors, another class of systems, which
can support chiral GL(3) skyrmions is a Josephson coupled
sandwich of an s± and s-wave superconductors.
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APPENDIX A: FRACTIONAL VORTICES IN THE
PRESENCE OF JOSEPHSON COUPLING

Here, we discuss fractional flux vortices in three-band
systems. Consider the case of one fractional vortex in which
ψ1 winds through 2π and neither ψ2 nor ψ3 winds. We assume
that the configuration is spatially localized around r = 0, so
that on any annulus � = {r0 < r < r1}, with r0 sufficiently
large, the densities |ψa| are close to their ground-state values
(i.e., we assume the London limit). It follows from Eq. (2.1)
that the total free energy of any configuration satisfies the lower
bound

F − FGS � FSG,
(A1)

with FSG :=
∑
a<b

νab

∫
�

|∇ϕab|2 + 1

2
m2

ab(1 − cos ϕab),

where νab = |ψa|2|ψb|2/ρ2, m2
ab = 2ηabρ

2/|ψa||ψb|, and
ρ2 = ∑

a |ψa|2. FGS denotes the energy of the vortex-less
ground state. In the London limit, the field densities assume
their ground-state values, so νab and mab are constants. In this
limit, FSG simplifies to a sum of sine-Gordon energies (hence
the subscript SG). Note that |∇ϕab|2 � r−2(∂ϕab/∂θ )2, with r

and θ , the polar coordinates around the vortex center. Hence,

FSG �
∑
a<b

νab

∫
�

[
1

r2

(
∂ϕab

∂θ

)2

+ m2
ab sin2 φab

2

]
(A2)

=
∑
a<b

νab

∫
�

[(
1

r

∂ϕab

∂θ
− mab sin

ϕab

2

)2

+ 2mab

r

∂ϕab

∂θ
sin

ϕab

2

]
(A3)

�
∑
a<b

2mabνab

∫ r1

r0

dr r

∫ 2π

0

1

r

∂ϕab

∂θ
sin

ϕab

2
(A4)

= 8(m12ν12 + m13ν13)(r1 − r0), (A5)

where we have used the boundary conditions that ϕ12 and ϕ13

wind once, while ϕ23 does not wind. So FSG, and hence the
total free energy F − FGS, grows (at least) linearly with the
system size, r1.

Note that our lower bound on FSG cannot be at-
tained, because for this to happen, one would need ϕab to
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satisfy

1

r

∂ϕab

∂θ
= mab sin

ϕab

2
(A6)

and no solutions to this PDE with the correct boundary
behavior [ϕ12(r,2π ) − ϕ12(r,0) = 2π for all r] exist.

APPENDIX B: FINITE ELEMENT ENERGY
MINIMIZATION

The chiral skyrmions are either global or local minima of
the Ginzburg-Landau energy (2.1). In the later case, this means
that a good enough initial guess is necessary. In both cases,
the functional minimization of Eq. (2.1), from an appropriate
initial guess carrying several flux quanta, should lead to a
chiral skyrmion (if it exists as a stable solution). We consider
the two-dimensional problem (2.1) defined on the bounded
domain � ⊂ R2 with ∂� its boundary. In practice, we choose
� to be a disk. Actually, the particular shape of the domain
is not important. Indeed, it is much larger than the typical
size of solitons. Moreover, neither solitons nor initial guess
coincide with some grid symmetry. For example, skyrmions
are never placed at the center of the domain (the vizualization
scheme recenters the window around the soliton). This is an

addtional argument that skyrmions are not boundary artefacts.
One some occasions, we doubled checked on square domains
that our solutions are unaffected by boundaries.

The problem is supplemented by the boundary condition
n · D
a = 0 with n the normal vector to ∂�. Physically,
this condition implies there is no current flowing through the
boundary. Since this boundary condition is gauge invariant,
additional constraint can be chosen on the boundary to fix
the gauge. Our choice is to impose the radial gauge on the
boundary eρ · A = 0 (note that with our choice of domain,
this is equivalent to n · A = 0). With this choice, (most of) the
gauge degrees of freedom are eliminated and the “no current
flow” condition separates in two parts:

n · ∇ψa = 0 and n · A = 0. (B1)

Note that these boundary conditions allow a topological defect
to escape from the domain, since there is no pressure of an
external applied field. Because they are topological defects,
vortices (and skyrmions) cannot unwind. However, they can be
“absorbed” through the boundary in order to further minimize
the energy. To prevent this, the numerical grid is chosen to be
large enough so that the attractive interaction with the bound-
aries is negligible. The size of the domain is then much larger
than the typical interaction length scales. Thus in this method,

FIG. 19. (Color online) Q = 3 quanta soliton in a system with three identical passive bands as in Fig. 3, except that there are no
density-density interactions γab = 0 and e = 0.3. Since the three bands are identical, the soliton makes a homogeneous ringlike configuration.
Displayed quantities are the same as in rest of the paper.

014507-24



CHIRAL CP 2 SKYRMIONS IN THREE-BAND . . . PHYSICAL REVIEW B 87, 014507 (2013)

one has to use large numerical grids, which is computationally
demanding. The advantage is that it is guaranteed that obtained
solutions are not boundary pressure artifacts.

The variational problem is defined for numerical com-
putation using a finite element formulation provided by the
FREEFEM++ library.36 Discretization within finite element
formulation is done via a (homogeneous) triangulation over
�, based on Delaunay-Voronoi algorithm. Functions are
decomposed on a continuous piecewise quadratic basis on each
triangle. The accuracy of such method is controlled through
the number of triangles, (we typically used 3 ∼ 6 × 104), the
order of expansion of the basis on each triangle (2nd order
polynomial basis on each triangle), and also the order of the
quadrature formula for the integral on the triangles.

Once the problem is mathematically well defined, a numeri-
cal optimization algorithm is used to solve the variational non-
linear problem (i.e., to find the minima of F ). We used here a
nonlinear conjugate gradient method. The algorithm is iterated
until relative variation of the norm of the gradient of the func-
tional F with respect to all degrees of freedom is less than 10−6.

1. Initial guess for obtaining metastable configurations

As discussed in the paper, N quanta chiral skyrmions can
be more energetically expensive than N ordinary (type-II)

vortices. In that case, the initial guess should be within
the attractive basin of the chiral skyrmions. Otherwise, the
configuration converges to ordinary type-II vortices which
have the same total phase winding but cost less energy. The
initial field configuration carrying N flux quanta is prepared
by using an ansatz, which imposes phase windings around
spatially separated N vortex cores in each condensates:

ψ1 = |ψ1|ei�1 , ψ2 = |ψ2|ei�2+i2 , ψ3 = |ψ3|ei�3+i3 ,

|ψa| = ua

Nv∏
k=1

√
1

2

(
1 + tanh

{
4

ξa

[
Ra

k (x,y) − ξa

]})
, (B2)

where a = 1,2,3 and ua is the ground-state value of each
condensate density. The parameters ξa parametrize the core
size while

�a(x,y) =
N∑

k=1

tan−1

(
y − ya

k

x − xa
k

)
,

(B3)

Ra
k (x,y) =

√(
x − xa

k

)2 + (
y − ya

k

)2
.

(xa
k ,ya

k ) determines the position of the core of kth vortex of the
a condensate. The functions a are used to seed a domain wall.
As an initial guess, we generally choose 2 = −3 ≡ , with

FIG. 20. (Color online) Q = 4 quanta soliton in a system with two identical passive bands as in Fig. 5 coupled to a third active band with
disparity in the ground-state densities (α3,β3) = (−1.5,1). Josephson coupling constants are η23 = −3 and η12 = η13 = 1. e = 0.2 and γab = 0.
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FIG. 21. (Color online) Q = 7 quanta soliton in a system with two identical passive bands as in Fig. 5 coupled to a third active band with
disparity in the ground-state densities (α3,β3) = (−1,1). Josephson coupling constants are η23 = −3 and η12 = η13 = 1. e = 0.3 and γab = 0.

 defined as

 = π

3
[H (r − r0) − 1], (B4)

where H (r − r0) is a Heaviside function. Thus in the initial
guess, the domain wall has infinitesimal thickness. It takes
only a few steps from this initial guess to relax to a true
domain wall during the simulations. Consequently, it is entirely
sufficient to use Heaviside functions for the initial guesses for
domain walls. The starting configuration of the vector potential
is determined by solving Ampère’s law equation of Eq. (2.2) on
the background of the superconducting condensates specified
by Eqs. (B2)–(B4). Being a linear equation in A, this is an
easy operation.

Once the initial configuration defined, all degrees of
freedom are relaxed simultaneously, within the “no current
flow” boundary conditions discussed previously, to obtain
highly accurate solutions of the Ginzburg-Landau equations.

In a strongly type-II system when the initial guess was either
(a) vortices placed on a closed domain wall or (b) closed
domain wall surrounding a densely packed group of vortices,
the system almost always formed chiral skyrmions. We used
also initial guesses (c) without any domain walls ( = 0).
In that case, we observed chiral skyrmion formation, if in
the initial states vortices were densely packed. This again
indicates that the chiral skyrmions in the three-component GL
model represent (local) minima with wide capture basin in the
free-energy landscape.

APPENDIX C: ADDITIONAL MATERIAL

In this Appendix, we show few additional solutions in
Figs. 19–21 for chiral skyrmions. Parameter sets, or number
of flux quanta used here are different from the ones considered
in the main body of the paper.
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