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Multiple-gap structure in electric-field-induced surface superconductivity
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Local superconducting gap structure is studied as a function of nanoscale depth in electric-field-induced
surface superconductivity such as in SrTiO3. We examine solutions of the Bogoliubov–de Gennes equation
in two limiting confinement potential cases of an electric field with and without screening effects. As unique
properties different from bulk superconductivity, there appear in-gap states even for isotropic s-wave pairing,
due to the multiple-gap structure of sub-band-dependent surface superconductivity. These determine the depth
dependence of local superconductivity.
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I. INTRODUCTION

The electric-field-induced carrier-doping technique, using
a field-effect transistor structure or an electric double-layer
transistor structure,1–5 has attracted much attention as a new
method of carrier doping, apart from the methods of chemical
doping. A merit of electric-field-induced doping is that we
can control the doping carrier density by the gate voltage in
the same sample. This will be a powerful platform in future
studies of condensed matter physics. When this is used at the
surface of insulators, carriers are induced near the surface and
trapped in the confinement potential of the electric field. Using
a strong enough field by electric double-layer transistor, we can
realize superconductivity of the surface metallic states at low
temperatures T , such as in SrTiO3,1 ZrNCl,2 KTaO3,3 and
MoS2.4,5 Gate voltage control of surface superconductivity in
SrTiO3 was also realized at the interface of LaTiO3/SrTiO3

and LaAlO3/SrTiO3.6,7

Compared to these developments in experimental research,
theoretical understanding is not enough for properties of
the electric-field-induced surface superconductivity. We must
discuss whether the surface superconductivity has the same
properties as the bulk superconductivity or whether it has
different unique properties. In future experiments on uncon-
ventional superconductivity produced on a surface, we have
to distinguish unique properties of surface superconductivity
and exotic properties of unconventional superconductivity.

As different properties from bulk metallic states, sub-
bands are formed in the surface metallic states due to
the confinement potential by strong electric fields.1 Since
multiple sub-bands are occupied by surface carriers, this
system is not an ideal two-dimensional state. We also note
that the local carrier density n(z) shows spatial variation as a
function of depth z from the surface in surface metallic states,
while n(z) is constant in bulk metallic states. Quantitative
estimatation of the z dependence is one of the problems
for the electric-field-induced metallic state. Therefore, also
in theoretical studies of surface superconductivity, we need
to know the detailed spatial structure of the superconduct-
ing gap on the nanoscale and its sub-band dependence.
These studies will enable us to find differences from bulk
superconductivity.

In this paper, we study unique properties: local electronic
states and sub-band dependence in electric-field-induced
superconductors. We discuss the multiple-gap structure of

the sub-band-dependent surface superconductivity. Since we
determine the spatial structure of the order of the Thomas-
Fermi length near the surface, we solve the Bogoliubov–
de Gennes (BdG) equation8 under an electric field F (z).
We discuss the depth z dependence perpendicular to the
surface at z = 0. As for the confinement potential V (z)
by F (z), we compare two cases: the triangular potential
and the self-consistent potential.9,10 The latter is the case
where induced carriers completely screen the applied electric
field. The former is the opposite limit, where screening is
negligible.

This paper is organized as follows. After we explain our
theoretical formulation of the BdG equation under electric
fields in Sec. II, we study the depth dependence of the local
superconducting gap structure in Sec. III and the gap structure
of the sub-band modes in the spectral weight in Sec. IV. In
order to discuss the relationship of the sub-band-dependent gap
structure and the depth dependence of superconducting states,
we perform analyses of sub-band decomposition for surface
superconductivity in Sec. V. The last section is devoted to
a discussion and summary, including the topics of Bardeen-
Cooper-Schrieffer (BCS)–Bose-Einstein condensation (BEC)
crossover phenomena in surface superconductivity.

II. BOGOLIUBOV–DE GENNES THEORY
IN CONFINEMENT BY AN ELECTRIC FIELD

Throughout this paper, the energy, length, and local carrier
density, respectively, are presented in units of eV, nm, and
nm−3. We typically consider the case of a sheet carrier density
n2D = 6.5 × 1013 cm−2, and the electric field at the surface is
given by F0 ≡ F (z = 0) = 1.4 × 10−3 V/nm. The triangular
potential with this F0 corresponds to one of the cases calculated
in Ref. 1 for SrTiO3, while a single-band case of effective
mass m∗ = 4.8m0 is considered here. m0 is the free electron
mass.

In the normal state,1,9 the eigenenergy Eε and wave
function uε(r) = ei(kxx+kyy)uε(z)/

√
S are determined by the

Schrödinger equation

Kuε(z) = Eεuε(z), (1)

with

K = − h̄2

2m∗
d2

dz2
+ E‖ + V (z) − μ, (2)
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E‖ = h̄2k2
‖/2m∗, k2

‖ = k2
x + k2

y , and S the unit area of surface.
We assume that the wave functions vanish at z = 0 as the
boundary condition. In the direction parallel to the surface,
the eigenstates are given by wave numbers kx and ky of
plane waves. Thus, the eigenstates of Eq. (1) are labeled by
ε ≡ (kx,ky,εz). εz is the label for sub-bands coming from
quantization by confinement in the z direction. The local
carrier density is calculated as n(z) = 2n↑(z) with

n↑(z) =
∑

ε

|uε(z)|2f (Eε), (3)

where f (E) is the Fermi distribution function. To fix n2D, we
tune the chemical potential μ. In the triangular potential case,
the confinement potential is given by V (z) = |e|F0z. For the
self-consistent potential,

F (z) = F0

(
1 −

∫ z

0
n(z′)dz′/n2D

)
, (4)

by Gauss’s law, considering the screening by n(z), and

V (z) = |e|
∫ z

0
F (z′)dz′. (5)

As F (z → ∞) = 0, n2D = ∫ ∞
0 n(z′)dz′. Iterating calculations

of Eqs. (1) and (2) and Eqs. (3)–(5) in the region 0 � z � L,
we determine V (z) in the case of the self-consistent potential.
Typically we use L = 80 nm.

In the superconducting state, the wave function(
uε(r)
vε(r)

)
= 1√

S
ei(kxx+kyy)

(
uε(z)
vε(z)

)
(6)

is determined by solving the BdG equation8,11,12

(
K �(z)

�(z) −K

) (
uε(z)
vε(z)

)
= Eε

(
uε(z)
vε(z)

)
. (7)

The pair potential �(z) is self-consistently calculated by

�(z) = Vpair

∑
ε

uε(z)vε(z)f (−Eε) (8)

with the energy cutoff Ecut of the pairing interaction. Here, we
consider a conventional case of isotropic s-wave pairing. We
typically use Vpair = 0.04, Ecut = 0.01, and T ∼ 0.

III. DEPTH DEPENDENCE OF LOCAL
SUPERCONDUCTING GAP STRUCTURE

First, we study the local density of states (LDOS) N (E,z) =
2N↑(E,z) with11,12

N↑(E,z) =
∑

ε=(kx ,ky ,εz)

|uε(z)|2δ(E − Eε). (9)

The left panel in Fig. 1(a) presents N (E,z) for the triangular
potential. There, we see steps of LDOS by the sub-band
structure of quantized bound states, as in the normal state.1

The lowest sub-band appears at E > El=1,min ∼ 0.0059 near
the surface. The continuum distribution above El=1,min comes
from finite E‖ � 0. Similarly, the LDOS of the second sub-
band appears at E > El=2,min ∼ 0.0103, and the LDOS of the
third sub-band at E > El=3,min ∼ 0.0138. Their contributions
overlap each other at higher energies. When the sub-band
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FIG. 1. (Color online) (a) Density plot of LDOS N (E,z) as a
function of z and E + μ. The solid line presents the confinement
potential V (z). (b) The LDOS N (E,z) in (a) is focused near the
superconducting gap. (c) DOS N (E) as a function of E + μ. Dashed
lines present N (E) for the normal state. Left: Triangular potential.
Right: Self-consistent potential.

level l is higher, the eigenenergy El,min becomes higher, and
the distribution spreads to a deeper z from the surface. The
superconducting gap appears near μ ∼ 0.0198.

The N (E,z) for the self-consistent potential is presented in
the right panel in Fig. 1(a). There, we see step structures of
sub-bands in the low-energy region, but the step size becomes
smaller at higher energies, because the slope of V (z) decreases
to 0 as a function of z by the screening effect. Since the
chemical potential is located at μ ∼ V (z → ∞) ∼ 0.0154,
occupied states with E < μ are bound states, and empty
states with E > μ are scattering states which are free of
the confinement potential. The superconducting gap opens
between the bound states and the scattering states.

The superconducting gap structures are shown in Fig. 1(b).
Even in the isotropic s-wave pairing, we see in-gap states
which have oscillations as a function of z and steps of gap
edges as a function of E as characteristic features of electric-
field-induced surface superconductivity. High-intensity peaks
of N (E,z) correspond to the maximum gap edge, whose gap
amplitude decreases discontinuously with increasing z. In the
self-consistent potential (right panel), it reduces to 0 at large z.

Figure 1(c) shows the density of states (DOS) N (E) after
z integration of N (E,z). Because of the in-gap states, the
gap structure in N (E) is different from that of bulk isotropic
s-wave superconductors. In the triangular potential (left panel),
the gap edge has a width from the minimum gap to the
gap-edge peak of the maximum gap, as in anisotropic s-wave
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superconductors. In the self-consistent potential (right panel),
a full-gap structure does not exist, since low-energy states exist
until near μ. The gap shape is similar to that of anisotropic
superconductors with gap nodes.

IV. GAP STRUCTURE OF THE SUB-BAND MODE
IN SPECTRAL WEIGHT

We discuss that these superconducting gap structures come
from the sub-band dependence of superconductivity. For the
sub-band decomposition, we calculate the spectral weight
N (E,k‖,z) = 2N↑(E,k‖,z) given by

N↑(E,k‖,z) =
∑
εz

|uε(z)|2δ(E − Eε) (10)

from N↑(E,k‖,z) = −π−1ImG↑(E,k‖,z) with Green’s func-
tion

G↑(E,k‖,z) =
∫

e−i(kx x̃+ky ỹ)G↑(E,r,r′)dx̃dỹ|z=z′ , (11)

G↑(E,r,r′) =
∑

ε

u∗
ε (r)uε(r′)

E + i0 − Eε

, (12)

and (x̃,ỹ) ≡ (x − x ′,y − y ′).13 The z integration of N (E,k‖,z)
is given by N (E,k‖) = ∫ L

0 N (E,k‖,z)dz. In Fig. 2 we show
N (E,k‖), which appear at eigenenergies Eε . There we see
multiple parallel lines of the dispersion relation as a function
of E‖, corresponding to sub-bands of surface bound states.
From the bottom, the lines are assigned to sub-band level
l = 1, 2, . . . , as indicated in Fig. 2. In the case of the
self-consistent potential, the energy distance of the dispersion
relation between sub-bands decreases for higher sub-bands,
and the spectral weight becomes continuous near E‖ ∼ 0 at
E > μ in the scattering state.
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FIG. 2. (Color online) Density plot of spectral weight N (E,k‖)
as a function of E‖ = h̄2k2

‖/2m∗ and E + μ for (a) the triangular
potential and (b) the self-consistent potential. Numbers 1–5 indicate
the sub-band level l.

In the superconducting state, gaps open at crossing
points of the particle mode and the inverted hole mode
at E = μ, forming Bogoliubov’s dispersion relations
of superconductivity for each level of sub-band. The
superconducting gap is larger for lower sub-bands, indicating
the multiple-gap structure of surface superconductivity. In the
case of the triangular potential, the occupied lower sub-bands
have different but finite gaps. In the case of the self-consistent
potential, sub-bands are occupied until quite higher levels,
where the superconducting gap decreases to 0. Therefore, the
in-gap states appear until near E = μ. As for the z dependence
of the spectral weight N (E,k‖,z), the contribution of the lower
sub-band is dominant near the surface. The contributions of
higher sub-bands become dominant at deeper z.

V. SUB-BAND DECOMPOSITION OF LOCAL
SUPERCONDUCTING STATES

In Fig. 3(a), we present the local carrier density n(z) and
the sub-band decomposition. The eigenstates of the dispersion
relations in Fig. 2 are classified to each sub-band level l. In the
lth sub-band, the wave function of the form of Airy functions
has l − 1 nodes along the z direction.1 The higher sub-band
contributions can penetrate into deeper z. Since the LDOS is
integrated over El,min < E < μ to obtain n(z), lower sub-band
contributions to n(z) becomes larger, because of the smaller
El,min. The pair potential �(z) and the sub-band decomposition
in Fig. 3(b) have a spatial structure similar to those of n(z). It
is noted that the sub-band-dependent pair potential becomes
lower for higher sub-bands. In the self-consistent potential
(right panels), while the lower sub-band contributions are
dominant, n(z) and �(z) include contributions from further
higher sub-band levels l > 5. Therefore, tails of n(z) and �(z)
survive until deeper z.

To discuss the origin of the superconducting gap structure
in Fig. 1, sub-band decompositions of the LDOS are presented
in Fig. 4. From Fig. 4(a), we see that the lowest sub-band
contribution (l = 1) to N (E,z) has a large constant su-
perconducting gap, but its distribution is restricted to very
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FIG. 3. (Color online) (a) Local carrier density n(z) and
(b) superconducting pair potential �(z) as a function of z. Sub-band
decompositions are also presented for sub-band levels l = 1, . . . ,5.
Left: Triangular potential. Right: Self-consistent potential.
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FIG. 4. (Color online) (a) Density plot of sub-band decompo-
sition of LDOS as a function of z and E + μ for sub-band levels
l = 1,2, . . . ,5 in the case of the self-consistent potential. (b) LDOS
N (E,z) and sub-band decomposition at z = 1.6 and 9 in the case of
the triangular potential. (c) The same as (b), but at z = 1.6 and 12 in
the case of the self-consistent potential.

near the surface. The contributions from higher sub-bands,
l = 2, 3, . . . , have a smaller constant gap, and the distributions
spread until deeper z. By the combination of these sub-band
contributions, the in-gap states and the z dependence of
superconducting gap structure in Fig. 1 are created. These
sub-band contributions are clear also in the LDOS spectra
in Figs. 4(b) and 4(c). There, we see multiple peaks of
gap edge from sub-band contributions. Near the surface
(z = 1.6), all sub-band contributions appear, and lower sub-
band contributions are dominant. Therefore the main peak
corresponds to the gap edge of the largest gap by the lowest
sub-band. In the lower panels in Figs. 4(b) and 4(c) for deeper
z, since lower sub-band contributions (l = 1 and 2) vanish,
the main peak of the gap edge appears at a lower gap energy
corresponding to higher sub-band (l = 3) contributions.

In addition to the superconducting gap at E = μ, extra
small gaps appear at energies outside the superconducting
gap, as shown in Fig. 2. This occurs by crossing of the hole
and particle modes between different sub-bands. We see these
extra gaps in higher sub-band contributions also in Fig. 4(a).
Because of the extra gaps, the LDOS in Figs. 4(b) and 4(c) has
many extra peaks outside of the main gap energy.

We note that low-energy in-gap electronic states are not
determined locally by �(z) in the length order of nanoscale
in this system. This is contrasted with the conventional
case where �(z) is suppressed on the length scale of the
superconducting coherence length.14–17 There low-energy
states appear as localized states by suppression of the local gap.
In the system of electric-field-induced surface superconductiv-
ity, approaching z → 0 near the surface, �(z) is suppressed
toward 0 in the length scale of the order of nanometers, as
shown in Fig. 3(a). However, in Fig. 4(a), we see that localized
low-energy in-gap states do not appear in the surface region
(z < 2) of suppressed �(z). The local state of the lowest
sub-band has a uniform gap with the highest gap amplitude [top
panel in Fig. 4(a)]. This indicates that the in-gap states reported
in this paper are not due to the suppression �(z → 0) → 0.
Rather, the in-gap states come from the deeper region, as tails
of wave functions for higher sub-band levels in Fig. 4(a).
This is one of the intrinsic features of electric-field-induced
superconductivity.

VI. DISCUSSION AND SUMMARY

As future experiments to confirm the in-gap states due to the
characteristic multiple-gap structure, we expect observations
of LDOS such as by point-contact tunneling spectroscopy,
which will visualize the gap structures in the upper panels of
Figs. 4(b) and 4(c). The contributions of the in-gap states will
be observed in experiments sensitive to the DOS of the su-
perconducting gap structure, such as magnetic resonance and
optical absorptions. Electric-field-induced doping will be an
important platform to study unconventional superconductivity.
Before that, it is important to clarify the difference in properties
of surface superconductivity versus bulk superconductivity
in conventional superconductors, as suggested in this work.
As a concept of multiple-gap structure, electric-field-induced
surface superconductivity can be said to be a new type
of multiband superconductor. We will see some behaviors
similar to those of multiband superconductors such as MgB2-
and Fe-based superconductors. The number of contributing
sub-bands can be controlled by the gate voltage.

We point out the interesting possibility of realizing the
BCS-BEC crossover phenomenon18–20 by controlling the gate
voltage of the surface superconductivity. In cold atomic gases,
BCS-BEC crossover is seen by tuning the interaction via a
Feshbach resonance.21,22 BCS-BEC crossover in a multiband
superconductor was suggested by an ARPES experiment in
FeSexTe1−x .23 The same situation appears in the surface
superconductivity. In Fig. 2(a), the superconducting gap in
the fifth sub-band opens at the bottom of the band dispersion.
That is, since the gap amplitude |�| is higher than the Fermi
energy EF (≡μ − El=5,min) from the band bottom, the BEC
regime |�| > EF is realized. The gaps in the other bands, 1–4,
are in the BCS regime |�| < EF . As mentioned above, the gap
magnitude can be tuned by the gate voltage.

In summary, the local superconducting gap structure and
the sub-band dependence in electric-field-induced surface
superconductivity were studied by solving the microscopic
BdG equation. There, in-gap states appear due to the multiple-
gap structure of the multiple-sub-band superconductivity,
even for isotropic s-wave pairing. We evaluated how these

014505-4



MULTIPLE-GAP STRUCTURE IN ELECTRIC-FIELD- . . . PHYSICAL REVIEW B 87, 014505 (2013)

structures depend on the screening condition, i.e., trian-
gular potential or self-consistent potential. These charac-
ters of the surface superconductivity, due to the sub-band-
dependent multigap nature, are important to consider when
we discuss the properties of electric-field-induced surface
superconductivity.
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