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The possibility of inducing topological superconductivity with cuprate high-temperature superconductors
(HTSC) is studied for various heterostructures. We first consider a ballistic planar junction between a HTSC and
a metallic ferromagnet. We assume that inversion symmetry breaking at the tunnel barrier gives rise to Rashba
spin-orbit coupling in the barrier and allows equal-spin triplet superconductivity to exist in the ferromagnet.
Bogoliubov–de Gennes equations are obtained by explicitly modeling the barrier and taking account of the
transport anisotropy in the HTSC. By making use of the self-consistent boundary conditions and solutions for
the barrier and HTSC regions, an effective equation of motion for the ferromagnet is obtained where Andreev
scattering at the barrier is incorporated as a boundary condition for the ferromagnetic region. For a ferromagnet
layer deposited on a (100) facet of the HTSC, triplet p-wave superconductivity is induced. For the layer deposited
on a (110) facet, the induced gap does not have the p-wave orbital character, but has an even orbital symmetry
and an odd dependence on energy. For the layer on the (001) facet, an exotic f -wave superconductivity is
induced. We also consider the induced triplet gap in a one-dimensional half-metallic nanowire deposited on a
(001) facet of a HTSC. Due to the breaking of translational symmetry in the direction perpendicular to the wire
axis, the expression for the gap receives contributions from different perpendicular momentum eigenstates in
the superconductor. We find that for a wire axis along the a axis, these different contributions constructively
interfere and give rise to a robust triplet p-wave gap. For a wire oriented 45◦ away from the a axis, the
different contributions destructively interfere and the induced triplet p-wave gap vanishes. For the appropriately
oriented wire, the induced p-wave gap may give rise to Majorana fermions at the ends of the half-metallic
wire. In light of the recent experimental progress in the quest for realizing Majorana fermions, we also discuss
inducing superconductivity in the spin-orbit-coupled nanowire using a HTSC. Based on our result, topological
superconductivity in a semiconductor nanowire may be possible given that it is oriented along the a axis of the
HTSC.
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I. INTRODUCTION

The study of heterostructures involving a superconductor
and nonsuperconducting materials has been a subject of inter-
est for many years. However, the field has recently enjoyed a
renewed level of intense activity since these systems can harbor
exotic emergent particles known as Majorana fermions.1–5

These particles are sought after for their unconventional non-
Abelian anyonic statistics and for their potential use in fault-
tolerant topological quantum computation.6,7 To date, possible
realizations of Majorana fermions have been discussed in
a number of systems including 3He,8 fractional quantum
Hall systems,9–11 organic superconductors,12 SrRuO3,13,14

fermionic cold-atom systems,15–17 and the surface state of
a topological insulator.1,2,18,19 However, a series of theoret-
ical works recently showed that Majorana fermions can be
realized in superconductor heterostructures with relatively
conventional building blocks.3–5,20,21 The most promising
of these proposals suggests that a semiconductor nanowire
fabricated on top of an s-wave superconductor, under the
right conditions, should host a pair of localized Majorana
excitations on the two ends of the wire.4,5,20 The zero-bias
conductance peak observed recently can be considered as
an evidence for these Majorana excitations.22 Very recently,
transport properties compatible with the existence of topo-
logical superconductivity have also been observed in lead
nanowires.23

The basis behind most of these recent Majorana proposals is
to “engineer” a single-component px + ipy superconducting
state in a system which does not intrinsically exhibit this
property. In the semiconductor nanowire proposal mentioned
above,4,5,20 a wire with spin-orbit coupling is placed in
contact with a conventional superconductor to produce an
effective px ± ipy state in the wire. Upon applying a magnetic
field to the system, one of the components is effectively
removed and the desired single-component p + ip topological
superconductor is obtained. Another natural possibility is to
induce superconductivity in a half-metallic ferromagnet. The
system is metallic for one spin component while an insulator
for the other and, as such, has a single nondegenerate Fermi
surface. If triplet p-wave superconductivity is induced in
such a system, it must harbor Majorana fermions, either in
vortices in a two-dimensional geometry,11,24 or at the ends in a
one-dimensional wire geometry.25 Indeed, proximity-induced
topological superconductivity in a half-metallic ferromagnet in
contact with a conventional superconductor has already been
studied theoretically.26–28

The superconducting proximity effect in metallic and
half-metallic ferromagnets in contact with conventional
superconductors has received much theoretical29–45 and
experimental46–55 attention over the years. It is known that
in a uniform metallic ferromagnet singlet superconducing
correlations penetrate over much shorter distances than in
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a nonferromagnetic normal metal.29 This is because singlet
superconducting correlations compete with ferromagnetism,
which favors parallel alignment of electron spins. However,
early transport data reported unexpectedly long-ranged prox-
imity effect in Co (Ref. 46) and Ni (Ref. 47), where the
decay length for superconducting correlations was typical of
proximity effect observed in a normal metal. This long-ranged
proximity effect was attributed to the formation of equal-spin
triplet pairs which are immune to the pair-breaking effects of an
exchange field.30,31 It was conjectured that local inhomogene-
ity in the magnetization near the superconductor/ferromagnet
(S/F) interface induces triplet pairing inside the ferromagnet,
and generates an exotic odd-frequency s-wave symmetry for
the triplet component of the condensate which should be robust
to disorder.30,31,56 For a half-metallic ferromagnet, singlet
superconductivity is expected to be destroyed due to the
vanishing density of states for the minority-spin component.
However, supercurrent flow was remarkably observed between
two conventional superconductors separated by CrO2 (a half-
metal) with a width of order 1 μm. The supercurrent was
attributed to odd-frequency triplet Cooper pairs which can
be generated by spin-flip scattering at junction interfaces.39,42

Singlet-to-triplet conversion mechanism due to both spin-
mixing and spin-flip processes, which are inevitably present
when magnetic moment near the interface is inhomogeneous,
was also studied in this context.32,33 Josephson coupling
between a singlet and triplet superconductor in the presence of
interface spin-orbit coupling was also theoretically studied.57

In the context of topological superconductivity, theoretical
works have discussed another scenario for singlet-to-triplet
conversion based on spin-orbit coupling, which can exist either
in the superconductor58 or at the S/F interface.26–28,58,59

The reliance on the superconducting proximity effect is
paramount in almost all of the current proposals for realizing
topological superconductivity.1–5,20,21 However, much of the
recent interest has been in artificial creation of a simulated
p-wave superconductor in heterostructures where the super-
conductivity is proximity induced by a conventional s-wave
superconductor. In contrast to all of these past works, this work
considers the creation of topological superconductivity and
Majorana fermions by using a cuprate high-Tc superconductor
(HTSC) as the agent inducing the proximity effect. HTSCs
are characterized by high-transition temperatures,60 and may
allow for more favorable experimental conditions for realizing
Majorana fermions. In context with the preceding discussion,
we focus on the physics of the proximity effect between
HTSCs and metallic (or half-metallic) ferromagnets. The
proximity effect in HTSC-ferromagnet and/or HTSC–half-
metal heterostructures has been studied theoretically with
a combination of extended Hubbard model, Hartree-Fock
theory, and the Bogoliubov–de Gennes equation,61–63 in the
presence of a spin-active interface,64,65 with spin-conserved
interface tunneling and spin-bandwidth asymmetry in the
ferromagnet,66,67 and within circuit theory.68,69 Enhanced
proximity effect in the c-axis direction was also studied
in a diffusive ferromagnet in the presence of a domain
wall near the interface.70 More recently, unconventional
superconductor/ferromagnet junctions on the surface of a
topological insulator have also been investigated.71 On the
experimental front, signatures of long-ranged Josephson cou-

pling were observed for a YBa2Cu3O7−δ (YBCO)-SrRuO3

(itinerant ferromagnet) junction.72 More recent works also
showed the superconducting proximity effect in thin-film
heterostructures comprising of the half-metallic manganite
La2/3Ca1/3MnO3 (LCMO) and YBCO.48,73–76 These experi-
ments also observed long-ranged superconducting correlations
in the half-metal, implying spin triplet pair formation in the
manganite.31,77,78

Motivated by intense recent activity in the field of topo-
logical superconductivity as well as significant experimental
progress mentioned above, we study the proximity effect
between HTSCs and metallic ferromagnets. We first consider
a ballistic planar junction composed of the two materials
separated by a potential barrier containing Rashba spin-orbit
coupling.26,28,58,59 The interfacial Rashba spin-orbit coupling
provides the spin-flip mechanism with which equal-spin triplet
pairing in the ferromagnet can be generated. We focus on
the proximity-induced mini-gap in the ferromagnet in the
equal-spin triplet channel. In contrast to many of the past
works, we do not employ the tunneling Hamiltonian formalism
to model the interface. Instead, the barrier region is resolved
into a region of finite thickness a, and we microscopically
model the interface with spin-orbit coupling. We study the
proximity effect in both the ab-plane and c-axis directions,
taking account of the hopping interlayer transport in the
superconductor. We consider three different crystallographic
orientations: (i) a axis parallel to the interface normal [(100)
interface]; (ii) a axis 45◦ away from the interface normal
[(110) interface]; and (iii) c axis parallel to the interface normal
[(001) interface]. We also consider a ferromagnetic nanowire
in proximity to a HTSC. Analytic expressions for the induced
mini-gaps are provided for all the cases. The heterostructure
under consideration and the gap orientation corresponding to
each of the interface orientations are shown in Fig. 1.
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FIG. 1. (Color online) The tunnel junction considered. The
ferromagnetic metal, the spin-orbit-coupled barrier, and the super-
conductor occupy 0 < z < d , −a < z < 0, and z < −a, respectively.
Various crystal orientations for the HTSC are considered: (i) (100)
parallel to the interface normal; (ii) (110) parallel to the interface
normal; and (iii) (001) parallel to the interface normal. Gap with
positive (negative) sign is indicated by red (blue). The existence of
an easy axis in the z direction is assumed in the ferromagnet.
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An important issue when inducing topological supercon-
ductivity via the proximity effect is the size of the induced
mini-gap in the normal region. This mini-gap is crucial for the
protection of Majorana fermions from external perturbations.
A motivation to use a HTSC in this context is due to the
robust gap it offers even at temperatures of order 100 K.
However, it is possible that the induced mini-gap amplitude
is limited by the energy scale set by the interface spin-orbit
coupling �SOC. This is indeed the case for orientation (i),
where the mini-gap is independent of the gap amplitude for
the proximate superconductor. For this case, a larger gap
in the superconductor therefore does not directly increase
the size of the mini-gap. On the other hand, a proportional
dependence on the gap amplitude is found for the mini-gap
in case (iii) (proximity effect in the c-axis direction). In this
case, increasing the gap in the proximate superconductor can
directly enhance the robustness of the gap in the normal region.
We add that even when the mini-gap does not explicitly depend
on the gap of the proximate superconductor, it is still essential
for a robust gap to be present in the superconductor to have
any kind of gap in the normal region. In this respect, both
a large �SOC and the proximity to a HTSC are a favorable
combination for inducing a large mini-gap. Reference 79
purports that certain metallic surface states can be subject to
spin-orbit-coupling strength of the order �SOC ∼ 100 meV.
If spin-orbit coupling of this scale can be generated in
the heterostructure considered here, having a HTSC should
certainly be beneficial for generating a larger mini-gap in
the normal region. An important experimental question in
realizing Majorana fermions with HTSC is the scattering
into the nodal quasiparticle states. This issue relates to the
stability of the Majorana end states, and will be addressed in
a forthcoming publication.

The paper is organized as follows. The heterostructure
and its theoretical modeling are introduced and discussed
in Sec. II. An effective Bogoliubov–de Gennes equation for
the ferromagnetic region is obtained in Sec. III. Analytical
results for the proximity-induced triplet mini-gap are discussed
in Sec. IV for various crystallographic orientations. Induced
triplet mini-gap for a half-metallic nanowire is studied in
Sec. V. A summary and experimental implications of our work
are presented in Sec. VI.

II. SETUP AND MODEL

We consider a ballistic planar tunnel junction between
a ferromagnetic metal (0 < z < d) and a HTSC (z < −a)
as shown in Fig. 1. The two systems are separated by a
tunnel barrier (−a < z < 0) containing two-dimensional (2D)
Rashba spin-orbit coupling, which can arise due to breaking
of inversion symmetry about the interface plane. In the
presence of spin-orbit coupling and superconductivity, it is
most natural to express the equations of motion in terms of
a four-component vector in Nambu-spin space [�(x,t)]T =
( ψ↑(x,t) ψ↓(x,t) ψ

†
↑(x,t) ψ

†
↓(x,t) ), where x = (r,z) collects

the coordinates r = (x,y) parallel to the interface plane and
the transverse coordinate z. We note again that we do not
employ the tunneling Hamiltonian formalism to model the
interface. Instead, the barrier region is resolved into a region of
finite thickness a, and we microscopically model the interface

with spin-orbit coupling. We therefore start with equations
of motion for three regions, each of which can generally be
written as∫

dx′[ετ̂3δ(x − x′) − Hρ(x,x′)]�ρ(x′,ε) = 0, (1)

where ρ = {F,B,S} labels the ferromagnet, barrier, and
superconductor regions and ε is the Fourier variable for time,
�ρ(x,t) = ∫

dε/(2π ) �ρ(x,ε)e−iεt/h̄. We use τ̂i to denote
the vector of Pauli matrices acting on Nambu space and
“calligraphic” letters, such as H, to denote 4 × 4 matrices
acting on Nambu-spin space. Hats will also be used in general
to denote 2 × 2 matrices.

The ferromagnet is described within the standard Stoner
model, assuming identical dispersion for both spins and with
a shift in energy by the exchange interaction h. Assuming
that the ferromagnet has an easy axis along the z axis, its
Hamiltonian is given by HF (x,x′) = δ(x − x′)HF (x) with

HF (x) = τ̂0Ĥ
F (x), (2)

where Ĥ F (x) = −h̄2∇2
x/2mF − μF − hσ̂3, mF and μF are

effective mass and chemical potential in the ferromagnet,
respectively, and σ̂i is used to denote the vector of Pauli
matrices acting on spin space.

The barrier in-between the ferromagnet and the supercon-
ductor is characterized by a large constant potential U0 and
Rashba spin-orbit coupling with strength α. Its Hamiltonian
reads as HB(x,x′) = δ(x − x′)HB(x) with

HB(x) =
(

Ĥ B(x) 0

0 [Ĥ B(x)]∗

)
, (3)

where Ĥ B(x) = −h̄2∇2
x/2mB + U0 + α[σ̂ × (−i∇x)]z, and

mB is the effective mass in the region.
Finally, we model the HTSC within the Bogoliubov–de

Gennes mean-field theory and consider various orientations of
its a axis with respect to the interface normal. The Hamiltonian
can generally be written as

HS(x,x′) =
(

δ(x − x′)Ĥ S
0 (x) �̂(x − x′)

�̂∗(x − x′) δ(x − x′)Ĥ S
0 (x)

)
, (4)

where

�̂(x − x′) =
(

0 �(x − x′)
−�(x′ − x) 0

)
. (5)

The dispersion in the HTSC depends on its crystallographic
orientation. We consider three different orientations where the
interface is (i) the (100) surface, (ii) the (110) surface, and (iii)
the (001) surface (see Fig. 1). For cases (i) and (ii), we use the
bulk dispersion of the form

Ĥ S
0⊥(x) = J cos(−i∂xs) − h̄2

(
∂2
y + ∂2

z

)
2mS

− μS, (6)

where J is the c-axis (interlayer) hopping amplitude, s is
the distance between the copper oxide planes, and mS and
μS are the effective mass and chemical potential. For case
(iii) (relevant for proximity effect in the c-axis direction), the
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relevant dispersion is

Ĥ S
0‖(x) = −h̄2∇2

r

2mS

+ J cos(−i∂zs) − μS. (7)

The gap function in (5) reflects the d-wave nature of the gap,
and also depends on the crystal axis orientation. Its explicit
expression will be given in the relevant sections below.

We now discuss an assumption which will be made through-
out the work (unless otherwise stated). It is an assumption
regarding the magnitude of the Fermi wave vector in the
ferromagnet with respect to the Fermi wave vector in the
superconductor. The outcome of this discussion can potentially
influence the experimental conditions favorable for a robust
proximity effect between these two systems. For the clean
planar tunnel junction considered in this work, momentum
parallel to the interface must be conserved during tunneling.
This usually places a restriction on the region of the Fermi
surface from which Cooper pairs can tunnel.80 In Fig. 2(a), the
3D Fermi surface corresponding to dispersion (6) is plotted on
the left and the 2D Fermi surface for the ferromagnetic metal is
plotted on the right. This corresponds to the crystal orientations
(i) and (ii) defined above (see Fig. 1). In Fig. 2(b), the 3D
Fermi surface corresponding to dispersion (7) is plotted on the
left and the 2D Fermi surface for the ferromagnetic metal is
plotted on the right. This corresponds to the crystal orientation
(iii). We are considering a quasi-2D ferromagnetic metal,
which is confined in the z direction, and focus our attention
on the majority-spin component since we are interested in
inducing equal-spin triplet Cooper pairs. We assume that the
Fermi wave vector in the ferromagnet kF

F↑ is controlled by
externally gating the ferromagnet. Projections of the Fermi
surfaces (ring) of the ferromagnet onto the superconductor’s
Fermi surface are shown by the red lines. Cooper pairs which
participate in the tunneling are expected to come from these
regions because the in-plane momenta are conserved for these
processes. For orientations (i) and (ii) [i.e., Fig. 2(a)], the
Fermi surface with an arbitrarily small kF

F↑ will have nonzero
overlap with the Fermi surface of the superconductor. In this
case, a robust proximity effect is expected even when the
ferromagnet is in the dilute limit (small kF

F↑). On the other
hand, for orientation (iii) [i.e., Fig. 2(b)], a finite overlap
with the Fermi surface of the superconductor is achieved
only for kcr

F↑ < kF
F↑ < kcr

F↑ + 2J within our model. Therefore,
ferromagnets with Fermi wave vectors lying outside this region
may experience a strong suppression in the proximity effect.
This in principle places a restriction on the ferromagnet’s wave
vector which is favorable for strong proximity effect. In the
remainder of this work, we will assume a small kF

F↑ � kS
F for

cases (i) and (ii), where kS
F is the Fermi wave vector in the

superconductor, and kcr
F↑ < kF

F↑ < kcr
F↑ + 2J for case (iii).

In the following sections, Andreev physics at a HTSC-
ferromagnet interface in the presence of interface Rashba spin-
orbit coupling will be studied. We note for the reader that
the formal procedure used to obtain the proximity-induced
mini-gaps is applicable both to polarized as well as unpolarized
normal regions. However, the ferromagnetism in the normal
region is crucial if it contains multiple transverse subbands
and one wants to realize an isolated Majorana mode, i.e., (# of
Majorana modes) mod 2 = 1. The usual difficulty in yielding an

kF
F↑

2J

FM
Superconductor

(a)

kz

kx

ky

kF
F↑

2J

FMSuperconductor

kcr
F↑

(b)

kz

kx

ky

FIG. 2. (Color online) (a) 3D Fermi surface corresponding to
dispersion (6) on the left and quasi-2D Fermi surface for the majority
spin component in the ferromagnet on the right. An overlap between
the two Fermi surfaces is achieved for arbitrarily small kF

F↑. (b) 3D
Fermi surface corresponding to dispersion (7) on the left and quasi-2D
Fermi surface for the majority-spin component in the ferromagnet on
the right. An overlap between the two Fermi surfaces is achieved for
kcr

F↑ < kF
F↑ < kcr

F↑ + 2J .

odd number of subbands at the Fermi level arises because the
electrons have spin and consequently come in pairs. However,
an isolated Majorana mode is in principle obtainable if the
normal region is a ferromagnet so that the total number of
occupied subbands is odd, i.e., (N↑ + N↓) mod 2 = 1, and if a
p-wave equal-spin triplet superconductivity is induced in each
subband.

III. BOGOLIUBOV–DE GENNES EQUATION
FOR THE FERROMAGNET

The first goal is to obtain the effective equation of motion
for the ferromagnet. This is done by first imposing proper
boundary conditions at each of the two interfaces, then
solving the barrier and superconductor regions, and eventually
incorporating their effects as a boundary condition for the
ferromagnetic region. Due to translational symmetry in the xy

plane (discrete translational symmetry in the x direction when
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the copper oxide planes are stacked parallel to the yz plane),
we may introduce a Fourier variable k = (kx,ky) defined via
�

ρ

k (z,ε) = ∫
d2r �ρ(x,ε)e−ik·r . Boundary conditions are then

defined in the usual way. The first set of boundary conditions
is constructed by imposing continuity of the wave function at
each interface,

�F
k (0,ε) = �B

k (0,ε), �B
k (−a,ε) = �S

k (−a,ε), (8)

and vanishing of the wave function at the hard wall,

�F
k (d,ε) = 0. (9)

Boundary conditions for the derivatives are obtained by
integrating the equations of motion over a small interval with
respect to z and subsequently sending the interval to zero.
Due to the particular two-dimensional nature of the spin-orbit

coupling, the derivative boundary conditions are simply given
by

1

mF

∂z�
F
k (0,ε) = 1

mB

∂z�
B
k (0,ε), (10)

1

mB

∂z�
B
k (−a,ε) = 1

mS

∂z�
S
k (−a,ε). (11)

Recall that the equation of motion for the ferromagnet
is given by (1) and (2). This equation of motion must be
accompanied by appropriate boundary conditions. At z = d,
the hard-wall boundary condition (9) applies. The boundary
condition at z = 0 is obtained by first solving (1) for the barrier
and the superconductor and by making use of the boundary
conditions (8), (10), and (11).28,81 Incorporating this boundary
condition into the equation of motion for the ferromagnet,28,81

we obtain

∫
dz′[GF

k (z,z′,ε)
]−1

�F
k (z′,ε) = −δ(z)

h̄2

mB

[
Rk + Tk

h̄2/2mB

1 − h̄2

2mB
Gsurf

k (ε)Rk

Gsurf
k (ε)Tk

]
�F

k (z), (12)

where the inverse Green’s function [GF
k (z,z′,ε)]−1 =

ετ̂3δ(z − z′) − HF
k (z,z′), and HF (x,x′) = ∫

d2k/(2π )2

HF
k (z,z′)eik·(r−r ′). We note that for cases (i) and (ii),

continuous translational symmetry in one of the directions
parallel to the interface plane is broken down to discrete
symmetry associated with the periodic stacking of the copper
oxide planes. In this case, the momentum Fourier variable
corresponding to that spatial direction must be restricted to
the first Brillouin zone [−π/s,π/s]. The transmission and
reflection matrices read as

Tk =
(

T̂k 0

0 T̂ ∗
−k

)
, Rk =

(
R̂k 0

0 R̂∗
−k

)
. (13)

Here, the asterisk denotes complex conjugation (without
transpose) and the 2 × 2 transmission and reflection matrices
are

T̂k =
(

κ+
t iκ−

t e−iγk

−iκ−
t eiγk κ+

t

)
, (14)

R̂k =
(

κ+ iκ−e−iγk

−iκ−eiγk κ+

)
. (15)

We have also defined κ±
t = q+/[2 sinh(q+a)] ± q−/[2 sinh

(q−a)] and κ± = q+/[2 tanh(q+a)] ± q−/[2 tanh(q−a)],
with q± = [(2mB/h̄2)(U0 − ε + (h̄2k2/2mB) ± h̄α|k|)]1/2

being the inverse penetration length of a particle with a
positive/negative chirality inside the barrier, and a is the
barrier width. The angle γk is defined via k = k(cos γk, sin γk).
Equation (12) is the Bogoliubov–de Gennes equation for
the ferromagnet region with superconducting correlations
and the barrier spin-orbit-coupling effects introduced via
the boundary term. In (14) and (15), the coefficient κ+

t is
associated with tunneling of particles without spin flip and
κ−

t with tunneling of particles accompanied by a spin flip.
Similarly, coefficients κ± are associated with the reflection of
particles without (+) and with (−) a spin flip. As the width

of the barrier grows, κ±
t decay exponentially, as expected.

On the other hand, if the spin-orbit coupling in the barrier
vanishes (i.e., α = 0), we see that the spin-mixing terms
vanish, κ− = κ−

t = 0, and we recover boundary conditions
for the standard proximity effect.81

In (12), we have also defined the “surface” Nambu-Gor’kov
Green’s function for the superconductor, which is evaluated
at the interface between the barrier and the superconduc-
tor Gsurf

k (ε) = limz→−a GS
k (z, − a,ε). Here, GS

k (z,z′) is the
Nambu-Gor’kov Green’s function matrix of the Bogoliubov–
de Gennes equation for the superconductor valid on the
half-space z < −a. In the low-transparency limit, one may
approximate GS

k (z,z′) with a Green’s function for an isolated
superconductor. It then satisfies the Neumann boundary
condition (zero flux condition at the right boundary)

∂zGS
k (z,z′)|z=−a = 0. (16)

The explicit form for the surface Green’s function matrix
Gsurf

k (ε) will depend on the crystallographic orientation. We
will now compute the matrix next.

A. Surface Green’s function matrix

In this section, the surface Green’s function matrix Gsurf
k (ε),

which appears in (12), is evaluated for the three different crys-
tallographic orientations. The Green’s function matrix encodes
information about the superconductor and crucially affects the
Andreev physics which takes place at the junction. The general
technique we employ to evaluate the superconductor Green’s
function valid on the half-space z < −a is the method of image
and its generalization.82,83

1. Proximity effect in the (100) direction

We begin by obtaining the surface Green’s function matrix
Gsurf

k (ε) relevant for proximity effect in the (100) direction.
Here, the copper oxide planes are stacked parallel to the yz
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plane and the a axis of the superconductor is oriented parallel to
the interface normal. In this case, the superconductor possesses
reflection symmetry with respect to the interface plane, hence,
one can make use of the method of image28,82,83 to express the
Green’s function valid on the half-space in terms of the infinite
bulk Green’s function. Similar to previous work,28 we have

GS
k (z,z′,ε) = G̃S

k (z − z′,ε) + G̃S
k (z + z′ + 2a,ε), (17)

where G̃S
k (z,ε) is found by Fourier transforming the infinite

bulk Nambu-Gor’kov Green’s function matrix

G̃S
k (z,ε)=

∫
dkz

2π
eikzz

(
Ĝk,kz

(ε) F̂k,kz
(ε)

F̂−k,−kz
(−ε) Ĝ−k,−kz

(−ε)

)
, (18)

where

F̂k,kz
(ε) =

(
0 Fk,kz

(ε)

−F−k,−kz
(−ε) 0

)
, (19)

Ĝk,kz
(ε) =

(
Gk,kz

(ε) 0

0 Gk,kz
(ε)

)
, (20)

and the (time-ordered) normal and Gor’kov Green’s functions
are defined as usual as

Gk,kz
(ε) = ε + ξS

k,kz

ε2 − [ξS
⊥(k,kz)]2 − �2

k,kz
+ iη

, (21)

Fk,kz
(ε) = −�k,kz

ε2 − [ξS
⊥(k,kz)]2 − �2

k,kz
+ iη

, (22)

where η � 1 is a small parameter. Here, the dispersion is given
by the form (6). For this orientation, the gap has the form

�k,kz
= k2

z − k2
y

k2
z + k2

y

�0. (23)

We now invoke the assumption that was made in the discussion
at the end of Sec. II. Within this assumption, most of the
electrons which tunnel into the ferromagnet are normal to
the interface plane (i.e., |kx | ∼ |ky | ∼ kF

F,σ � kS
F ). Assuming

also that we have strong anisotropy (i.e., J � μS), we can
then approximate ξS

⊥ ≈ h̄2k2
z /2mS − μS and �k,kz

≈ �0. Also
assuming that |ε| � �0, we find

Fk(z,ε) ≈
∫

dkz

2π

�0e
ikzz( h̄2k2

z

2mS
− μS

)2 + �2
0

≈ 1

h̄vS
F

. (24)

Here, vS
F is the Fermi velocity in the superconductor. Here, we

will drop the normal component (which can be assumed small
compared to the anomalous component). The local Green’s
function matrix then is given by

Gsurf
k (ε) ≈ 2

h̄vS
F

τ̂1(iσ̂2). (25)

2. Proximity effect in the (110) direction

We consider again the case where the copper oxide planes
are stacked parallel to the yz plane, but this time rotate the a

axis of the superconductor by 45◦. Here, the nodal direction
points parallel to the interface normal. The gap then has the
form

�k,kz
= 2kzky

k2
z + k2

y

�0. (26)

Since the superconductor breaks reflection symmetry with
respect to the interface plane, the method of image must
be generalized.82,83 We find that the following form for the
Green’s function provides the solution:

GS
k (z,z′,ε) = G̃S

k (z − z′−,ε) − G̃S
k (z + z′− + 2a,ε)

× [
∂zG̃S

k (a + z′−,ε)
]−1[

∂zG̃S
k (−a − z′−,ε)

]
,

(27)

where z′− = z′ − 0+. One can verify that the Neumann bound-
ary condition (16) is satisfied by (27). One can also see that
the real Green’s function (the first term) satisfies the equation
of motion for the Green’s function with a delta-function
source located at z = z′− where z′− < −a. The regulator
0+ > 0 makes sure that the delta-function source is located
in the appropriate half-space z < −a when z′ = −a. The
image Green’s function (the second term) on the other hand
satisfies the equation of motion with the delta-function source
appropriately located outside the relevant half-space domain.
One can also reproduce the method of image solution (17)
from (27) for the case when reflection symmetry is present.
In that case, the Nambu-Gor’kov Green’s function matrix
obeys G̃S

k (z,ε) = G̃S
k (−z,ε). Then, the derivatives must be odd,

i.e., ∂zG̃S
k (z,ε) = −∂zG̃S

k (−z,ε). Using this fact, (27) reduces
to (17) as expected.

On the surface, z = −a, the Green’s function matrix is then
given by

Gsurf
k (ε) = G̃S

k (0,ε)
{
1 − [

∂zG̃S
k (0−,ε)

]−1[
∂zG̃S

k (0+,ε)
]}

. (28)

With the same assumptions as for the (100) case, most of
the electrons which tunnel through the barrier have small
momenta in the in-plane direction. One may then approximate
the gap (26) by �k,kz

≈ 2�0kzky/(kS
F )2. We find for its normal

component

Gk(0,ε) ≈
∫

dkz

2π

(
ε + h̄2k2

z

2mS
− μS

)
ε2 − ( h̄2k2

z

2mS
− μS

)2 − 4�2
0

k2
yk

2
z

(kS
F )4 + iη

≈ 1

h̄vS
F

−iε√
ε2 − δ2

k

(
1 − δ2

k

4μ2
S

) + iη

, (29)

where δk = 2�0ky/kS
F . Due to the oddness of the kz integral,

the anomalous component Fk(0,ε) = 0. The derivatives of the
Green’s functions are given by

∂zGk(0+,ε) ≈
∫

dkz

2π

ikz

(
ε + h̄2k2

z

2mS
− μS

)
ei0+z

ε2 − ( h̄2k2
z

2mS
− μS

)2 − 4�2
0

k2
yk

2
z

(kS
F )4 + iη

≈ kS
F

h̄vS
F

≈ −∂zGk(0−,ε) (30)

and

∂zFk(0+,ε) ≈
∫

dkz

2π

ikz

( − δkkz/kS
F

)
ei0+z

ε2 − ( h̄2k2
z

2mS
− μS

)2 − 4�2
0

k2
yk

2
z

(kS
F )4 + iη

≈ − kS
F

h̄vS
F

δk√
ε2 − δ2

k

(
1 − δ2

k

4μ2
S

) + iη

≈ ∂zFk(0−,ε).

(31)
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Then, inserting the above results, we obtain

Gsurf
k (ε) = −2i

h̄vS
F

ε

ε2 + δ4
k

4μ2
S

+ iη

⎛
⎜⎜⎜⎝

ξk(ε) 0 0 −δk

0 ξk(ε) δk 0

0 δk −ξk(ε) 0

−δk 0 0 −ξk(ε)

⎞
⎟⎟⎟⎠, (32)

where ξk(ε) =
√

ε2 − δ2
k(1 − δ2

k

4μ2
S

).

3. Proximity effect in the (001) direction

We now consider the case where the interface normal is
parallel to the c axis. The gap function in this case depends
only on the in-plane momenta and reads as

�k = �0 cos(2γk − 2θ0), (33)

where θ0 is the angle between the a and the x axes. We will
assume without loss of generality that θ0 = 0. Due to the
hopping nature in the z direction, the dispersion which must
be used here is given by (7), and the Fermi surface is given by
a cylindrical shape as illustrated in Fig. 2(b). Here, reflection
symmetry with respect to the interface plane is retained and
the trivial method of image [cf. (17)] can be used. In the
strongly anisotropic limit J � μS , the normal component for
the surface Green’s function reads as

Gk(z = 0,ε) ≈
∫ π/s

−π/s

dkz

2π

ε + ξS
k

ε2 − (
ξS

k

)2 − �2
k + iη

= 1

s

ε + ξS
k

ε2 − (
ξS

k

)2 − �2
k + iη

, (34)

where the in-plane dispersion ξS
k = h̄2k2/2mS − μS . For the

anomalous component,

Fk(z = 0,ε) ≈
∫ π/s

−π/s

dkz

2π

−�k

ε2 − (
ξS

k

)2 − �2
k + iη

= 1

s

−�k

ε2 − (
ξS

k

)2 − �2
k + iη

. (35)

The surface Green’s function matrix then reads as

Gsurf
k (ε) = 2/s

ε2 − (
ξS

k

)2 − �2
k + iη

×

⎛
⎜⎜⎜⎝

ε + ξS
k 0 0 −�k

0 ε+ξS
k �k 0

0 −�k −ε+ξS
k 0

�k 0 0 −ε+ξS
k

⎞
⎟⎟⎟⎠. (36)

The appropriate surface Green’s function matrix for a given
orientation is inserted into (12). By evaluating the right-hand
side of the equation, we extract the induced triplet gap in the
ferromagnet. The results are presented and discussed in the
next section.

IV. PROXIMITY-INDUCED TRIPLET GAP

We now obtain analytical expressions for proximity-
induced gaps in the ferromagnet, and focus on the equal-spin
triplet pairing channel. In order to evaluate the effects of
the Andreev processes at the interface, we must evaluate the
right-hand side of (12). The details of the superconductor
are now fully encoded in the surface Green’s function matrix
Gsurf

k (ε), which are evaluated for different crystal orientations
in Sec. III A. We begin by writing the ferromagnet state vector
in a separable form[
�F

k (z,ε)
]T = ( φk↑(ε) φk↓(ε) φ

†
−k↑(−ε) φ

†
−k↓(−ε)) ψ (tr)(z),

(37)

where ψ (tr)(z) is the transverse envelope wave function.
We have ignored the possible spin dependence of this
transverse wave function since we assume h to be much
smaller than the Fermi energy scale in the ferromagnet, i.e.,
h � μF . A discussion on obtaining ψ (tr)(z) is provided in
the Appendix. Here, we consider a thin enough quantum well
such that most of the particles occupy the lowest transverse
subband characterized by wave function ψ

(tr)
0 (z) and energy

ε0
tr ∼ h̄2π2/2mF d2. We then introduce solution (37) into (12),

multiply it from the left by ψ
(tr)
0 (z), and integrate it over

the thickness of the ferromagnet. This leads to an effective
equation of motion for the majority-spin component of the
ferromagnet which generally has the form[

ε − ξF
k + h

]
φk↑(ε) − Eg(ε,k)φ†

−k↑(−ε) = 0. (38)

Here, ξF
k = h̄2k2/2mF − μF is the 2D dispersion for the

ferromagnet, Eg(ε,k) is the proximity-induced triplet gap,
which in general can have a frequency dependence, and we
dropped a weakly induced spin-orbit-coupling term and the
singlet pairing term.

The task now is to obtain this proximity-induced triplet
gap Eg(ε,k) for the various crystal orientations of the
superconductor. Crystal axis orientation has been known
to play an important role, for instance, in the tunneling
spectra for a normal metal-HTSC heterostructure.84–87 The
proximity-induced triplet gap in our context also shows a
strong orientation dependence. The expression for the gap is
obtained from the right-hand side of (12). In computing the
matrix, we keep the spin-orbit-coupling strength α finite only
in the spin-mixing terms.28 The reflection and transmission
matrices have been defined in (13) and the surface Green’s
functions for various crystal orientations are evaluated in
Sec. III A. For proximity effect with the (100) surface [case
(i)], the gap function has dx2−y2 symmetry and is given by
�

(100)
k,kz

= �0(k2
z − k2

y)/(k2
z + k2

y). The induced triplet gap is
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given by

E(100)
g (k) = 2ie−iγkf k0h̄

4

m2
B(1 + β2)

κ+
t κ−

t , (39)

where f = 1/h̄vS
F , β = mSκ

+/mBkS
F , and k0 = [ψ (tr)

0 (0)]2.
Here, vS

F and kS
F denote Fermi velocity and Fermi wave vector

for the superconductor, respectively. For weak spin-orbit
coupling (i.e., h̄αkF

F↑ � U0), κ+ ≈ q/ tanh(qa) where q ≈√
2mBU0/h̄

2. Thus, for a high enough barrier, i.e., qa > 1,
κ+ ≈ q. We will assume here that the barrier is large but
its scale is still smaller than the Fermi energy scale in the
superconductor, i.e., q � kS

F . In this case, β � 1 (as long as
mB ∼ mS) and (39) can be approximated as

E(100)
g (k) ≈ 2ie−iγkf k0h̄

4

m2
B

κ+
t κ−

t . (40)

We see from Eq. (40) that the proximity-induced gap has the
p-wave orbital character which arises due to the presence of
spin-orbit coupling in the barrier. Comparing this result with
the results of Ref. 28, (40) is essentially identical to the triplet
gap induced by an isotropic s-wave superconductor. This is
because for kF

F↑ � kS
F (see discussion at the end of Sec. II),

most of the electrons which tunnel have momentum directions
that are nearly perpendicular to the interface plane. For the
interface with the (100) surface, these electrons are moving
in the antinodal direction and are thus subject to the maximal
value of the gap. In this sense, it is reasonable that the induced
triplet gap here is very similar to the proximity-induced gap
with an s-wave superconductor.

We also note here that the magnitude of the induced gap
is sensitive to the actual width of the quantum well. This
sensitivity comes from its dependence on the value of the
local transverse wave function k0, which is given in (A3). We
find that for smaller widths, Andreev reflections occur multiple
times and the gap is consequently enhanced.

We now move on to the case where the interface is made
with the (110) surface. The gap function here has dxy symmetry
and is given by �

(110)
k,kz

= 2�0kzky/(k2
z + k2

y). This situation
is very different from the previous case. Here, most of the
tunneling electrons have momenta in the nodal direction of
the gap. We, therefore, find a suppression in the triplet gap
induced on the ferromagnetic side. The gap for this case reads
as (again for β � 1)

E(110)
g (ε,k) ≈ −2e−iγkf k0h̄

4

m2
B

εδky

ε2 + δ4
ky

/4μ2
S + iη

κ+
t κ−

t , (41)

where δky
= 2�0ky/kS

F . We see that for electrons tunneling
near normal to the interface (i.e., ky/kS

F � 1), the gap mag-
nitude is strongly suppressed. Furthermore, the gap symmetry
here is not of the p-wave form. Apart from the p-wave factor
e−iγk , there is an additional factor δky

. This factor is spatially
odd with respect to the y direction. This is because for the (110)
interface the gap function is odd with respect to reflections
in the y direction. This is intimately tied to the existence of
zero-bias conductance peaks mentioned earlier. This additional
factor makes the gap spatially even, but the required oddness
is retained by the linear frequency factor making this gap
odd in frequency. We have also computed the singlet gap

for this interface orientation induced in a (nonferromagnetic)
normal metal and for zero spin-orbit coupling. We find that
the induced singlet gap is also odd in frequency. However,
an even-frequency gap results for the (100) surface interface.
There may be a curious connection in this odd-frequency
expression for the gap and odd-frequency pairing which has
been discussed extensively in the context of inhomogeneous
superconductor heterostructures.30,31,34,45,88

We now move on to proximity effect in the c-axis direction
where the interface is parallel to the (001) surface. The gap
function is given by �k = �0 cos 2γk, and we may assume
without loss of generality that the antinodal direction is along
the x axis (see Fig. 1). Here, due to the hopping transport in the
z direction, we do not assume kF

F↑ � kS
F . As discussed at the

end of Sec. II, it is most natural to assume that kF
F↑ ∼ k

S,2D
F for

maximal proximity effect. For the induced triplet gap, we find

E(001)
g (ε,k) = 2ie−iγksk0

(
h̄2

mB

)2
�kκ

+
t κ−

t(
h̄2q

mB

)2 + 2s
(

h̄2q

mB

)
ξS

k − s2
[
ε2 − (

ξS
k

)2 − �2
k

] ,

(42)

where ξS
k = h̄2k2/2mS − μS . In the large barrier limit,

qs
{
ξS

k , �k, ε
}

U0
� 1, (43)

(42) can be approximated by

E(001)
g (ε,k) ≈ 2ie−iγksk0�k

κ+
t κ−

t

q2
. (44)

We can then give an estimate for the product qs in (43).
The interlayer distance between copper oxide planes can be
estimated as s ∼ λ1a0, where λ1 is a number of order 1–10,
and a0 is the square lattice constant for the copper oxide
planes. But, since we are assuming that the barrier energy is
smaller than the Fermi energy scale in the superconductor, i.e.,
q ∼ kS

F /λ2 with λ2 > 1, the product qs can be estimated as
qs ∼ λ1a0/λ2a0 = λ1/λ2 ∼ O(1). Therefore, the large barrier
limit (43) can be simplified to {ξS

k , �k, ε} � U0 � μS . From
(44), we see that the induced triplet gap does not have a
p-wave form but has an f -wave form proportional to �ke

−iγk .
We note here that the induced mini-gap (44) is directly

proportional to the gap amplitude �0 in the proximate
superconductor. This contrasts with the (100) case where �0

does not explicitly enter the final expression for the mini-gap
[cf. (40)]. Therefore, for the (001) case, a larger gap in the
proximate superconductor can directly enhance the mini-gap
in the normal region.

V. TRIPLET SUPERCONDUCTIVITY IN A
HALF-METALLIC NANOWIRE

We now consider placing a half-metallic nanowire on the
(001) surface of a HTSC and discuss the equal-spin triplet
mini-gap induced in the wire. As shown in Figs. 3(a) and 3(b),
we envisage placing the nanowire in different orientations
with respect to the underlying d-wave gap orientation. We
define the angle between the wire axis and the a axis with θ0,
and consider θ0 = 0,π/4,π/2. As shown in Fig. 3, we will
always take the x axis to be the direction along the axis of the
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Half-metallic nanowire

High-Tc Superconductor

Top View

(a)

(b)

θ0

k0
x

k
π/4
x

FIG. 3. (Color online) (a) Half-metallic nanowire placed on the
(001) surface of a HTSC. The copper oxide planes are indicated in
light yellow. (b) The nanowire placed on the superconductor with
different orientations with respect to the underlying gap symmetry.
The x axis is always defined along the axis of the wire.

wire. Due to the tunneling transport in the c-axis direction, the
physics of proximity effect here should not depend strongly
on the number of copper oxide planes considered. Therefore,
we simplify the problem by ignoring the coupling of the first
copper oxide layer to the rest of the layers below, and consider
the problem of a half-metallic nanowire deposited on a 2D
superconductor with a d-wave order parameter. In contrast to
the discussion at the end of Sec. II, we assume that the wire is
in a dilute limit where kH

F↑ � kS
F , where kS

F (kH
F↑) is the Fermi

wave vector for the superconductor (majority-spin species in
the wire).

We study the equal-spin triplet gap that is induced in
the half-metallic nanowire within the path-integral approach.
Since the only focus is on obtaining an analytic expression for
the triplet mini-gap the half-metallicity of the nanowire is not
strictly germane, so we relax the half-metallic condition and
consider a ferromagnetic nanowire. The Matsubara action for
the 1D nanowire and the 2D superconductor can be written in
the Nambu-spin basis as

S0 = 1

h̄β

∑
εn

∫
d2k

(2π )2
�̄S

k (εn)
[
GS

k (εn)
]−1

�S
k (εn)

+ 1

h̄β

∑
εn

∫
dkx

2π
�̄W

kx
(εn)

[
GW

kx
(εn)

]−1
�W

kx
(εn), (45)

where the 4 × 4 inverse Green’s function matrix for the
superconductor is given by[

GS
k (εn)

]−1 = −iεn + τ̂3ξ
S
k + (iτ̂2)(iσ̂2)�k, (46)

and εn = (2n + 1)πkBT is the usual fermionic Matsubara
frequency. The Green’s function matrix for the ferromagnetic
nanowire is given byGW

kx
(εn), but we refrain from writing down

an expression for it explicitly since it will not be important in
the rest of the discussion. For θ0 = 0, the gap function is given
by �0

k = �0(k2
x − k2

y)/(k2
x + k2

y), while for θ0 = π/4, it reads

as �
π/4
k = 2�0kxky/(k2

x + k2
y). We now define the tunneling

Hamiltonian. The tunnel matrix elements will be constructed
based on the results from Sec. III. However, unlike Sec. III,
we assume that the barrier Rashba spin-orbit coupling resides
only along the 1D boundary region between the wire and
the superconductor. Nevertheless, the presence of spin-orbit
coupling in the barrier will give rise to both spin-flip terms
and a momentum dependence in the tunneling amplitudes. The
tunneling matrix elements should reflect the same symmetry as
the 1D Rashba spin-orbit coupling present at the boundary.26

We thus take them to be proportional to the transmission matrix
given by (13) and (14):

T̂ 1D
kx

=
(

t↑↑ it↑↓ sgn(kx)

−it↑↓ sgn(kx) t↓↓

)
, (47)

and the tunneling Hamiltonian can be written as

ST = 1

h̄β

∑
εn

∫
d2k

(2π )2
�̄W

kx
(εn)

(
T̂ 1D

kx
0

0 −T̂ 1D∗
−kx

)
︸ ︷︷ ︸

=:T 1D
kx

�S
k (εn) + c.c.

(48)

The total action is then given by S = S0 + ST . At this point, we
integrate out the superconductor fields and obtain an effective
action for the wire:

Seff = 1

h̄β

∑
εn

∫
dkx

2π
�̄W

kx
(εn)

[
GW

kx
(εn)

]−1
�W

kx
(εn)

− 1

h̄β

∑
εn

∫
d2k

(2π )2
�̄W

kx
(εn)T 1D

kx
GS

k (εn)
(
T 1D

kx

)†
�W

kx
(εn).

(49)

The ky integral over the superconductor Green’s function
matrix GS

k (εn) can now be computed. We will now focus on
the matrix component in the second term of (49) which gives
the equal-spin triplet mini-gap. For θ0 = 0, the triplet pairing
component reads as

E0
g(kx) ≈ 2it↑↑t↑↓f sgn(kx), (50)

where f = 1/h̄vS
F . For θ0 = π/4, the integrand for the

triplet pairing component becomes odd in ky and so we have
E

π/4
g = 0.
We see from (50) that the orbital symmetry of the pairs

formed in the ferromagnet is determined by the tunneling
amplitudes defined in (47). The pairing occurs within this
model because electrons with momenta kx and −kx in the wire
hop into the superconductor, where they form a pair. Because
of translational symmetry in the x direction, the momentum
component kx must be conserved during hopping. On the other
hand, due to translational symmetry breaking in the y direction,
a pair of electrons with momenta kx and −kx can form a pair
inside the superconductor with many ky values, i.e., Cooper
pairs with momenta (kx,ky) and (−kx, − ky) where ky can take
on many values. The effective gap produced in the ferromagnet
is found by summing over all of these possible Cooper pairs.
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k0
xk

π/4
x

kS
F

FIG. 4. (Color online) The 2D Fermi surface of the superconduc-
tor (thick dashed line) and the d-wave gap are schematically plotted.
Red (blue) region corresponds to the positive (negative) part of the
gap. The Fermi wave vector in the superconductor is given by kS

F .
For a dilute wire (i.e., kH

F↑ � kS
F ), the momentum of a typical particle

in the wire is also plotted for θ0 = 0 and π/4 (the short arrows).
The x axis is always defined to be along the axis of the wire. Due
to translational symmetry breaking in the y direction, momentum in
that direction is not conserved during tunneling. In contrast, due to
translational symmetry in the x direction, kx must be conserved during
tunneling. The dashed (dotted) line represents regions in momentum
space which can be explored by a particle as it tunnels from the wire
into the superconductor. For θ0 = 0, regions in momentum space
which can contribute to the induced gap in the wire are colored in
green. For θ0 = π/4, they are colored in yellow.

In Fig. 4, the Fermi surface of the superconductor and the
d-wave gap are schematically plotted. Assuming that we are
at low temperatures T � �0, an electron tunneling into the
superconductor from the wire has momentum kx ∼ kH

F↑. For
θ0 = 0, the orientation and amplitude of kx with respect to
the Fermi surface of the superconductor is also plotted in
Fig. 4 and labeled as k0

x . For θ0 = π/4, it is labeled as k
π/4
x .

The dashed and dotted lines are used to represent momenta a
particle can explore as it tunnels into the superconductor from
the half-metal. The dashed line is for θ0 = 0 and the dotted line
is for θ0 = π/4. For θ0 = 0, the summation over ky involves
regions in momentum space where the gap has the same sign
(green line segments in Fig. 4). In this case, the different
regions give constructive interference and a robust gap is
obtained. On the other hand, for θ0 = π/4, the summation
over ky involves regions in momentum space where the gap
has equal but opposite sign (yellow line segments in Fig. 4).
In this case, the two regions destructively interfere and the
gap vanishes. With the same token, strong proximity effect is
expected again for θ0 = π/2, but the induced gap will have
a sign opposite to the θ0 = 0 case. For θ0 = 0 and π/2, the
induced gap in the wire has the p-wave orbital character
[see (50)] rendering the realization of Majorana fermions on
the ends of the half-metallic wire possible.25

Now let us consider the case where the half-metallic wire is
replaced by a nonferromagnetic nanowire but with spin-orbit
coupling. We now remove the spin-orbit coupling in the barrier
[i.e., t↑↓ = 0 in (47)], and the resulting induced gap in the wire

should have an s-wave orbital character. For a wire with the
θ0 = 0 orientation, the induced s-wave gap has the form

Esinglet
g (kx) = −2t↑↑t↓↓f, (51)

while the gap vanishes again for θ0 = π/4. We note that the
θ0 = 0 wire has the essential ingredients for realizing Majorana
fermions on its ends.

VI. SUMMARY AND EXPERIMENTAL IMPLICATIONS

In this work, we study the proximity effect between a
HTSC and a metallic ferromagnet. We first consider a quasi-2D
ferromagnet deposited on (100), (110), and (001) facets of the
superconductor. The induced equal-spin triplet mini-gap for
each of the geometries is analytically evaluated. We assume
that the breaking of mirror symmetry at the boundary region
between the superconductor and ferromagnet gives rise to
Rashba spin-orbit coupling in the region. In contrast to many
of the past works, we do not employ the tunneling Hamiltonian
formalism to model the interface. Instead, the barrier region
is resolved into a region of finite thickness, and the interface
with spin-orbit coupling is microscopically modeled. We also
consider a half-metallic nanowire placed on top of a (001)
facet of a HTSC. The induced triplet mini-gap in the wire
is obtained for various wire orientations with respect to the
underlying orientation of the d-wave order parameter. We
now highlight some relevant transport and proximity effect
experiments involving high-Tc cuprates, and then comment on
some experimental implications based on the findings in this
work.

The in- and out-of-plane transport anisotropy is also known
to affect the proximity effect involving HTSCs. Experimen-
tally, the proximity effect was found to be weaker in the
c-axis direction than in the ab-plane direction due to a much
shorter coherence length in the former direction.89–91 We note,
however, that the so-called giant proximity effect has been
reported both in the ab-plane92–95 and c-axis96 directions. The
proximity effects in HTSC-ferromagnet and/or HTSC-half-
metal heterostructures have also been studied experimentally.
Early studies showed long-ranged Josephson coupling for a
YBCO-SrRuO3 (itinerant ferromagnet) junction,72 although
the results may be controversial.97 More recent works showed
superconducting proximity effect in thin-film heterostructures
comprising of the half-metallic manganite La2/3Ca1/3MnO3

(LCMO) and YBCO.48,73–76 These experiments also observed
long-ranged superconducting correlations in the half-metal,
implying spin triplet pair formation in the manganite,30,31,77,78

but further verification may still be needed.98 A very recent
work has shown evidence for MacMillan-Rowell resonance
in the same LCMO-YBCO heterostructure, further substan-
tiating the evidence for long-ranged proximity effect in this
system.76

We first comment on heterostructures built from a 2D
metallic ferromagnet (or half-metal) deposited on one of the
facets of a HTSC. Here, our results are likely to be applicable
when the Fermi wave vector for the majority-spin species in
the ferromagnet is much less than the Fermi wave vector of the
superconductor (see discussion at the end of Sec. II). We find
that a robust spin triplet p-wave superconductivity is induced
in a 2D half-metal if the layer is deposited on the (100) facet
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of the HTSC [cf. (40)]. On the other hand, depositing the
same layer on the (110) facet is expected to be less favorable
from the point of view of obtaining a robust gap [cf. (41)].
This is because most of the electrons which tunnel from the
superconductor into the ferromagnet have momenta in the
nodal direction of the gap. As such, these electrons are not
subject to the gap in the superconductor and a weaker gap
is therefore induced in the ferromagnet. Furthermore, in this
orientation, the induced gap does not have a p-wave orbital
symmetry, but has an even orbital symmetry. The required
overall oddness is maintained via an odd dependence on
energy. For a half-metal layer deposited on a (001) facet, the
situation differs from the other two cases. In this case, a robust
proximity effect is expected when the Fermi wave vector in
the half-metal is approximately equal to the (2D) Fermi wave
vector for electrons in a copper oxide plane (see discussion at
the end of Sec. II). The induced gap here has an f -wave orbital
symmetry. Therefore, from the point of view of obtaining a
robust p-wave mini-gap, depositing the ferromagnetic layer
on a (100) facet of the superconductor is the most favorable
option.

The expressions for the mini-gaps obtained in Sec. IV have
been assumed to be uniform in the normal region due to strong
transverse confinement. For a clean, thin normal region, a
robust s-wave singlet mini-gap coexists with the triplet gap for
the (100) interface, and is given by E

sing
g = (2f k0h̄

4/m2
B)(κ+

t )2

(we obtain no Sz = 0 triplet mini-gap within our model).
These mini-gap expressions are essentially valid also for an
unpolarized metal since the existence of the triplet gap relies
only on the presence of the Rashba spin-orbit coupling at
the interface. However, as mentioned at the end of Sec. II,
the ferromagnetism in the normal region becomes crucial for
realizing an isolated Majorana zero mode at the boundary of
the region.

One may also consider depositing a half-metallic nanowire
on top of a HTSC. From the experimental point of view,
perhaps the most natural geometry is to place the wire on
top of a (001) facet of the superconductor. This is indeed the
orientation we consider here, and we show that inducing an
equal-spin triplet p-wave gap in the wire is indeed possible.
However, one must note that the p-wave gap will not be
induced in the wire when it is oriented along the nodal direction
of the underlying gap, i.e., the wire axis is 45◦ away from the
a axis (see Fig. 3 and discussion in Sec. V). The absence
of the gap is due to destructive interference among different
hopping processes which contribute to the proximity effect.
For the wire orientation along the a or the b axis, the different
hopping processes constructively interfere and a robust gap is
expected.

We also add that this setup used for the half-metallic
nanowire can also be applied to the case where a nonfer-
romagnetic spin-orbit-coupled nanowire is placed on top of
a (001) facet of the HTSC. This setup is more akin to
the recent semiconductor nanowire proposal for realizing
Majorana fermions.4,5,22 We may apply the above nanowire
study to the case where the Rashba spin-orbit coupling is
introduced in the nanowire instead of the barrier region. In this
case, for a wire oriented in the a-axis direction, an s-wave gap
should be induced in the wire (see discussion in Sec. V). The
gap, however, should vanish (or be strongly suppressed) when

the wire is oriented 45◦ away from the a axis. The system
considered here can serve as a starting point for the recent
Majorana proposal presented in Refs. 4 and 5. An important
experimental question in realizing Majorana fermions with
HTSC is the scattering into the nodal quasiparticle states. This
issue relates to the stability of the Majorana end states, and
will be addressed in a forthcoming publication.

While our discussion for the nanowire geometry was
restricted to a strictly one-dimensional wire, recent theoretical
works have shown that this one-dimensionality condition
is not required for realizing Majorana fermions.99–102 In
Refs. 99 and 100, it was shown that Majorana end states
can still be realized if the wire width does not greatly
exceed the superconducting coherence length and an odd
number of transverse subbands are occupied. Furthermore,
Refs. 101 and 102 studied how the stability of the topo-
logical superconducting state can be enhanced in multiband
wires.

Our findings suggest that for suitably designed hybrid
structures and with good contact established at the interfaces,
Majorana fermions can be realized at the ends of either a fer-
romagnetic or a spin-orbit-coupled semiconductor nanowire
in contact with a HTSC. If a vortex can be created in a 2D
geometry, a Majorana fermion will reside at the vortex core
while the other will reside at the outer edge. The manipulation
of this state is less well studied but still interesting.
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APPENDIX: OBTAINING THE TRANSVERSE
WAVE FUNCTION

In this Appendix, we evaluate the transverse wave function
for the particles residing in the quasi-2D ferromagnet. This
quantity is used in (37) and appears in all the expressions for
the induced mini-gap. We will assume here that the exchange
energy scale is smaller than the Fermi energy, h � μF . In
principle, the transverse wave functions for the majority and
minority species are different. For instance, in the limit where
h � μF , we expect that the transverse wave function for the
minority component will be an evanescent wave which decays
with the scale �h ≈ [2mF h/h̄2]−1/2. For h � μF , however, the
dependence can be ignored.

The transverse wave function can be approximated as a
solution to the free 1D Schödinger equation

−h̄2∂2
z

2mF

ψ (tr)(z) = εtrψ
(tr)(z), (A1)

with the boundary conditions

mB

mF

∂zψ
(tr)(0) = κ+ψ (tr)(0), ψ (tr)(d) = 0. (A2)
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The boundary value of the transverse wave function can be
obtained from (A1) and reads as

k0 = [
ψ

(tr)
0 (0)

]2 = 2

d

1

1 + ξ 2 + ξ/(ktrd)
, (A3)

where ξ = mF q/(mBktr) and ktr is a solution to the eigenvalue
problem tan (ktrd)/(ktrd) = −mB/(mF qd), which determines
the spectrum εtr = h̄2k2

tr/(2mF ). For the lowest subband
solution ψ

(tr)
0 (z), the energy is given by ε0

tr = h̄2(k0
tr)

2/(2mF ),

where k0
tr is the wave vector corresponding to the lowest energy

subband.
We note that k0 is proportional to 1/d, where d is the

width of the transverse confinement. As the width decreases,
k0 increases, signifying the fact that the particles reflect back
to the interface more frequently and, thus, have a higher
probability of residing there. This amplifies the Andreev
physics at the boundary and leads to the enhancement of the
induced mini-gap. This was briefly discussed in Sec. IV.
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