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Effect of thermal fluctuations in topological p-wave superconductors

Bela Bauer,' Roman M. Lutchyn,! Matthew B. Hastings,'?> and Matthias Troyer®
IStation Q, Microsoft Research, Santa Barbara, California 93106-6105, USA
2Duke University, Department of Physics, Durham, North Carolina 27708, USA
3Theoretische Physik, ETH Zurich, CH-8093 Zurich, Switzerland
(Received 11 June 2012; revised manuscript received 19 December 2012; published 7 January 2013)

We study the effect of thermal fluctuations on the topological stability of chiral p-wave superconductors.
We consider two models of superconductors: spinless and spinful with a focus on topological properties and
Majorana zero-energy modes. We show that proliferation of vortex-antivortex pairs above the Kosterlitz-Thouless
temperature Txr drives the transition from a thermal quantum hall insulator to a thermal metal/insulator, and
dramatically modifies the ground-state degeneracy splitting. Therefore, to utilize two-dimensional chiral p-wave
superconductors for topological quantum computing, the temperature should be much smaller than Txr. Within the
spinful chiral p-wave model, we also investigate the interplay between half-quantum vortices carrying Majorana
zero-energy modes and full-quantum vortices having trivial topological charge, and discuss topological properties
of half-quantum vortices in the background of proliferating full-quantum vortices.
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I. INTRODUCTION

Topological phases of matter have been the subject of
intense physics research in the last decade.! In addition
to interest from the fundamental physics perspective, these
states of matter can also be used for topological quantum
computation,? which is predicted to have an exceptional fault
tolerance by virtue of encoding and manipulating information
in nonlocal degrees of freedom of topologically ordered
systems.? Candidate physical systems include fractional quan-
tum hall states* and topological superconductors.>® In all
these systems the topological degrees of freedom coexist
with nontopological ones. It is important to understand their
interplay because it often determines the stability of the
topological phase.

In this article we focus on two-dimensional (2D) topo-
logical p-wave superconductors and study their robustness
against thermal fluctuations. Specifically, we investigate the
topological degeneracy in these systems in the presence of
thermally generated topological defects (vortices). Without
vortices, the stability condition for the topological super-
conducting phase is set by the quasiparticle energy gap
A [ie., T K< T.~ A (Ref. 7)]. We will show that vortex-
antivortex proliferation provides a more stringent temperature
requirement.

We first focus on a spinless model, where we model
thermal fluctuations with a classical XY model. Increasing
the temperature above the Kosterlitz-Thouless (KT) transition
point but still well below the local quasiparticle gap (Txt <
T « T.), vortices start to proliferate and eventually destroy
the topological spinless superconducting phase by driving the
system into a thermal metal or nontopological insulator phase.
The degeneracy splitting in the low-temperature (7 < Txt)
and high-temperature (7 > Txr) phases changes from an
exponential to a power-law scaling in the system size.

A spinful model allows for both half-quantum (HQV)
and full-quantum (FQV) vortices. Only the former carry
robust Majorana zero-energy modes. Thus, one can consider
the interesting situation where the superconducting phase is
disordered due to the presence of FQVs and study the splitting
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of a degeneracy due to HQVs embedded in the system at
large enough separation R. Naively, one might expect that
the splitting would not be affected by the proliferation of
FQVs since the splitting energy is governed by the local
quasiparticle gap which is only weakly affected by thermal
fluctuations. However, we show that the situation is much
more intricate and requires a deeper understanding of the
interplay between topological and non-topological degrees of
freedom.

Disorder in superconductors in symmetry class D (Ref.
8) can drive a transition from the thermal quantum hall
(TQH) phase to either a thermal metal (TM) phase or a
topologically trivial thermal insulator (TTI).>*!'3 These phases
have been primarily studied within network models!'~!3 and
very recently in certain microscopic models.'*!> We find
that all these phases appear in our microscopic model with
thermally generated disorder. A schematic phase diagram of
a spinful p-wave superconductor is shown in Fig. 1. The
TTI is an Anderson insulator with a nonzero density of
states at £ = 0. We demonstrate that it does not realize the
aforementioned scenario where the splitting is governed by the
local quasiparticle gap if the phase is disordered. Instead, the
presence of additional emergent zero-energy modes changes
the splitting of the topological degeneracy from exponential to
power law.'®

II. MODEL

We set up our numerical problem in two steps. First,
we model thermal fluctuations of the superconducting phase
using a classical XY Hamiltonian. We then make an adiabatic
approximation assuming that the vortex dynamics are slow
compared to the quasiparticle one which appears to be quite
reasonable since Abrikosov vortices are macroscopic objects
and have large effective mass.!” Under these conditions, quasi-
particles are moving in a static background of different vortex
configurations. Second, we diagonalize the Bogoliubov—de-
Gennes Hamiltonian for each disorder realization and compute
the quasiparticle energy spectrum, the density of states (DoS)
and inverse participation ratio (IPR).
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FIG. 1. Schematic phase diagram of a spinful p-wave supercon-
ductor as a function of temperature and in-plane magnetic field.
The phase diagram of the spinless case is recovered for B, = 0.
Above (By)., the superconducting order parameter vanishes in a
self-consistent calculation.

We consider a model for a p + i p superconductor on a torus
of L x L sites defined as

H = Z (t""/ci,cja/ + A;?j“/cjacjc, +H.c.)

(i,j),0,0"
—1Y oo (1)
io
We first study a spinless model by choosing 177" = —8, 4/,

A;_’j"/ = Aoxij0ijdo,0'» Where p is the chemical potential.
This corresponds to a d-vector characterizing spin-triplet
pairing to be aligned along the % axis.'® Without spin-mixing
perturbations we can equivalently study a spin-polarized
system. x;; is a chirality factor that implements p + ip pairing
and is 1 for j =i £ £, and &i for j =i £ J. 6;; is a phase
variable to be discussed below, and A is chosen to be a
constant. We will discuss the self-consistency condition for Ag
below. We solve the corresponding BdG equation numerically
to obtain eigenvalues E, and eigenstates G, v)T .

In the homogeneous case 6;; = 1, the dispersion of the
spinless Hamiltonian is

€(k) = —p — 2t[cos(k,) + cos(k,)] 2)

E(k) = \/€(k)* + Aolsin?(ky) + sin?(ky)]. 3

The dispersion has gapless points for pu = —4¢,0,4¢. The
homogeneous system is in a topological phase if Ag > 0 and
—4t < pu<0o0r0 < p < 4t.

Vortices in a spinless p-wave superconductor bind Majo-
rana zero-energy modes.’ These localized quasiparticles are
described by a self-conjugate operator y = y. The ground-
state degeneracy and Majorana quasiparticles lead to non-
Abelian braiding statistics in these many-particle systems. 32!
Depending on the parameters, vortices may carry a large
number of localized states below the bulk gap. To reduce the
required computational effort, we typically use A ~ u. For
such a choice of parameters, the coherence length x becomes
comparable to the lattice spacing and no midgap states except
the zero-energy state are present. The effect of such midgap
states has been treated in Ref. 22 and will be discussed at the
end of our paper.
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The situation becomes more subtle when many vortices are
present and localized zero-energy modes hybridize leading
to a ground-state degeneracy splitting.”>2® At large vortex
separation R >> &, Majorana modes acquire an exponen-
tially small energy splitting and the ground-state degeneracy
at small vortex density is preserved up to exponentially
small corrections §E, which for p-wave superconductors
read?327

BN 2 N ram) R
‘SE_\/;?<1+/\2> MGXP<_E>’ @

2
Y(kR) = cos(kR + a) — 7 sin(kR + «)

2\1/4

A s
with A = k&, 20 = arctan A, k = ~/2mu — A} /v%, the Fermi
velocity vp, and superconducting coherence length . Thus,
the effective low-energy model for a multi-vortex configura-
tion reads H =i Zij SE;;yiv;, where y; is a self-conjugate
(Majorana) operator representing a zero-energy state in the
Jjth vortex. Given that in realistic systems kR;; > 1, 8E;; isa
rapidly oscillating function.

‘We now study how this ground-state degeneracy is modified
by vortex-antivortex proliferation above the KT transition. We
consider a situation where thermal fluctuations affect only the
phase of the order parameter while the magnitude remains
approximately constant. Below, we will give evidence from a
self-consistent calculation that such a regime can be obtained.
The fluctuations of the phase can be modeled by a classical
XY Hamiltonian for the phases 6;;

H=-J Z cos(arg 0;; — arg6j;), (6)

where J is related to the superfluid stiffness. A key property
of this model is that below the KT temperature (Txr =
0.89J in the infinite system”®??)vortices and antivortices
are bound in pairs by a logarithmic attraction. Above the
transition, they unbind and proliferate. The Monte Carlo
sampling is performed using a standard cluster update
method.?$3°

To study the effect of thermal fluctuations on the topological
degeneracy, we introduce a fixed vortex/antivortex pair in the
system by adding a nonfluctuation phase factor to A;; and
study the energy splitting in the presence of the background
defects. The fixed vortex-antivortex pair is implemented by
introducing an additional phase factor

0;; = exp(ig;;) = exp (iqﬁf}) exp (—iqﬁg). 7)

Here ¢>i’} (4’5) are the polar angles that the bond ij has with the
vortex (antivortex) located at position A (B). When applying
this to a torus mapped to a lattice with periodic boundary
conditions, special care has to be taken that the order parameter
is smooth around the boundary.

To obtain a simpler description on the torus, we perform a
gauge transformation after which the vortices are implemented
only by a m phase shift in both the hopping and the pairing
terms across a particular line (branch cut) connecting the
two vortices. To this end, we introduce a gauge field ¢;
on the sites such that ¢;; = (¢; +¢;)/2 and perform the
gauge transformation ¢; — ¢; exp(—i¢;). For a single vortex,
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FIG. 2. (Color online) Self-consistent calculation for A for lattice
of size L = 16 and U = 5. The Kosterlitz-Thouless transition takes
place at T/J = 0.89 and leads to the first drop in the gap A,
which renormalizes it quantitatively while the system remains in
a superconducting phase. For even higher temperatures, the gap
vanishes and the superconductivity is destroyed.

the field ¢; would wind from O to 7 around the vortex,
whereas ¢;; would wind from O to 27; therefore exp(i¢;;)
is smooth, while exp(—i¢;) has a jump from —1 to 1 at a
branch cut. It follows that everywhere except along this branch
cut, exp(—i¢;)exp(—i¢p;)exp(—i¢;;) =1 and the phase is
removed from the anomalous hopping; along this branch cut,
a phase 7 remains and hopping terms with i and j on different
sides of the branch cut pick up a minus sign. For the situation
of two vortices, this can be generalized and one finds that
the branch cut turns into a line connecting the two vortices.
Applying the gauge transformation in the normal hopping,
one finds that the same phase factor across the branch cut is
introduced.

III. RESULTS

A. Self-consistent calculation

Owing to the mean-field approximation, the BdG equations
have to be augmented with self-consistency conditions, which
read

A,’j = U(C,'Cj) (8)
=U Y u}(i)v,(j)tanh (E—) 9)
- n n ] ZT ’
E,>0
Ao = (|A;j]) (spatial and MC average). (10)

We have performed self-consistent calculations for a
spinless p-wave superconductor without fixed vortices and
obtained the order parameter A = /(c;c;)? as a function of
temperature. Our results are shown in Fig. 2 for different values
of J, which controls the relative temperature scales of the
Kosterlitz-Thouless transition and the mean-field transition
where superconductivity is destroyed. Our data show that for
sufficiently small J, these two transitions are well separated
and there is an intermediate regime where the phase of the order
parameter is disordered, but its magnitude remains finite at a
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FIG. 3. (Color online) Density of states D(E) in the low-
temperature phase (7 = 0.1,0.3,0.5,0.7,0.9, from right to left) for
L = 64. The DoS is strongly suppressed for sufficiently low temper-
atures and only shows a peak close to zero energy corresponding to a
slightly renormalized value of the energy of the T = O case, and an
increase as the transition is approached. Simulations were performed
for Ag =t/2and u = —t.

value 20-30% below the zero-temperature result. Since we are
interested in qualitative results only, such a small qualitative
change is irrelevant and we do not perform a self-consistent
calculation but fix a value of A independent of temperature.

B. Low-T phase

Diagonalizing the BdG equation for each configuration of
we compute the DoS

1
D(E) = <Z S(E — En>> , (1)
n T

where (-)r indicates the Monte Carlo average at temperature
T, and N denotes the number of states. We generally average
over at least 10 000 configurations and obtain error bars with a
standard Jackknife analysis. As shown in Fig. 3, the DoS at zero
temperature shows a sharp peak at the energy splitting set by
the system size for the fixed vortices, and a continuum of states
above the bulk gap Ag. At low temperatures T < Tk, both
features are broadened but the energy splitting of the Majorana
modes remains exponential and the DoS is suppressed between
this scale and the bulk gap.

To further elucidate the fate of the ground-state degeneracy,
we study the energy splitting between fixed vortices by fitting
it to [cf. Eq. (4)]

6

ijs

SE = % exp <—;—C> [1+crcos(esx + )], (12)
where &, ¢y, ¢, ¢3, and ¢4 are fit parameters. Good fits
are obtained for low temperatures, as shown in the inset of
Fig. 4. Our results for the correlation length are shown in the
main panel of that figure. The correlation length depends only
weakly on temperature as long as the system is well below the
KT transition. At the transition, a sharp jump in the correlation
length indicates a fundamental change in the scaling behavior.
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FIG. 4. (Color online) Scaling of the energy splitting with vortex
distance in a system of size L = 64. The main panel shows the
dependence of the coherence length £ on the temperature. A KT
transition takes place at 7 ~ 0.9. The inset shows the dependence of
the splitting € on the distance with a fit to Eq. (12). Simulations were
performed for Ag = ¢/2 and u = —t.

C. High-T phase

The sharp change is related to the delocalization transition
(i.e., the appearance of a disorder-driven thermal metal phase)
characteristic to class D superconductors.”?!3!5 The TM is
characterized by delocalized states at E = 0 and a logarithmic
divergence of the DoS for low energies.'>! Furthermore, the
oscillatory behavior of the DoS in the zero-dimensional limit is
consistent with the random matrix theory predictions for class
D.} In Fig. 5, the DoS for a spinless p-wave superconductor
well above the KT transition is shown along with a fit to the
random matrix theory result® for symmetry class D

D(E) n sin(27ryEL2) (13)
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FIG. 5. (Color online) Density of states D(E) in the high-
temperature phase (T = 1.5, Ag = t/2, u = —t). Fits are to Eq. (13).
The data have been rescaled such that D(0.03) = 1.
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FIG. 6. (Color online) Top panel: Density of states for spinful
fermions. With magnetic field, the DoS has a constant value at E = 0,
whereas without magnetic field it diverges due to the thermal metal. In
the case with magnetic field, a peak appears at E = B,. Bottom panel:
Constant term obtained from a fit to I ~ a + L”. Values of a — 0
and a # 0 indicate extended and localized states, respectively.

Using a single-parameter fit, we obtain excellent agreement
with our theoretical expectations for the TM phase: (i) At
the lowest energies, the DoS follows random matrix theory
predictions. (ii) For higher energies (but still well below the
bulk gap A), alogarithmic divergence is observed. This clearly
establishes that there is a TM phase above the KT transition,
as shown along the B, = 0 line in Fig. 1.

The coefficient y above is related to the effective bandwidth
in the Majorana fermion hopping problem defined above and
should therefore be related to § E (4). Indeed, we numerically
confirm that y ~ Agexp(—Ay/C) for some constant C.
The energy scale is largely independent of temperature as
long as the temperature is sufficiently far away from the
KT transition.

D. Spinful model

When adding perturbations that break SU(2) symmetry,
HQVs still carry zero-energy modes, but FQVs do not.
For example, a Zeeman splitting generated by an in-plane
magnetic field By ) ,(i clTT ¢y —ic] (cir) will move the the
lowest excitation energy supported by an FQV to nonzero
Ey = B,.Indeed for each pair of wave functions of the spinless
model at energies + E, there are four wave functions at energies
+E £ B, for this special choice of field direction. Thus, if the
system has a band of delocalized states near E = 0, the system
will remain in a TM phase for B, smaller than the width of
this band and will transition to an insulating phase once B, is
larger than the width of this band. To determine this width, in
Fig. 6 we show the DoS and the localization properties of the
states, which we characterize by the inverse participation ratio
(IPR) I(E) defined to be the average of the fourth moment of
a wave function of energy E. The inverse participation ratio
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can be calculated in our setup using

4 4
I(E) = <Z MS(E - E,,)> L (14

)+ (0,7 .

For finite systems, the IPR must be calculated by averaging
over states in a finite range of energies centered around E by
broadening the § function.

For extended states, the dominant scaling of the IPR
is expected to be I(E) ~ L*7, where v is a nonuniversal
correction to the exponent’®> while the IPR is expected to
approach a constant for localized states, lim;_,», I(E) > 0.
Therefore, in the thermal metal phase of the spinless model
(or equivalently the spinful model at B, = 0), we expect I(E)
to scale with a power law at zero energy due to the presence
of extended states. At nonzero energies, it is expected to
approach a constant value for L — oo. In the spinful case at
finite magnetic field, we expect delocalized states, and hence
a power-law scaling of the IPR, at E ~ B,, while we expect
localized states and a saturation of the IPR for other energies
E < A.In all cases, we expect it to behave with a power law
for energies higher than the local gap A.

In the bottom panel of Fig. 6, our results obtained from the
extrapolation of the IPR are summarized. These results indicate
the presence of delocalized states at energy E ~ By and E >
A, as expected. A more detailed perspective is provided in
Fig. 7, which shows several fits for the IPR for the spinful
model with two different values of the magnetic field, B, =0
and B, = 0.25, and two different temperatures 7 = 1.5 and
T = 3. The constant terms extract from such fits for 7 =
1.5 are shown in Fig. 6. The top panel of Fig. 7 (B, =0,
T = 1.5) clearly shows the saturation of the IPR for energies
0 < E < A, whereas for very small energies, such as E =
0.03, no clear sign of saturation is observed for the accessible
system sizes. The middle panel shows the same situation for
a higher temperature, 7 = 3. In this case, the IPR appears
to follow a power law also for intermediate energies such as
E = 0.09. This is indicative of a delocalized band of finite
width centered around E = 0, with the bandwidth growing as
T is increased. Finally, the bottom panel shows the situation
with finite magnetic field and temperature close to the KT
transition, where no localization is observed around £ = B,
(i.e., the IPR scales with a power law).

We have checked that our result is robust against other
perturbations, such as an additional magnetic field B,. Since
our results are restricted to finite-size systems, it remains open
whether these states are truly extended in the thermodynamic
limit and how this can be connected to theoretical work.

E. Half-quantum vortices

We now consider the Majorana zero-energy modes carried
by half-quantum vortices (HQVs) in the trivial thermal
insulator (TTI) phase by studying the DoS with two fixed half-
quantum vortices in the background of thermally fluctuating
full quantum vortices. As shown in the inset of Fig. 8, the
HQVs give an additional contribution to the DoS at low
energies. Studying the energy splitting as a function of the
temperature, we find that the correlation length & changes
qualitatively at the KT transition, see Fig. 8. While our small
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FIG. 7. (Color online) Fit of the IPR to I ~ a 4 L* for several
parameters sets. The top panel shows B, =0, T = 1.5; the center
panel shows B, = 0, T = 3; and the bottom panel shows B, = 0.25,
T =1.5. At T = 1.5, there is clearly only a very narrow band of
delocalized states around E ~ B,. For T = 3, however, the band is
broadened such that states at almost all energies appear delocalized
for the system sizes we can access.
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FIG. 8. (Color online) Main panel: Correlation length £ for HQVs
extracted from an analogous fit to Eq. (12). The correlation length
displays a clear jump at the KT transition. Inset: DoS for a system
in the thermal insulator phase (B, =0.25, A=t, u=-2t, L =
40,48,56,64, T = 1.5) with (dashed lines) and without (solid lines)
fixed HQVs.
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FIG. 9. (Color online) Contribution of two fixed half-quantum
vortices to the density of states in the high-temperature phase
of a spinful superconductor with finite magnetic field. The main
panel shows the density of states (solid lines: with HQVs, dashed
lines: without HQVs). The scaling of the characteristic energy scale
Ejgy, defined below Eq. (15), is shown in the inset on a log-log
scale.

system sizes do not let us determine whether the splitting is
still exponential or becomes power law in this regime, the
splitting energy for HQVs clearly changes dramatically above
the KT transition.

As an alternative approach to quantify the energy scale
below which half-quantum vortices contribute, we study the
integrated difference between the density of states with,
D" (E), and without, D(E), half-quantum vortices:

E
p(E) = / dE'[D"(E) - D(E))] (15)

0

and define Ej,,, as the lowest energy such that No(Ej,,) = 1,
where N = 2L>.

Figure 9 shows the density of states with and without half-
quantum vortices (cf. inset of Fig. 8). In the inset, the scaling of
this quantity with system size is shown. A power-law scaling
is clearly observed. This is consistent with the observation
that the expectation value of the lowest energy (E)r behaves
like a power law both with and without HQVs. This shows
that the topological degeneracy is destroyed by the presence
of zero-energy states due to disorder, even though these states
are localized.
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IV. CONCLUSION

We have studied the effect of thermal fluctuations on two-
dimensional chiral p-wave superconductors in symmetry class
D. We have shown that thermally disordering the supercon-
ducting phase drastically changes the topological properties
of these systems. We can explain the underlying mechanism
as the proliferation of vortex-antivortex pairs, which carry
low-energy excitations in their cores. The hybridization of
these low-energy states gives rise to a thermal metal phase.
Exploring the full phase diagram as a function of temperature
and in-plane magnetic field, we find that in addition to the
low-temperature topological superconductor and the thermal
metal phase, a trivial thermal insulator (Anderson insulator)
phase appears. We study the fate of the topological degeneracy
in all these phases and find that it is well defined only in the
topological superconductor phase at 7 < Txr. In the thermal
insulator phase, the splitting of the degeneracy due to half-
quantum vortices changes dramatically due to vortex disorder.
This result can be anticipated considering previous analytical
evidence for a disorder-driven quantum phase transition in
one-dimensional analogues of our system.333*

Throughout this paper, we have assumed A ~ u to keep
the coherence length on the order of a few lattice sites. In
experimental systems, however, A is often much smaller than
w. In this case, one expects to find many subgap states localized
on each vortex with energy splitting &, ~ A?/u.>> While this
regime is difficult to treat numerically, we argue based on
our results for the high-7 phase in magnetic field that there
are two scenarios for the high-7" phase in the presence of
many subgap states: If the hybridization scale for Majorana
modes obeys §E < ¢, the subgap states will contribute to the
delocalized states in the thermal metal band which is therefore
enhanced. If, on the other hand, &; > § E, one would expect
several peaks in the DoS centered around the subgap state
energies &, - n similar to the peak around the magnetic field.
Here n is an integer corresponding to nth energy level in the
vortex core. In either case, thermal fluctuations destroy the
topological phase and our qualitative conclusions regarding
the disordered high-T phases remains valid.

Note added. After completing this work, we became aware
of Ref. 35, which also discussed topological superconductors
above the KT temperature, but reached a different conclusion
regarding the nature of the phase.
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