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Microscopic theory of magnetism in Sr3Ir2O7
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An intriguing idea of the spin-orbit Mott insulator has been proposed to explain magnetic insulating behavior
in various iridates. This scenario relies on the strength of the spin-orbit coupling being comparable to electronic
correlations, and it is not a priori obvious whether this picture is valid for all iridates. In particular, Sr3Ir2O7

exhibits a small charge gap and magnetic moment compared to Sr2IrO4, questioning the validity of such a
hypothesis. To understand the microscopic mechanism for magnetism in Sr3Ir2O7, we construct a tight-binding
model taking into account the full t2g orbitals, the staggered rotation of the local octahedra, and the bilayer
structure. The bands near the Fermi level are mainly characterized by the total angular momentum Jeff = 1/2,
except below the � point, supporting a reasonably strong spin-orbit coupling picture. A first-order transition to
a collinear antiferromagnet via multiorbital Hubbard interactions is found within the mean-field approximation.
The magnetic moment jump at the transition is consistently smaller than Sr2IrO4, originated from the underlying
band structure of an almost band insulator. Given the small charge gap and moment observed in Sr3Ir2O7, the
system is close to a magnetic transition. A comparison to a spin model is presented and connection to the Mott
insulator is also discussed.
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I. INTRODUCTION

The concept of Mott insulators is prevalent in strongly
correlated materials, referring to a strong electronic correlation
driven insulator that violates the conventional band theory.
Often, Mott insulators are accompanied by antiferromagnetic
ordering, but genuine Mott insulators have a robust charge
gap above the Néel temperature where the magnetic ordering
disappears. Mott insulators have been found in correlated
electronic systems with 3d-orbital materials including the high
transition temperature cuprates, and are considered seeds of
exotic phases when doped by holes or electrons. However, with
heavier atom systems, the outer shell electron wave functions
are less localized leading to weaker electronic correlation, and
thus band theory should be a good starting point to model the
behavior of electrons in such solids.

Surprisingly, Sr2IrO4, a material with heavy 5d Ir atoms,
exhibits a magnetic insulating state, despite having partially
filled 5d orbitals. One missing ingredient that is relevant
in these heavy elements is spin-orbit coupling (SOC). In
particular, when the SOC strength is comparable to that of
electronic interactions, understanding their interplay becomes
challenging. Iridates with 5d orbitals offer such a playground
to investigate their combined effects. It has been suggested
that due to the narrowing of the bandwidth induced by the
strong SOC, the effect of Hubbard interactions is amplified,
leading to an insulating state in some layered perovskite1–9

and pyrochlore10,11 iridates. This state was called a spin-orbit
Mott insulator.5,6,8 While this proposal of Mott insulator for
Sr2IrO4 itself was challenged in recent studies,12,13 the idea has
been quickly applied to other iridates including Sr3Ir2O7,14,15

its bilayer sister.
However, optical conductivity6 and transport3,16 data have

shown that the charge gap in the bilayer system is significantly
smaller than in the single layer compound. In addition, the
magnetic structures in these two systems differ; Sr3Ir2O7

displays a collinear antiferromagnetic structure with moments
aligned with the c axis14,17–20 whereas Sr2IrO4 is well known
to have a canted antiferromagnetic structure with moments in
the ab plane.5,7,8 This may be related to the crystal structure
of the two compounds. Sr3Ir2O7 crystallizes in a Bbcb space
group21 whereas Sr2IrO4 does with an I41/acd space group.1

Another major difference between these two materials is the
giant magnon gap seen in Sr3Ir2O7,14 whereas in Sr2IrO4, the
magnon gap, if it exists, is too small for detection with current
resonant inelastic x-ray scattering (RIXS) resolution.22 Based
on these differences, it is not clear whether a strong SOC
approach is valid for Sr3Ir2O7.

In this paper, we build a tight-binding Hamiltonian for the
bilayer Sr3Ir2O7 taking into account the full t2g manifold,
the local staggered rotation of the octahedra, and bilayer
coupling, to understand the validity of a strong SOC picture
and the interplay among SOC, electronic correlation, and the
crystal structure. The paper is organized as follows. In Sec. II,
using a Slater-Koster theory,23 the tight-binding parameters are
estimated. Comparing this band structure with recent angle-
resolved photoemission spectroscopy (ARPES)15,24 measure-
ments and first-principle calculations,6 we determined the
SOC strength. Indeed, the bands near the Fermi level are
mainly Jeff = 1/2, except near the � point below the Fermi
level, favoring a reasonably strong SOC limit. Due to the
nature of Jeff = 1/2 wave function, Sr3Ir2O7 bilayer material
exhibits a nearly band insulator distinctly different from
Sr2IrO4. This originates from large bilayer hopping terms
and the alternating rotations of the local octahedra. We then
study the effects of electronic interactions using a multiorbital
Hubbard model with Hund’s coupling in Sec. III. A first-order
transition is found within mean-field theory, and the jump in
the magnetization and the critical interaction strength depend
on the SOC value. The implications of our study in the context
of recent experimental results are discussed in Sec. IV.
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FIG. 1. (Color online) Tight-binding hopping parameters: the red
and blue dots represent two different Ir atom environments due to
staggered octahedra rotation. (t,t1,tz,tδ,t δ

z ) are nearest-neighbor (NN)
hopping between the same orbitals, while (t ′,t ′

z) are between different
orbitals. (tn,tzn,tnd ,t

δ
n)/(t1d ) are next NN hopping integrals between

the same/different orbitals.

II. TIGHT-BINDING MODEL

The bilayer structure is represented by a cube in Fig. 1,
with the red and blue vertices denoting the two different Ir
atoms in the bilayer structure due to IrO6 staggered rotation25

(the in-plane unit cell area is thus doubled). Taking into
account the t2g d orbital α = yz,xz,xy with momentum k,
sublattice γ = blue (B), red (R), and spin σ , the tight-binding
Hamiltonian can be written as

∑
k ψ

†
k,lH

ll′
0 ψk,l′ , with spinor

ψk,l = (dl,B,yz

k,↓ ,d
l,B,xz
k,↓ ,d

l,B,xy

k,↑ ,B ⇔ R, ↑⇔↓)T where d
l,γ,α

k,σ is
a annihilation operator at the layer l,l′ = 1,2, sublattice γ ,
and orbital α. Using this basis, the matrices Hll′

0 including
nearest-neighbor (NN) and next NN hoppings, is given by

Hll′
0 =

(
Hsoδll′ + Hll′

BB H ll′
BR

H
ll′†
BR Hsoδll′ + Hll′

RR

)
+ [time-reversed],

(1)

with Hso being the atomic spin-orbit coupling, λLi · Si . The
intralayer intrasublattice hopping (next NN) of Hll

BB = Hll
RR is

given by

Hso + Hll
BB =

⎛
⎜⎝

εyz −i λ
2 + ε1d

λ
2

i λ
2 + ε1d εxz i λ

2
λ
2 −i λ

2 εxy

⎞
⎟⎠, (2)

where εxy = 4tn cos(kx) cos(ky) + μxy , εyz = εxz =
4tnd cos kx cos ky , and ε1d = 4t1d sin kx sin ky . μxy denotes the
atomic potential difference between xy and one-dimensional
xz/yz orbitals due to tetragonal distortion. Hll

BR is NN
hopping terms between B and R sublattice sites, and is written
as

Hll
BR =

⎛
⎜⎝

ε
yz

k εrot
k 0

−εrot
k εxz

k 0

0 0 ε
xy

k

⎞
⎟⎠, (3)

where the dispersions are given by ε
yz

k = 2[t1 cos(ky) +
t δ cos(kx)], εxz

k = 2[t1 cos(kx) + t δ cos(ky)], ε
xy

k =
2t[cos(kx) + cos(ky)], andεrot

k = 2t ′[cos(kx) + cos(ky)].
For the bilayer hopping terms, it is important to notice that
a R (B) atom on one layer lies on top of a B (R) on the
other layer. Therefore, the bilayer hopping terms in H 12

0 are

given by

H 12
BR =

⎛
⎜⎝

tz t ′z 0

−t ′z tz 0

0 0 t δz

⎞
⎟⎠;

H 12
BB = H 12

RR =

⎛
⎜⎝

ε
yz

d 0 0

0 εxz
d 0

0 0 ε
xy

d

⎞
⎟⎠, (4)

where ε
yz

d = 2tzn cos ky , εxz
d = 2tzn cos kx , and

ε
xy

d = 4t δn cos kx cos ky . The hopping parameters of
(t , t1, tz, t ′, t ′z, tn, tzn, t1d , t δ , t δz , tnd , t δn) are shown in Fig. 1.

Setting t as a unit, there appears to be 11 other hopping
parameters, but they are not all independent of each other. Note
that in an ideal octahedra, μxy = 0, t = t1 = tz, tn = tzn, and
t δ = t δz based on cubic symmetry, while t ′ = t ′z = 0 without
the staggered rotation of octahedra. Due to the IrO6 rotation,
the above relations break down and how they differ depends
on the angle of the staggered rotation. Using Slater-Koster
theory23 with tddσ : tddπ : tddδ = 3/2 : −1 : 1/4,26 and taking
into account a distance factor of 0.9 for bilayer terms and of 0.2
for the next NN for the exponential suppression of hopping pa-
rameters with distance, we found (t , t1, tz, t ′, t ′z, tn, tzn, t1d , t δ , t δz ,
tnd , t δn) = (−1.0, −0.94, −0.8, 0.15, 0.36, 0.16, 0.2, 0.11, 0.27,
0.15, 0, 0) for a staggered rotation angle of ±12◦. Once the
ratio between tddσ , tddπ , and tddδ is fixed, only the SOC λ and
the tetragonal splitting μxy remain independent parameters.

The tight-binding band structure is shown in Fig. 2 for
λ/t = 3 and μxy = 0, where Jeff = 1/2 bands are in red,
while Jeff = 3/2 bands are in blue. There are several important
features to notice. First, Jeff = 1/2 and 3/2 bands below the
Fermi level are mixed along � to M = (π/2,π/2) and along
� to X = (π,0), and the bands near � are Jeff = 3/2 states,
not 1/2. Second, this band structure is similar to recently
reported ARPES data15,24 on Sr3Ir2O7 and a first-principles
calculation,6 but the bands near � have been misidentified as
Jeff = 1/2 in these works.6,15 Third, our results imply that the
SOC is large, but not enough to fully separate Jeff = 1/2 and
3/2 bands below the Fermi level, similar to theoretical studies
on Sr2IrO4.

12,27 On the other hand, the unoccupied bands above
the chemical potential are pure Jeff = 1/2. Thus the RIXS
intensity contains more Jeff = 1/2 band contribution, because
it is from a combination of unoccupied and occupied bands,
while ARPES measures only occupied states.

The M-X path is the reduced Brillouin zone (BZ) boundary
due to the staggered octahedra rotation, and the degeneracy
is protected because the in-plane potential generated by the
staggered rotation has the form of cos kx + cos ky which is
absent along this path. The energy difference in Jeff = 1/2
bands is largest at the X point, because of a constructive
combination of t , tz, t ′, and t ′z. A typical splitting of 0.8t could
be measured by the separation of the two unoccupied bands
of Jeff = 1/2 near the � point [denoted by the blue arrow in
Fig. 2(a)]. In Ref. 15, the bilayer splitting was estimated by
the separation between the two highest occupied bands at �.
However, the energy difference between either the first and
second or the first and third highest occupied band at the �

point in Fig. 2(a) is due to both the bilayer hoppings and the
hybridization between Jeff = 1/2 and 3/2 bands. This splitting
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FIG. 2. (Color online) (a) Underlying band structure of Sr3Ir2O7

along the path shown in (c). The weight of the Jeff = 1/2 state is
colored in red while the Jeff = 3/2 weight is in blue, and we see
that the relevant bands near the Fermi level is mostly composed of
Jeff = 1/2 wave function, but note that the band immediately below
the Fermi level around the � point is made of Jeff = 3/2 state. The
band structure is distinct from the single layered Sr2IrO4 system
shown in (b) mainly due to the large bilayer hoppings inherited from
the nature of the Jeff = 1/2 wave function.

further gives an estimate of our unit t ∼ 200 meV, which is
consistent with the overall bandwidth when comparing our
tight-binding spectrum with the ARPES data.15

Last, the most important result is the topology of the band
structure. It is almost a band insulator where the Fermi level
barely touches the bottom and top of unoccupied and occupied
bands near M and X, respectively. A small difference in
the hopping parameters could change particular features such
as the size of the small hole and electron pockets, but the
separation of the two unoccupied bands from the rest via a
direct gap at every k point, does not depend on the details. The
direct gap between these two unoccupied bands occurs due to
a finite t ′ or t ′z, shown as the red arrow in Fig. 2(a), indicating
the importance of staggered octahedra rotation between the
NN Ir atoms. For comparison, we present the underlying band
structure of the single layer iridates in Fig. 2(b) that shows the
large Fermi surface crossing along the M-X path. Now that
we are equipped with the proper tight-binding model, let us
move to a magnetic ordering mechanism.

III. MEAN-FIELD THEORY

A general interaction Hamiltonian in multiorbital systems
is given by

Hint = U
∑

i

niα↑niα↓ + U ′ ∑
i,α �=β

niαniβ − J
∑
iα �=β

Siα · Siβ ,

(5)

 0
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FIG. 3. (Color online) First-order phase transition is found for
bilayer (BL) Sr3Ir2O7 for λ/t = 2.5, 3, and 3.5. For comparison, the
transition for single layer (SL) Sr2IrO4 is also shown for the same
SOC strengths. We note that for the same set of parameters, the
Sr3Ir2O7 requires a higher Uc for the magnetic moment to set in, due
to its underlying almost band insulator. Note that only |m1| is shown
in the figure since |m2| and |m3| are negligible.

where the Hund’s coupling J = (U − U ′)/2 is determined
by intra- and interorbital Hubbard U and U ′ and where
we set U ′ = 0.8U .12,28 We treat these interactions at the
mean-field (MF) level in the magnetic channels to find
possible magnetic orderings. To consider the strong SOC,
we define the order parameter in the Jeff basis. To do
so, we first rewrite the above Hint in the Jeff basis, and
decouple all the terms in the magnetic channels. The mean-
field Hamiltonian is then given by HMF

int = −(U
3 + 2U ′

3 −
2J
3 )mi1 · Si1 − (U

2 + U ′
2 − J

2 )
∑

n=2,3 min · Sin. Here min =
〈Sin〉 = 1

2 〈c†inμ �σμνcinν〉, where �σ is the Pauli matrix for pseu-
dospin for n = 1,2,3 that correspond to (Jeff,J

z
eff) = (1/2, ±

1/2), (3/2, ± 3/2), and (3/2, ± 1/2), respectively. The order
parameters mi,n are then determined self-consistently. There
are 36 MF order parameters from three pseudospin states (n),
two sublattices (γ ), two layers (l), and three directions of m.

As U increases, there is a weakly first-order phase transition
from an almost band insulator into a magnetically ordered
phase as shown in Fig. 3. m1 is finite and the magnetic pattern is
given by a G-type antiferromagnetic order where the moments
in the blue and red atoms point in opposite directions. The
m2 and m3 order parameters are smaller by two orders of
magnitude, confirming that the moments are made of Jeff =
1/2 electrons. The critical interaction Uc depends on the SOC
strength. The bigger the SOC, the smaller the Uc is, similar to
the single layer case reported in Ref. 27 and confirmed here,
but opposite to three-dimensional materials, SrIrO3.29

A finite moment affects the band structure, where the
bottom of electron and top of hole bands are pushed away from
the Fermi level as shown in Fig. 4, making a charge gap visible.
For comparison, we show the band structure after magnetic
ordering for the Sr2IrO4 system also, where the bands are much
more affected by the ordering than in the Sr3Ir2O7 system.
When U > Uc ∼ 3t for λ/t = 3, there are two competing
ordering patterns—canted antiferromagnet (AF) and collinear
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FIG. 4. (Color online) Band structure with magnetic ordering for
Sr3Ir2O7 (a) and Sr2IrO4 (b) using the self-consistent solution at
U/t = 4. The charge gap from these calculation are c ∼ 0.4t for
Sr3Ir2O7 and c ∼ 0.6t for Sr2IrO4.

AF. We found that when the ratio of t ′z/tz is equal to the ratio
of t ′/t , the canted AF and collinear AF become degenerate.
From the Slater-Koster theory shown above, t ′z/tz ≈ 2.4 t ′/t ,
and a G-type collinear AF state along the c axis is favored by
the bilayer coupling. Such a state has been recently confirmed
in experiments.14,17–20

Given the small magnetic moment observed in Sr3Ir2O7,9

the system is close to a magnetic transition, where the size of
the charge gap from transport data does not support a strongly
correlated insulator.3 Indeed when the magnetic moment
disappears, the band structure is almost a band insulator where
the Fermi level barely touches the bottom/top of electron/hole
bands. However, the magnetic moment appears only in Jeff =
1/2 channel, and one may ask if this magnetic insulator is
connected to the large U -limit of spin-orbit Mott insulator.
The spin-model derived from a Jeff = 1/2 only model14 indeed
displays the same magnetic order, suggesting that the two
limits are adiabatically connected.

IV. DISCUSSION AND SUMMARY

Recently, various measurements on Sr3Ir2O7 using dif-
ferent techniques, such as ARPES,15,24 neutron scattering,18

resonant x-ray diffraction,9,17 and RIXS,14 and in addition

to transport3,16 and optical studies,6 have been reported. It
is important to ask whether the current microscopic theory
is compatible with the measured quantities, and further, if it
offers a useful starting point for future studies.

First of all, the latest ARPES data15,24 provide the dispersion
of the occupied bands. Using Slater-Koster hopping integrals
for d orbitals and considering the local distortion of the
octahedra as well as a distance factor that is exponentially
decaying with distance, we obtained the hopping parameters
up to next-nearest neighbor. Note that the only independent
parameters left were the SOC strength and the tetragonal
distortion. Comparing the computed band structures and
ARPES data, we show that the band below the Fermi energy
is indeed mainly Jeff = 1/2, except near the � point where
there is a large contribution from Jeff = 3/2. Overall, our
tight-binding band structure fits well with first-principles
calculations6 and the recent ARPES data.15,24

Furthermore, the current mean-field study shows that the
jump in the magnetic moment at the first-order transition is
weaker in the bilayer iridates than in the single layer iridates.
This is due to the band structure being nearly insulating,
advancing our understanding of the smaller magnetic moment
in bilayer iridates.9 As a consequence, the size of the charge
gap is smaller in the bilayer system compared with the single
layer one, agreeing with transport3,16 and optical conductivity6

data.
A remaining puzzle is the giant magnon gap of over 90 meV

reported in the RIXS data.14 Our microscopic model contains
terms that break the spin rotation symmetry, a source for the
magnon gap. Using a second-order perturbation theory, this
microscopic model yields a spin-wave spectrum with a magnon
gap of approximately 35 meV, assuming that t = 200 meV
and U/t = 4. The gap originates from the c-axis anisotropic
exchange terms being different from the in-plane ones. Since
the tight-binding parameters fit the ARPES data well, this
discrepancy in the size of the magnon gap implies that
the second-order perturbation assuming a large U/t limit is
not appropriate to estimate the magnon gap reported in the
RIXS spectrum, and one should add higher-order terms in
the perturbation theory. In this intermediate-U range, the spin
susceptibility using the random-phase approximation might be
a more appropriate approach than the semiclassical spin-wave
theory applied to the spin model obtained in the large-U limit.
Our microscopic model is a useful starting point for future
study of the spin susceptibility for general wave vector and
frequency.

One aspect that was neglected in the current analysis is
the dispersion along the kz direction due to the stacking of
layers along the c axis. Since the layers are well separated
by layers of strontium atoms, the kz dispersion is expected to
be small. Indeed, using the same exponential suppression of
the hopping parameters with distance, the interlayer hoppings
(i.e., between layers separated by strontium atoms) would have
a distance factor of 0.05 compared with in-plane, nearest-
neighbor hoppings. Hence, we expect a small warping of the
Fermi surface along the kz direction, but that does not change
the qualitative results such as the direct gap at every k point
for U = 0, and magnetic insulator of U above Uc, however, it
may affect the value of Uc itself. Given that the current analysis
shows that the magnetism occurs mainly with Jeff = 1/2 states,

014433-4



MICROSCOPIC THEORY OF MAGNETISM IN Sr3Ir . . . PHYSICAL REVIEW B 87, 014433 (2013)

the analysis with the full unit cell and the kz dispersion in
a Jeff = 1/2 only model will be described more fully in a
subsequent paper.

In summary, we build a tight-binding model for Sr3Ir2O7

and show that the noninteracting system is almost a band
insulator where the two unoccupied Jeff = 1/2 bands are
separated from the rest of occupied bands by a direct gap at
every k point. As the interaction strength increases, a transition
to a magnetic insulator occurs, and a finite magnetic moment
pushes the top/bottom of hole/electron bands further away
from the Fermi level making the direct band gap bigger. The
topology of the band structure remains unchanged. This is only
true for the magnetic moment pointing along the c axis, and
thus the electronic dispersion is a way to identify the direction
of the magnetic moment. This is qualitatively different from
the single layer Sr2IrO4, where the degeneracy of the bands
crossing the Fermi level along M-X is lifted turning it into
a magnetic insulator.27 The ground-state magnetic ordering

pattern is sensitive to the lattice structure, with the staggered
rotation of IrO6 octahedra between adjacent layers playing
a crucial role in both developing an almost band insulator
in the tight-binding spectrum and determining the canted AF
ordering pattern. Sr3Ir2O7 is a magnetic insulator with a small
moment,9 and thus it is close to the transition. However, the
AF ordering pattern obtained from the spin model derived in
the large U limit14 is identical to that obtained from the current
mean-field theory, implying that this small moment insulator
is likely smoothly connected to the Mott insulating regime as
U increases, where the charge gap persists above the magnetic
ordering temperature.
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