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First-principles calculation of the Gilbert damping parameter via the linear response formalism
with application to magnetic transition metals and alloys
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A method for the calculations of the Gilbert damping parameter α is presented, which, based on the
linear response formalism, has been implemented within the fully relativistic Korringa-Kohn-Rostoker band
structure method in combination with the coherent potential approximation alloy theory. To account for thermal
displacements of atoms as a scattering mechanism, an alloy-analogy model is introduced. This allows the
determination of α for various types of materials, such as elemental magnetic systems and ordered magnetic
compounds at finite temperature, as well as for disordered magnetic alloys at T = 0 K and above. The effects
of spin-orbit coupling, chemical- and temperature-induced structural disorder, are analyzed. Calculations have
been performed for the 3d transition metals bcc Fe, hcp Co, and fcc Ni; their binary alloys bcc Fe1−xCox ,
fcc Ni1−xFex , fcc Ni1−xCox and bcc Fe1−xVx ; and for 5d impurities in transition-metal alloys. All results are in
satisfying agreement with experiment.
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I. INTRODUCTION

During the past several decades dynamical magnetic prop-
erties have attracted a lot of interest due to their importance
in the development of new devices for spintronics, in par-
ticular, concerning their miniaturization and fast time-scale
applications. A distinctive property of such devices is the
magnetization relaxation rate characterizing the time scale
on which a system being deviated from the equilibrium
returns to it or how fast the device can be switched from
one state to another. In the case of dynamics of a uniform
magnetization M this property is associated with the Gilbert
damping parameter G̃(M) used first in the phenomenological
Landau-Lifshitz (LL)1 and Landau-Lifshitz-Gilbert (LLG)
theory2 describing the magnetization dynamics processes by
means of the equation

1

γ

dM
dτ

= −M × Heff + M ×
[

G̃(M)

γ 2M2
s

dM
dτ

]
, (1)

where Ms is the saturation magnetization, γ the gyromagnetic
ratio, and Heff = −∂MF [M(r)] being the effective magnetic
field. Sometimes it is more convenient to use a dimensionless
Gilbert damping parameter α given by α = G̃/(γMs) (see,
e.g., Refs. 3–5). Safonov has generalized the Landau-Lifshitz
equation by introducing a tensorial form for the Gilbert
damping parameter with the diagonal terms characterising
magnetization dissipation.6 Being introduced as a phenomeno-
logical parameter, the Gilbert damping is normally deduced
from experiment. In particular, it can be evaluated from
the resonant line width in ferromagnetic-resonance (FMR)
experiments. The difficulty of these measurements consists
in the problem that there exist several different sources for the
broadening of the line width, which have been discussed ex-
tensively in the literature.7–13 The line width that is observed in
ferromagnetic resonance spectra is usually caused by intrinsic
and extrinsic relaxation effects. The extrinsic contributions are
a consequence of spatially fluctuating magnetic properties due
to sample imperfections. Short-range fluctuations lead to two

magnon scattering while long-range fluctuations lead to an
inhomogeneous line broadening due a superposition of local
resonances.14 In order to separate the intrinsic Gilbert damping
from the extrinsic effects it is necessary to measure the
frequency and angular dependence of the ferromagnetic reso-
nance line width, e.g., two magnon scattering can be avoided
when the magnetization is aligned along the film normal11

(perpendicular configuration). Usually one finds a linear
frequency dependence with a zero frequency offset and one
can write �H (ω) = α ω

γ
+ �H (0). When such measurements

are performed over a wide frequency range, the slope of �H

as a function of frequency can be used to extract the intrinsic
Gilbert damping constant. In metallic ferromagnets Gilbert
damping is mostly caused by electron magnon scattering. In
addition, Gilbert-like damping can be caused by eddy currents.
The magnitude of the eddy current damping is proportional
to d2, where d is the sample thickness.10 In sufficiently
thin magnetic films (d � 10 nm), the eddy current damping
can be neglected.10 However, for very thin films, relaxation
mechanisms that occur at the interfaces can also increase and
even dominate the damping. The source of these relaxations
mechanisms could be spin-pumping15,16 or a modification of
the electronic structure at the interface. In the present work spin
pumping and the modified interface electronic structure are
not considered and we assume that bulklike Gilbert damping
dominates.

Much understanding of dynamical magnetic properties
could, in principle, be obtained from the simulation of these
processes, utilizing time-dependent first-principles electronic
structure calculations that in turn would pave the way
to developing and optimizing new materials for spintronic
devices. In spite of the progress in the development of
time-dependent density functional theory (TD-DFT) during
the past several decades17 that has allowed us to study
various dynamical processes in atoms and molecules from
first principles, applications to solids are rare. This is due
to a lack of universally applicable approximations to the
exchange-correlation kernel of TD-DFT for solids. Thus, at the
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moment, a tractable approach consists in the use of the classical
LLG equations and employing parameters calculated within a
microscopic approach. Note, however, that this approach can
fail dealing with ultrafast magnetization dynamics, which is
discussed, for instance, in Refs. 18 and 19 but is not considered
in the present work.

Most of the investigations on the magnetization dissipation
have been carried out within model studies. Here one has
to mention, in particular, the so-called s-d or p-d exchange
model20–23 based on a separate consideration of the localized
“magnetic” d electrons and delocalized s and p electrons me-
diating the exchange interactions between localized magnetic
moments and responsible for the magnetization dissipation
in the system. As was pointed out by Skadsem et al.,24

the dissipation process in this case can be treated as an
energy pumping out of the d-electron subsystem into the
s-electron bath followed by its dissipation via spin-flip scatter-
ing processes. This model gave a rather transparent qualitative
picture for the magnetization relaxation in diluted alloys, e.g.,
magnetic semiconductors such as GaMnAs. However, it fails
to give quantitative agreement with experiment in the case
of itinerant metallic systems (e.g., 3d-metal alloys), where
the d states are rather delocalized and strongly hybridized
with the sp electrons. As a consequence, the treatment of all
valence electrons on the same footing is needed, which leads
to the requirement of first-principles calculations of the Gilbert
damping going beyond a model-based evaluation.

Various such calculations of the Gilbert damping pa-
rameter are already present in the literature. They usually
assume a certain dissipation mechanism, like Kambersky’s
breathing Fermi surface (BFS)25,26 or more general torque-
correlation models (TCM).3,27 These models include explicitly
the spin-orbit coupling (SOC), highlighting its key role in
the magnetization dissipation processes. However, the latter
methods used for electronic structure calculations cannot
take explicitly into account disorder in the system that in
turn is responsible for the aforementioned spin-flip scattering
process. Therefore, this has to be simulated by using external
parameters characterizing the finite lifetime of the electronic
states. This weak point was recently addressed by Brataas
et al.,4 who described the Gilbert damping by means of
scattering theory. This development supplied the formal basis
for the first parameter-free investigations on disordered alloys
for which the dominant scattering mechanism is potential
scattering caused by chemical disorder.5

Theoretical investigations of the magnetization dissipa-
tion by means of first-principles calculations of the Gilbert
damping parameter already brought much understanding of
the physical mechanisms responsible for this effect. First,
key roles are played by two effects: the SOC of the atomic
species contained in the system and scattering on various
imperfections, either impurities or structural defects, phonons,
and so on. Accounting for the crucial role of scattering
processes responsible for the energy dissipation, different
types of scattering phenomena have to be considered. One
can distinguish between the ordered-compound or pure-
element systems for which electron-phonon scattering is
a very important mechanism for relaxation and disordered
alloys with dominating scattering processes resulting from
randomly distributed atoms of different types. In the first

case, the Gilbert damping behavior rather differs at low and
high temperatures. At high temperature, atomic displacements
create random potentials leading to SOC-induced spin-flip
scattering. At low temperature, where the magnetization
dissipation is well described via the breathing Fermi-surface
(BFS) mechanism,25,26 the spin-conserving electron-phonon
scattering is required to bring the electronic subsystem to the
equilibrium at every step of the magnetization rotation, i.e., to
reoccupy the modified electronic states.

In this contribution we describe a formalism for the
calculation of the Gilbert damping equivalent to that of
Brataas et al.,4 however, based on the linear responce theory28

as implemented in a fully relativistic multiple-scattering-
based Korringa-Kohn-Rostoker (KKR) formalism. It will be
demonstrated that this allows to treat elegantly and efficiently
the temperature dependence of α in pure crystals as well as
disordered alloys.

II. THEORETICAL APPROACH

To have direct access to real materials and to obtain a deeper
understanding of the origin of the properties observed experi-
mentally, the phenomenological Gilbert damping parameter
has to be treated on a microscopic level. This implies to
deal with the electrons responsible for the energy dissipation
in the magnetic dynamical processes. Thus, one equates the
corresponding expressions for the dissipation rate obtained in
the phenomenological and microscopic approaches Ėmag =
Ėdis. Although a temporal variation of the magnetization is
a required condition for the energy dissipation to occur, the
Gilbert damping parameter is defined in the limit ω → 0
(see, e.g., Ref. 24) and, therefore, can be calculated within
the adiabatic approximation.

In the phenomenological LLG theory the time-dependent
magnetization M(t) is described by Eq. (1). Accordingly, the
time derivative of the magnetic energy is given by

Ėmag = Heff · dM
dτ

= 1

γ 2
( ˙̂m)T [G̃(M) ˙̂m], (2)

where m̂ = M/Ms denotes the normalized magnetization.
To represent the Gilbert damping parameter in terms of a
microscopic theory, following Brataas et al.,4 the energy
dissipation is associated with the electronic subsystem. The
dissipation rate on the motion of the magnetization Ėdis =
〈 dĤ

dτ
〉 is determined by the underlying Hamiltonian Ĥ (τ ).

Assuming a small deviation of the magnetic moment from
the equilibrium the normalized magnetization m̂(τ ) can be
expanded around the equilibrium magnetization m̂0,

m̂(τ ) = m̂0 + u(τ ), (3)

resulting in the expression for the linearized time-dependent
Hamiltonian for the system brought out of equilibrium:

Ĥ = Ĥ0(m̂0) +
∑

μ

uμ

∂

∂uμ

Ĥ (m̂0). (4)

Due to the small deviation from the equilibrium, Ėdis can be
obtained within the linear response formalism, leading to the
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expression4

Ėdis = −πh̄
∑
ij

∑
μν

u̇μu̇ν〈ψi | ∂Ĥ

∂uμ

|ψj 〉〈ψj | ∂Ĥ

∂uν

|ψi〉

× δ(EF − Ei)δ(EF − Ej ), (5)

where EF is the Fermi energy and the sums run over all
eigenstates of the system. As Eq. (5) characterizes the rate
of the energy dissipation on transition of the system from
the tilted state to the equilibrium, it can be identified with
the corresponding phenomenological quantity in Eq. (2),
Ėmag = Ėdis. This leads to an explicit expression for the Gilbert
damping tensor G̃ or, equivalently, for the damping parameter
α = G̃/(γMs) (Ref. 4),

αμν = − h̄γ

πMs

∑
ij

∑
μν

〈ψi | ∂Ĥ

∂uμ

|ψj 〉〈ψj | ∂Ĥ

∂uν

|ψi〉

× δ(EF − Ei)δ(EF − Ej ), (6)

where the summation is running over all states at the Fermi
surface EF .

In full analogy to the problem of electric conductivity,29

the sum over eigenstates |ψi〉 may be expressed in terms
of the retarded single-particle Green’s function ImG+(EF ) =
−π

∑
i |ψi〉〈ψi |δ(EF − Ei). This leads for the parameter α to

a Kubo-Greenwood-like equation,

αμν = − h̄γ

πMs

Trace

〈
∂Ĥ

∂uμ

Im G+(EF )
∂Ĥ

∂uν

Im G+(EF )

〉
c

(7)

with 〈· · ·〉c indicating a configurational average in case of a
disordered system.

The most reliable way to account for spin-orbit coupling
as the source of Gilbert damping is to evaluate Eq. (7) using
a fully relativistic Hamiltonian within the framework of local
spin-density formalism (LSDA):30

Ĥ = cα · p + βmc2 + V (r) + βσ · m̂B(r). (8)

Here αi and β are the standard Dirac matrices, σ denotes the
vector of relativistic Pauli matrices, and p is the relativistic
momentum operator.31 The functions V (r) and σ · m̂B(r) are
the spin-averaged and spin-dependent parts, respectively, of
the LSDA potential. The spin density ms(r) as well as the
effective exchange field B(r) are assummed to be collinear
within the unit cell and aligned along the z direction in the
equilibrium [i.e., ms,0(r) = ms(r)m̂0 = ms(r)ez and B0(r) =
B(r)m̂0 = B(r)ez]. Tilting of the magnetization direction by
the angle θ according to Eq. (3), i.e., ms(r) = ms(r)m̂ =
ms(r)(sin θ cos φ, sin θ sin φ, cos θ ) and B(r) = B(r)m̂ leads
to a perturbation term in the Hamiltonian

�V (r) = βσ · (m̂ − m̂0)B(r) = βσ · uB(r), (9)

with [see Eq. (4)]

∂

∂uμ

Ĥ (m̂0) = βσμB(r). (10)

The Green’s function G+ in Eq. (7) can be obtained in
a very efficient way by using the spin-polarized relativistic
version of multiple scattering theory30 that allows us to treat

magnetic solids:

G+(r,r′,E) =
∑
��′

Zn
�(r,E) τnm

��′ (E) Zm×
�′ (r′,E)

− δnm

∑
�

[
Zn

�(r,E) J n×
�′ (r′,E)�(r ′

n − rn)

+ J n
�(r,E) Zn×

�′ (r′,E)�(rn − r ′
n)

]
. (11)

Here r,r′ refer to site n and m, respectively, where Zn
�(r,E) =

Z�(rn,E) = Z�(r − Rn,E) is a function centered at site Rn.
The four-component wave functions Zn

�(r,E) (J n
�(r,E)) are

regular (irregular) solutions to the single-site Dirac equation
labeled by the combined quantum numbers � (� = (κ,μ)),
with κ and μ being the spin-orbit and magnetic quantum
numbers.31 The superscript × indicates the left-hand side
solution of the Dirac equation. τnm

��′(E) is the so-called
scattering path operator that transfers an electronic wave
coming in at site m into a wave going out from site n with
all possible intermediate scattering events accounted for.

Using matrix notation with respect to �, this leads to the
following expression for the damping parameter:

αμμ = g

πμtot

∑
n

Trace〈T 0μ τ̃ 0n T nμ τ̃ n0〉c (12)

with the g factor 2(1 + μorb/μspin) in terms of the spin and
orbital moments, μspin and μorb, respectively, the total mag-
netic moment μtot = μspin + μorb, τ̃ 0n

��′ = 1
2i

(τ 0n
��′ − τ 0n

�′�) and
with the energy argument EF omitted. The matrix elements
in Eq. (12) are identical to those occurring in the context of
exchange coupling:32

T
nμ

�′� =
∫

d3r Zn×
�′ (r)

[
∂

∂uμ

Ĥ (m̂0)

]
Zn

�(r)

=
∫

d3r Zn×
�′ (r) [βσμBxc(r)]Zn

�(r). (13)

The expression in Eq. (12) for the Gilbert-damping param-
eter α is essentially equivalent to the one obtained within the
torque correlation method (see, e.g., Refs. 33–35). However,
in contrast to the conventional TCM, the electronic structure is
here represented using the retarded electronic Green function
giving the present approach much more flexibility. In partic-
ular, it does not rely on a phenomenological relaxation time
parameter.

The expression Eq. (12) can be applied straightforwardly
to disordered alloys. This can be done in a first step using
the average scattering path operators obtained by describing
the underlying electronic structure (for T = 0 K) on the basis
of the coherent potential approximation (CPA) alloy theory.
In the next step the configurational average in Eq. (12) is
taken following the scheme worked out by Butler29 when
dealing with the electrical conductivity at T = 0 K or
residual resistivity, respectively, of disordered alloys. This
implies in particular that so-called vertex corrections of
the type 〈TμImG+TνImG+〉c − 〈TμImG+〉c〈TνImG+〉c that
account for in-scattering processes in the language of the
Boltzmann transport formalism are properly accounted for.
In the case of Gilbert damping calculations this allows to
account for angular-momentum transfer from the precessing
magnetization to the itinerant carriers and vice versa. Without
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vertex corrections the second part is ignored, which in turn
should lead to the overestimation of Gilbert damping (see
below).

One has to note that the factor g

μtot
in Eq. (12) is separated

from the configurational average 〈· · ·〉c, although both values,
g and μtot, have to represent the average per unit cell doing the
calculations for compounds and alloys. This approximation is
rather reasonable in the case of compounds or alloys where
the properties of the elements of the system are similar (e.g.,
3d-element alloys) but can be questionable in the case of
systems containing elements exhibiting significant differences
(3d-5d, 3d-4f compounds, etc.) or in the case of nonuniform
systems as discussed by Nibarger et al.36

Thermal vibrations as a source of electron scattering can, in
principle, be accounted for by a generalization of Eqs. (7)–(13)
to finite temperatures and by including the electron-phonon
self-energy �el−ph when calculating the Green’s function
G+. Here we restrict our consideration to elastic-scattering
processes by using a quasistatic representation of the thermal
displacements of the atoms from their equilibrium positions.
The atom displaced from the equilibrium position in the
lattice results in a corresponding variation �tn = tn − tn0
of the single-site scattering matrix in the global frame of
reference.37,38 A single-site scattering matrix tn (the underline
denotes a matrix in an angular-momentum representation �)
for the atom n displaced by the value sn

ν from the equilibrium
position in the lattice can be obtained using the transformation
matrices37,39

Un
LL′(sν,E) = 4π

∑
L′′

il
′′+l−l′CLL′L′′jl′′

(
sn
ν

√
E

)
YL′′

(
ŝn
ν

)
. (14)

Here me is the electron mass, jl a spherical Bessel function,
CLL′L′′ stands for the Gaunt coefficients, and a nonrelativistic
angular-momentum representation with L = (l,ml) has been
used. Performing a Clebsch-Gordon transformation for the
transformation matrix Un

LL′ to the relativistic � representation,
the t matrix tn for the shifted atom can be obtained from the
nonshifted one tn0 from the expression

tnν = (
Un

ν

)−1
tn0U

n
ν. (15)

Treating for a discrete set of displacements sn
ν each displace-

ment as an alloy component, we introduce an alloy-analogy
model to average over the set sn

ν that is chosen to reproduce
the thermal root-mean-square average displacement

√
〈u2〉T

for a given temperature T . This in turn may be set according
to 〈u2〉T = 1

4
3h2

π2mk�D
[�(�D/T )

�D/T
+ 1

4 ] with �(�D/T ) the Debye
function, h the Planck constant, k the Boltzmann constant and
�D the Debye temperature.40 Ignoring the zero temperature
term 1/4 and assuming a frozen potential for the atoms, the
situation can be dealt with in full analogy to the treatment of
disordered alloys on the basis of the CPA (see above).

For small displacements the transformation Eq. (14) can
be expanded with respect to sn

ν (see Ref. 39), resulting in a
linear dependence on sn

ν for nonvanishing contributions with
�l = l − l′ = ±1. This leads, in particular, in the presence of
atomic displacements for transition metals (TM), for which
an angular-momentum cutoff of lmax = 2 in the KKR multiple
scattering expansion is, in general, sufficient for an undistorted
lattice, to an angular-momentum expansion up to at least

lmax = 3. However, this is correct only under the assumption
of very small displacements allowing linearization of the
transformation U with respect to the displacement amplitude
s. Thus, since the temperature increase leads to a monotonous
increase of s, the cutoff lmax should also be increased.

III. MODEL CALCULATIONS

In the following we present results of calculations for which
single parameters have artificially been manipulated in the
first-principles calculations in order to systematically reveal
their role for the Gilbert damping. This approach is used
to disentangle competing influences on the Gilbert-damping
parameter.

A. Vertex corrections

The impact of vertex corrections is shown in Fig. 1 for
two different cases: Fig. 1(a) represents the Gilbert damping
parameter for an Fe1−xVx disordered alloy as a function of con-
centration, while Fig. 1(b) gives the corresponding value for
pure Fe in the presence of temperature-induced disorder and

0 0.1 0.2 0.3 0.4 0.5
concentration xV

0

20

40

α 
×  1

03

without vertex corrections
with vertex corrections

Fe1-xVx

0 100 200 300 400 500
temperature (K)

0

5

10

15

20

25

30

α 
×  1

03

without vertex corrections
with vertex corrections

bcc Fe

(a)

(b)

FIG. 1. (Color online) The Gilbert damping parameter (a) for
bcc Fe1−xVx (T = 0 K) as a function of V concentration and (b) for
bcc-Fe as a function of temperature. Solid (open) symbols give results
with (without) the vertex corrections.
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plotted as a function of temperature. Both figures show results
calculated with and without vertex corrections allowing for
comparison. First, a significant effect of the vertex corrections
is noticeable in both cases, although the variation depends on
increasing concentration of V in the binary Fe1−xVx alloy
and the temperature in the case of pure Fe, respectively.
Some differences in their behavior can be explained by the
differences of the systems under consideration. Dealing with
temperature effects via the alloy analogy model, the system is
considered as an effective alloy consisting of a fixed number of
components characterizing different types of displacements.
Thus, in this case, the temperature effect is associated with
the increase of disorder in the system caused only by the
increase of the displacement amplitude, or, in other words,
with the strength of scattering potential experienced by the
electrons represented by tn(T ) − tn0. In the case of a random
alloy the A1−xBx variation of the scattering potential, as well
as the difference tnA − tnB , on changing the concentrations is
less pronounced for small amounts of impurities B and the
concentration dependence is determined by the amount of
scatterers of different types. However, when the concentration
of impurities increases, the potentials of the components are
also modified (this is reflected, e.g., in the shift of electronic
states with respect to the Fermi level, which will be discussed
below) and this can lead to a change of the concentration
dependence of the vertex corrections. An important issue
which one has to stress that neglect of the vertex corrections
may lead to the unphysical result, α < 0, as is shown in
Fig. 1(a). In terms of the Boltzmann transport formalism, this
is because of the neglect of the in-scattering term41 leading
obviously to an incomplete description of the energy transfer
processes. In other words, it describes only the angular-
momentum transfer from the precessing magnetic moments to
the delocalized electrons, which then decays due to spin-flip
scattering processes. As was mentioned above, this should
lead to an overestimation of the Gilbert damping analogous
to the spin-pumping mechanism in the interpretation of the
Gilbert damping by Tserkovnyak et al.21 shown in Fig. 1(a) at
high V concentrations and in Fig. 1(b). Moreover, neglecting
the in-scattering term can result in the physically incorrect
condition whereby the spin-flip dissipation rate is too small
and not balanced with the angular-momentum transfer to the
itinerant electron subsystem that in turn leads to the negative
value of α [Fig. 1(a), low V content].

B. Influence of spin-orbit coupling

As was already discussed above, the spin-orbit coupling for
the electrons of the atoms composing the system is the main
driving force for the magnetization relaxation, resulting in the
energy transfer from the magnetic subsystem to the crystal
lattice. Thus, the Gilbert damping parameter should approach
zero on decreasing the SOC in the system. Figure 2 shows the
results for Py + 15%Os, where

√
α is plotted as a function of

the scaling parameter of the spin-orbit coupling42 applied to
all atoms in the alloy. As one can see,

√
α has a nearly linear

dependence on SOC, implying that α varies in second order in
the strength of the spin-orbit coupling.43

0 0.5 1 1.5 2
SOC scaling parameter

0

0.1

0.2

0.3

0.4

 α
1/

2 

Py+15%Os

FIG. 2. (Color online) The Gilbert damping parameter for
Py + 15%Os as a function of the scaling parameter of spin-orbit
coupling applied to all atoms contained in the alloy. The red dashed
line in the plot denotes linear fit. The values 0 and 1 for the SOC
scaling parameter correspond to the scalar-relativistic Schrödinger-
like and fully relativistic Dirac equations, respectively.

IV. RESULTS AND DISCUSSIONS

A. 3d transition metals

We have mentioned above the crucial role of scattering
processes for the energy dissipation in magnetization dynamic
processes. In pure metals, in the absence of any impurity, the
electron-phonon scattering mechanism is of great importance,
although it plays a different role in the low- and high-
temperature regimes. This was demonstrated by Ebert et al.28

using the alloy analogy approach, as well as by Liu et al.44

using the “frozen thermal lattice disorder” approach. In fact,
both approaches are based on the quasistatic treatment of
thermal displacements. However, while the average is taken
by the CPA within the alloy analogy model, the latter requires
a sequence of supercell calculations for this purpose.

As a first example, bcc Fe is considered here. The calcu-
lations have been performed accounting for the temperature-
induced atomic displacements from their equilibrium posi-
tions, according to the alloy analogy scheme described in
Sec. II. This leads, even for pure systems, to a scattering
process and in this way to a finite value for α [see Fig. 3(a)].
One can see that the experimental results available in the liter-
ature differ, depending on the conditions of the experiment. In
particular, the experimental results Expt. 2 (Ref. 45) and Expt.
3 (Ref. 46) correspond to bulk while the measurements Expt.
1 (Ref. 47) have been done for an ultrathin film with 2.3-nm
thickness. The Gilbert damping constant obtained within the
present calculations for bcc Fe (circles, a = 5.44 a.u.) is com-
pared in Fig. 3(a) with the experiment exhibiting rather good
agreement at the temperature above 100 K despite a certain un-
derestimation. One can also see a rather pronounced increase
of the Gilbert damping observed in the experiment above 400
K [Fig. 3(a), Expt. 2 and Expt. 3], while the theoretical value
shows only little temperature-dependent behavior. Neverthe-
less, the increase of the Gilbert damping with temperature
becomes more pronounced when the temperature-induced
lattice expansion is taken into account, which can be seen from
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FIG. 3. (Color online) Temperature variation of the Gilbert
damping parameter of pure systems. Comparison of theoretical
results with experiment: (a) bcc-Fe: circles and squares denote the
results for ideal bcc Fe for two lattice parameters, a = 5.42 a.u. and
a = 5.45 a.u.; stars denote theoretical results for bcc Fe (a = 5.42
a.u.) with 0.1% of vacancies (Expt. 1, Ref. 47; Expt. 2, Ref. 45; Expt.
3, Ref. 46); (b) hcp-Co: circles denote theoretical results for ideal hcp
Co; stars denote results for Co with 0.03% of vacancies; and pluses
denote results for Co with 0.1% of vacancies (Expt. Ref. 45); and (c)
fcc-Ni (Expt. Ref. 45).

the results obtained for a = 5.45 a.u. (squares). Thick lines are
used to stress the temperature regions for which corresponding

lattice parameters are more appropriate. At low temperatures,
below 100 K, the calculated Gilbert damping parameter goes
up when the temperature decreases, which was observed
only in the recent experiment.47 This behavior is commonly
denoted as a transition from low-temperature conductivity-like
to high-temperature resistivity-like behavior reflecting the
dominance of intra- and interband transitions, respectively.3

The latter are related to the increase of the smearing of electron
energy bands caused by the increase of scattering events with
temperature. Note that even a small amount of impurities
reduces strongly the conductivity-like behavior,28,45 leading to
the more pronounced effect of impurity-scattering processes
due to the increase of scattering events caused by chemical
disorder. Large discrepancies between the latter experimental
data47 and theoretical results of the α calculations for bcc Fe
are related to the very small thickness of the film investigated
experimentally, which leads to an increase of spin-transfer
channels for magnetization dissipation as was discussed above.

Results for the temperature-dependent Gilbert-damping
parameter α for hcp Co are presented in Fig. 3(b) which shows,
despite certain underestimation, a reasonable agreement with
the experimental results.45 The general trends at low and high
temperatures are similar to those seen in Fe.

The results for pure Ni are given in Fig. 3(c), which show,
in full accordance with experiment, a rapid decrease of α with
increasing temperature until a regime with a weak variation of
α with T is reached.

Note that in the discussions above we have treated α as
a scalar instead of a tensorial quantity, ignoring a possible
anisotropy of the damping processes. This approximation is
reasonable for the systems considered above with the magneti-
zation directions along a three- or fourfold symmetry axis (see,
e.g., the discussions in Refs. 48 and 49). For a more detailed
discussion of this issue the anisotropy of the Gilbert damping
tensor α(M) has been investigated for bcc Fe. To demonstrate
the dependence of α on the magnetization direction M, the
calculations have been performed for M = ẑ|M| with the ẑ

axis taken along the 〈001〉, 〈111〉, and 〈011〉 crystallographic
directions. Figure 4 presents the temperature dependence of the
diagonal elements αxx and αyy . As to be expected for symmetry
reasons, αxx differs from αyy only in the case of ẑ‖〈011〉. One
can see that the anisotropic behavior of the Gilbert damping
is pronounced at low temperatures. With an increase of the
temperature the anisotropy nearly disappears, because of the
smearing of the energy bands caused by thermal vibrations.49

A similar behavior is caused by impurities with a random
distribution, as was observed, for example, for the Fe0.95Si0.05

alloy system. The calculations of the diagonal elements αxx

and αyy for two different magnetization directions along the
〈001〉 and 〈011〉 axes give αxx = αyy = 0.001 23 in the first
case and αxx = 0.001 23 and αyy = 0.001 27 in the second,
i.e., the damping is nearly isotropic.

The damping parameter α increases very rapidly with
decreasing temperature in the low-temperature regime (T �
100 K) for all pure ferromagnetic 3d metals, Fe, Co, and
Ni (see Fig. 3), leading to a significant discrepancy between
theoretical and experimental results in this regime. The
observed discrepancy between theory and experiment can
be related to the exact limit ω = 0 taken in the expression
for the Gilbert damping parameter. Korenmann and Prange13
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FIG. 4. (Color online) Temperature variation of the αxx and
αyy components of the Gilbert damping tensor of bcc Fe with
the magnetization direction taken along different crystallographic
directions: M = ẑ|M| ‖〈001〉 (circles), M‖〈011〉 (squares), M‖〈111〉
(diamonds).

have analyzed the magnon damping in the limit of small
wave vector of magnons q → 0, assuming indirect transitions
in the electron subsystem and taking into account the finite
lifetime τ of the Bloch states due to electron-phonon scattering.
They discuss the limiting cases of low and high temperatures
showing the analogy of the present problem with the problem
of extreme cases for the conductivity leading to the normal
and anomalous skin effect. On the basis of their result,
the authors point out that the expression for the Gilbert
damping obtained by Kambersky,25 with α ∼ τ , is correct in
the limit of a small lifetime (i.e., qvF τ 	 1, in their model
consideration, where q is a magnon wave vector and vF is a
Fermi velocity of the electron). In the low-temperature limit
the lifetime τ increases with decreasing T and one has to use
the expression corresponding to the “anomalous” skin effect
for the conductivity, i.e., α ∼ tan−1(qvF τ )/qvF , leading to a
saturation of α on the increase of τ .

Another possible reason for the low-temperature behav-
ior of the Gilbert damping observed experimentally can
be structural defects present in the material. To simulate
this effect, calculations have been performed for fcc Ni
and bcc Fe with 0.1% of vacancies and for hcp Co with
0.1% and 0.03% of vacancies. Figures 3(a)–3(c) shows
the corresponding temperature dependence of the Gilbert
damping parameter approaching a finite value for T → 0.
The remaining difference in the T -dependent behavior can be
attributed to the nonlinear dependence of the scattering cross
section at low temperatures as is discussed in the literature for
transport properties of metals and is not accounted for within
the present approximation.

B. 3d-transition-metal alloys

As is mentioned above, the use of the linear response
formalism within multiple scattering theory for the electronic
structure calculations allows us to perform the necessary
configurational averaging in a very efficient way avoiding
supercell calculations and to study with moderate effort the
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FIG. 5. (Color online) (a) Theoretical results for the Gilbert
damping parameter of bcc Fe1−xCox as a function of Co concen-
tration: CPA results for the bcc structure (solid circles) describing
the random alloy system, and results for the partially ordered
system (open square) for x = 0.5 [i.e., for Fe1−xCox alloy with
CsCl structure and alloy components randomly distributed in two
sublattices in the following proportions: (Fe0.9Co0.1)(Fe0.1Co0.9), the
NL-CPA results for random alloy with bcc structure (open circles)
and the NL-CPA results for the the system with short-range order
within the first-neighbor shell (open diamonds)]. The dashed line
represents the DOS at the Fermi energy, EF , as a function of Co
concentration. (b) Spin-resolved DOS for bcc Fe1−xCox for x = 0.01
(dashed line) and x = 0.5 (solid line).

influence of varying alloy composition on α. The corre-
sponding approach has been applied to the ferromagnetic 3d-
transition-metal alloy systems bcc Fe1−xCox , fcc Ni1−xFex ,
fcc Ni1−xCox , and bcc Fe1−xVx .

Figure 5(a) shows, as an example, results for the Gilbert
damping parameter α(x) calculated for bcc Fe1−xCox for T =
0 K at different conditions. Solid circles represent the results
of the single-cite CPA calculations characterizing the random
Fe-Co alloy. These results are compared to those obtained
employing the nonlocal CPA50,51 (NL-CPA) assuming no
short-range order in the system (open circles). Dealing in
both cases (CPA and NL-CPA), with completely disordered
system, the NL-CPA maps the alloy problem on that of an
impurity cluster embedded in a translational invariant effective
medium determined self-consistently, thereby accounting for
nonlocal correlations up to the range of the cluster size. The
present calculations have been performed for the smallest
NL-CPA clusters containing two sites for the bcc-based
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system, accounting for the short-range order in the first-
neighbor shell. As one can see, this results in a small decrease
of the α value in the region of concentrations around x = 0.5
(open diamonds), which is in agreement with the results
obtained for the partially ordered system (open square) for
x = 0.5. The latter have been calculated for the Fe1−xCox

alloy having CsCl structure and alloy components randomly
distributed in two sublattices in the following proportions:
(Fe0.9Co0.1)(Fe0.1Co0.9).

Because the moments and spin-orbit coupling strength do
not differ very much for Fe and Co, the variation of α(x)
should be determined in the concentrated regime essentially
by the electronic structure at the Fermi energy EF . As Fig. 5(a)
shows, there is indeed a close correlation with the density of
states n(EF ) that may be seen as a measure for the number
of available relaxation channels. The change of α(x) due to
the increase of the Co concentration is primarily determined
by an apparent shift of the Fermi energy also varying with
concentration [Fig. 5(b)]. The alloy systems considered have
the common feature whereby the concentration dependence of
α is governed by the concentration-dependent density of states
n(EF ).

A comparison of theoretical α values with the experiment
for bcc Fe1−xCox is shown in Fig. 6(a), demonstrating satisfy-
ing agreement. In the case of the Ni1−xFex and Ni1−xCox

alloys shown in Figs. 6(b) and 6(c), the Gilbert damping
decreases monotonously with the increase of the Fe and
Co concentrations, in line with experimental data. At all
concentrations the experimental results are underestimated
by theory approximately by a factor of 2. The calculated
damping parameter α(x) is found in very good agreement with
the results based on the scattering theory approach,5 demon-
strating numerically the equivalence of the two approaches.
An indispensable requirement to achieve this agreement is to
include the vertex corrections mentioned above. As suggested
by Eq. (12), the variation of α(x) with concentration x may
also reflect to some extent the variation of the average magnetic
moment of the alloy, μtot.

The peculiarity of the Fe1−xVx alloy when compared to
those discussed above is that V is a nonmagnetic metal
and has only an induced spin magnetic moment. Despite
that, the concentration dependence of the Gilbert damping
parameter at T = 0 K for small amounts of V [see Fig. 6(d)]
displays the same trend as the previously discussed alloys
shown in Figs. 6(a)–6(c). Taking into account a finite temper-
ature of T = 300 K changes α value significantly at small
V concentrations, leading to an improved agreement with
experiment for pure Fe, while it still compares poorly with
the experimental data at xV = 0.27. One should stress once
more that the concentration-dependent behavior of the Gilbert
damping parameter of the alloys discussed above differs for
an increased amount of impurities (more than 10%), as a
result of a different variation of the DOS n(EF ) caused by a
concentration-dependent modification of the electronic states
and shift of the Fermi level.

C. 5d impurities in 3d transition metals

As discussed in our recent work28 investigating the
temperature-dependent Gilbert damping parameter for pure
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FIG. 6. (Color online) The Gilbert damping parameter for
Fe1−xCox (a), Ni1−xCox (b), and Ni1−xFex (c) as a function of
Co and Fe concentration, respectively: present results within CPA
(solid circles) and experimental data by Oogane52 (solid diamonds).
(d) Results for bcc Fe1−xVx as a function of V concentration: T = 0 K
(solid circles) and T = 300 K (open circles). Squares: experimental
data.53 Open circles: theoretical results by Starikov et al.5

Ni and for Ni with Cu impurities, α is primarily determined
by the thermal displacement in the regime of small impurity
concentrations. This behavior can also be seen in Fig. 7, where
the results for Fe with 5d impurities are shown. The solid lines
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FIG. 7. (Color online) Gilbert damping parameter for bcc Fe with
1% (squares) and 5% (circles) of 5d impurities calculated for T = 0 K
(solid symbols) and T = 300 K (open sysmbols).

represent results for T = 0 K for impurity concentrations of
1% (solid squares) and 5% (solid circles). As one can see, at
smaller concentrations the maximum of the Gilbert damping
parameter occurs for Pt. With increasing impurity content, the
α parameter decreases in such a way that, at a concentration
of 5%, a maximum is observed for Os.
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FIG. 8. (Color online) Gilbert damping parameter for bcc
Fe1−xMx with M = Pt (circles) and M = Os (squares) impurities
as a function of temperature for 1% (a) and 5% (b) of the impurities.
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in Fe1−xOsx (dashed line) for x = 0.01.

The reason for this behavior lies in the rather weak
scattering efficiency of Pt atoms due to a small DOS n(EF )
of the Pt states when compared for example for Os impurities
(see Fig. 9). This results in a slow decrease of α at small Pt
concentration when the BFS mechanism is mostly responsible
for the energy dissipation. A consequence of this feature can
be seen in the temperature dependence of α (T = 300 K, open
squares): A most pronounced temperature-induced decrease of
the α value is observed for Pt and Au. When the concentration
of 5d impurities is increased up to 5%, the maximum in
α occurs for the element with the most efficient scattering
potential, resulting in spin-flip scattering processes responsible
for dissipation. The temperature effect at this concentration is
very small.

Considering in more detail the temperature-dependent
behavior of the Gilbert damping parameter for Fe with Os
and Pt impurities, shown in Fig. 8, one can also observe
the consequence of the features mentioned above. At 1%
of Pt impurities α decreases much steeper on increasing
the temperature, as compared to the case of Os impurities.
Therefore, in the first case, the role of the scattering processes
due to atomic displacements is much more pronounced than
in the second case with rather strong scattering on the
Os impurities. When the concentration increases to 5% the
dependence of α on the temperature in both cases becomes
less pronounced.

The previous results can be compared to the results for the
5d impurities in the permalloy Fe80Ni20 (Py), which has been
investigated also experimentally.54 This system shows some
difference in the concentration dependence when compared
with pure Fe, because Py is a disordered alloy with a finite value
of the α parameter. Therefore, a substitution of 5d impurities
leads to a nearly linear increase of the Gilbert damping with
impurity content, as seen in experiment.54

The total damping for 10% of 5d impurities shown in
Fig. 10(a) varies roughly parabolically over the 5d TM series.
This variation of α with the type of impurity correlates well
with the density of states n5d (EF ) [Fig. 10(b)]. Again, the trend
of the experimental data is well reproduced by the calculated
values that are, however, somewhat too low.
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FIG. 10. (Color online) (a) Gilbert damping parameter α for
Py/5d TM systems with 10% 5d TM content in comparison with
experiment;54 (b) spin magnetic moment m5d

spin and density of states
n(EF ) at the Fermi energy of the 5d component in Py/5d TM systems
with 10% 5d TM content.

V. SUMMARY

In summary, a formulation for the Gilbert damping pa-
rameter α in terms of linear response theory was derived
that led to a Kubo-Greenwood-like equation. The scheme
was implemented using the fully relativistic KKR band
structure method in combination with the CPA alloy theory.
This allows us to account for various types of scattering
mechanisms in a parameter-free way that might be due to

either chemical disorder ora temperature-induced structural
disorder (i.e., electron-phonon scattering effect). The latter has
been described by using a so-called alloy-analogy model with
the thermal displacement of atoms dealt with in a quasistatic
manner. Corresponding applications to pure metals (Fe, Co,
Ni) as well as to disordered transition-metal alloys led to
very good agreement with results based on the scattering
theory approach of Brataas et al.4 and well reproduces the
experimental results. The crucial role of vertex corrections
for the Gilbert damping is demonstrated both in the case of
chemical as well as structural disorder and the accuracy of
finite-temperature results is analyzed via test calculations.

Furthermore, the flexibility and numerical efficiency of
the present scheme was demonstrated by a study on metallic
systems on a series of binary 3d alloys (Fe1−xCox , Ni1−xFex ,
Ni1−xCox , and Fe1−xVx), 3d-5d TM systems, and permalloy-
5d TM systems. The agreement between the present theoretical
and experimental results is quite satisfying, although one has to
stress a systematic underestimation of the Gilbert damping by
the numerical results. This disagreement could be caused either
by the idealized system considered theoretically (e.g., the
boundary effects are not accounted for in present calculations)
or because of additional intrinsic dissipation mechanisms for
bulk systems which have to be taken into account. These could
be, for instance, effects of temperature-induced spin disorder.44
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