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Spin Seebeck effect in antiferromagnets and compensated ferrimagnets
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We theoretically investigate the spin Seebeck effect (SSE) in antiferromagnets and ferrimagnets, and show
that the SSE vanishes in antiferromagnets but survives in ferrimagnets even at the magnetization compensation
point despite the absence of its saturation magnetization. The nonvanishing SSE in ferrimagnets stems from two
nondegenerate magnons. We demonstrate that the magnitude of the SSE in ferrimagnets is unchanged across the
magnetization compensation point.
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I. INTRODUCTION

Much attention is now focused on the thermal effects in
spintronics, and the emergent research field of spin caloritron-
ics is rapidly developing.1,2 One of the most important issues
in spin caloritronics is the spin Seebeck effect (SSE).3 The
SSE is the mechanism by which a spin voltage is generated
from a temperature gradient in a magnetic material over a
macroscopic scale of several millimeters.4 Because the spin
voltage is a potential for electron spins to drive spin currents,
this spin voltage injects a pure spin current, i.e., a spin polarized
current which is unaccompanied by a charge current, from the
ferromagnet into an attached nonmagnetic metal. The inverse
spin Hall effect (ISHE)5,6 converts the injected spin current into
a transverse electric voltage and hence the SSE is electrically
detectable. Since its discovery in 2008, this phenomenon has
drawn much interest as a simple way of generating pure spin
currents that are needed for future spin-based technology,7,8

and the recent observation of the giant SSE in InSb9 has
attracted considerable attention.

The SSE has been observed in various ferromagnetic
materials ranging from metallic ferromagnets, Ni81Fe19

3 and
Co2MnSi,10 to semiconducting ferromagnet (Ga,Mn)As,11,12

to insulating magnets LaY2Fe5O12
13 and (Mn,Zn)Fe2O4.14

Although LaY2Fe5O12 and (Mn,Zn)Fe2O4 are classified as
ferrimagnets in a rigorous terminology, the current under-
standing of the SSE in these systems relies on a modeling as
ferromagnets15,16 because the low-energy magnetic properties
relevant to the SSE are well described by a ferromagnet
modeling owing to the large gap between the acoustic and
optical magnons. These observations have established the SSE
as a universal aspect of ferromagnets.

Besides ferromagnets, ferrimagnets and antiferromagnets
are known as prototypes of magnetic materials.17 A ferri-
magnet is an ordered spin system in which two sublattice
magnetizations point in the opposite directions, and an anti-
ferromagnet is classified as a special case of a ferrimagnet for
which both sublattices have equal saturation magnetizations.
Recently, there has been an ongoing attempt to develop an-
tiferromagnetic metal spintronics, and several experimental18

and theoretical19–21 works are already in progress. Regarding
ferrimagnets, the intriguing characteristics of ferrimagnetic
ordering are now drawing considerable attention22,23 in de-

veloping a ultrafast magnetization manipulation technique.
Therefore, it is quite natural to ask whether the SSE can be
observed in antiferromagnets and ferrimagnets.

In this paper, we address the issue of observing the SSE
in antiferromagnets and ferrimagnets. Especially, we focus on
the SSE in ferrimagnets with magnetization compensation. A
certain class of ferrimagnets are known to possess a mag-
netization compensation temperature TM (angular-momentum
compensation temperature TA), at which the two sublattice
magnetizations (spins) have the same magnitudes but opposite
directions, leading to net-zero saturation magnetization (spin
angular momentum).24–28 We show that two nondegenerate
magnons give rise to the nonvanishing SSE at TM or TA

despite the absence of net saturation magnetization or total
spin. Also, we show that for a uniaxial antiferromagnet the
SSE vanishes because the thermal spin injection by the two
degenerate magnons is perfectly compensated. Moreover, the
SSE in an easy-plane antiferromagnet is shown to disappear
because in this instance neither magnon carries spins.

When discussing the SSE, care is necessary because there
are two configurations4 in the SSE. One is the transverse
SSE,3 in which a temperature gradient is applied along a
ferromagnet/nonmagnetic-metal interface and hence the direc-
tion of the thermal spin injection into the attached nonmagnetic
metal is perpendicular to the temperature gradient. The origi-
nal SSE experiment3 reported in 2008 belongs to this category.
The other is the longitudinal SSE,29 in which a temperature
gradient is applied across the ferromagnet/nonmagnetic-metal
interface and hence the direction of the thermal spin injection
into the attached nonmagnetic metal is parallel to the tem-
perature gradient. In Ref. 15, the SSEs in both configurations
were analyzed using the linear-response approach. Then it
was shown that both types of the SSE are interpreted in terms
of the deviation of the magnon distribution function from its
local equilibrium condition, giving an imbalance between the
pumping current and backflow current. That is, irrespective
of whether the temperature gradient is along or across the
interface, the SSE can in general be explained by a thermal
nonequilibrium between magnons in the ferromagnet and a
spin accumulation in the attached nonmagnetic metal. Since
the underlying physics is the same for both phenomena in that
the spin angular momentum is thermally transferred from the
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magnons to the spin accumulation through the s-d interaction
at the interface, both (transverse and longitudinal) phenomena
can be referred to as the SSE. While the longitudinal SSE is
well defined only for insulating magnets due to the parasitic
contribution from the anomalous Nernst effect, we focus on
the longitudinal SSE in this paper because this is the simplest
configuration from an experimental viewpoint.

This paper is organized as follows. In Sec. II, we investigate
the SSE in uniaxial antiferromagnets as well as ferrimagnets
with magnetization compensation. Next, in Sec. III we discuss
the SSE in easy-plane antiferromagnets. Finally, in Sec. IV we
summarize and discuss our results.

II. SPIN SEEBECK EFFECT IN UNIAXIAL
ANTIFERROMAGNETS AND FERRIMAGNETS

As a general model of ferrimagnets and antiferromagnets,
we consider the following Hamiltonian defined on a lattice
composed of two sublattices A and B:30

HF = −JA

∑
〈i,i ′〉∈A

SA,i · SA,i ′ − JB

∑
〈j,j ′〉∈B

SB,j · SB,j ′

+ JAB

∑
〈i∈A,j∈B〉

SA,i · SB,j + δHA + δHB, (1)

where JA and JB (JAB) are the nearest-neighbor intra-
sublattice (inter-sublattice) exchange integrals, and 〈 ,〉 spec-
ifies nearest neighbor bonding (see Fig. 1). The last two
terms in Eq. (1) for sublattice L = A,B are given by δHL =∑

i∈L[g
L
μ0 H0 · SL,i − DL

2 (̂z · SL,i)2], where μ0 is the Bohr
magneton, H0 = −H0̂ z is the external magnetic field, g

L
and

DL are the effective g factor and the anisotropy constant for
sublattice L.

First, we use the spin-wave approximation to diagonalize
Eq. (1). Following standard procedures31 using the linear
Holstein-Primakoff transformation for spin operators S±

L,i =
Sx

L,i ± iSy

L,i (L = A,B), the Hamiltonian (1) is diagonalized
to be

HF = h̄
∑

q

(ω+
q α†

qαq + ω−
q β†

qβq), (2)

where ω±
q = 1

2

√
(εA

q +εB
q )2−4η2

q±(εA
q −εB

q ), and the precise forms
of εA

q , εB
q , and ηq are given by εA

q = 2z0JASA[1 − γq] +
z0JABSB + (gAμ0H0 + DASA) and εB

q = 2z0JBSB[1 − γq] +
z0JABSA + (−g

B
μ0H0 + DBSB). Here, γq = z−1

0

∑
δ eiq·δ is

defined by the sum over z0 nearest neighbors of the original

FIG. 1. (Color online) Schematic view of a hybrid structure
composed of a nonmagnetic metal (N ) and a ferrimagnet (F ) with
two sublattices A and B.
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FIG. 2. (Color online) Spin-wave spectra (H0 = 0) with q along
the [111] direction calculated from Eq. (2) using parameters for
(a) a uniaxial antiferromagnet NiO, and (b) a compensated ferri-
magnet Er3Fe5O12. The wave vector q is measured in units of the
inverse of the nearest-neighbor distance.

lattice, and ηq = JAB

√
SASB

∑
δ′ eiq·δ′

is defined by the sum
over z0 nearest neighbors of the sublattice A or B. In this
paper, we assume a cubic lattice for simplicity. In Eq. (2), the
magnon operators αq and βq are defined by the Bogoliubov
transformation32 aq = u+

q αq + u−
q β

†
q and bq = u−

q α
†
q + u+

q βq ,
where and aq and bq are the Fourier transforms of operators
ai = (2SA)−

1
2 S+

A,i and bi = (2SB)−
1
2 S−

B,i with SA = |SA| and

SB = |SB |, and u+
q

2 − u−
q

2 = 1.
In Fig. 2, the spin-wave spectra (H0 = 0) calculated from

Eq. (2) for a uniaxial antiferromagnet NiO and a compensated
ferrimagnet Er3Fe5O12 are plotted. For NiO, we use JAB =
6.3 meV (JA = JB = 0), D = 0.1 meV, and SA = SB =
0.92,28,33 whereas for Er3Fe5O12, we assign the net spin of
the rare-earth ions (the ferric ions) to SA (SB) on a model
cubic lattice, and we set JA = 0 meV, JB = 0.68 meV, JAB =
0.19 meV, SA = 4.2, SB = 2.5, gA = 1.4, gB = 2.0 DA =
3.5 × 10−3 meV, and DB = 3.0 × 10−4 meV to reproduce
the Néel temperature TNel = 556 K and the magnetization-
compensation temperature TM = 83 K.28,34 As is well known,
the two antiferromagnetic magnons are degenerate if H0 = 0,
whereas the two ferrimagnetic magnons are nondegenerate
because of the inequivalence of the two sublattices.

We discuss now the SSE in uniaxial antiferromagnets
and ferrimagnets modeled by Eq. (1). Note that a uniaxial
antiferromagnet can be modeled as a special case of a
ferrimagnet. We consider a model shown in Fig. 1, in which a
ferrimagnet (F ) and a nonmagnetic metal (N ) are interacting
weakly through the s-d exchange interaction at the interface.
We assume that the ferrimagnet F has a local temperature
TF , and the nonmagnetic metal N has a local temperature
TN . We analyze the SSE in the longitudinal configuration29

by employing the linear-response formulation of the SSE in a
ferromagnet developed in Refs. 15 and 35. The s-d interaction
at the interface is modeled by

Hsd =
∑

i,j∈F/N−interface

(
JA

sdσ i · SA,i + JB
sdσ j · SB,j

)
, (3)

where, for sublattice L = A,B, JL
sd is the s-d exchange

interaction at the F/N interface, σ i is the itinerant spin density
operator in N . The total Hamiltonian of the system, H, is then
given by

H = HF + HN + Hsd, (4)
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where HN is the single-particle Hamiltonian of the conduction
electrons in N [see, e.g., Eq. (31) in Ref. 36].

The central quantity that characterizes the SSE is the spin
current Is injected into N , because it is proportional to the
experimentally detectable electric field EISHE via ISHE:5,6

EISHE = θSHρ J s × σ , (5)

where θSH and ρ are respectively the spin-Hall angle and
the resistivity of N , and J s = (eIs/Aint)̂x with the electronic
charge e is the spin-current density across the F/N interface
having a contact area Aint. Following Refs. 15 and 35, we
calculate Is as the rate of change of the spin accumulation in
N , i.e., Is = ∑

i∈N 〈∂tσ
z
i 〉 where 〈· · · 〉 denotes the statistical

average. What is special in the present calculation is that we
need to express the s-d interaction [Eq. (3)] in terms of the αq

and βq operators [“±” branches in Eq. (2)], because these are
the magnon operators in F . Following procedures presented
in Appendix A, the spin current injected in N is expressed as

Is = − 2
√

2√
NNNFh̄

Re
∑
k,q

∫
ω

[
J +

sd (k,q)AK
k,q(ω)

+J −
sd (k,q)BK

k,q(ω)
]
, (6)

where AK (BK ) is the Keldysh component of the interface
correlation function between magnon operator αq (β†

q) and
the itinerant spin-density operator σ−

k (see Appendix A), and
we have introduced the shorthand notation

∫
ω

= ∫ ∞
−∞

dω
2π

. Here
J ±

sd (k,q) is the effective s-d interaction written in terms
of magnon operators, and the precise definition is given in
Appendix A.

We perform the perturbative approach in term of the s-d
interaction at the interface to evaluate Eq. (6). Then, the spin
current Is is given by the two diagrams shown in Fig. 3, and
accordingly, Is has two terms

Is = I+
s + I−

s , (7)

where I±
s , representing the contribution from the ± branch, is

expressed by

I±
s = ±

∑
k,q

8Nint[[|J ±
sd (k,q)|2]]

NNNFh̄2

∫
ω

ImχR(k,ω)

× ImGR
±(q,ω)

[
coth

(
h̄ω

2kBTN

)
− coth

(
h̄ω

2kBTF

)]
.

(8)

TN
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σ+σ-

β+ β
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σ+σ-

α+α
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-

FIG. 3. (Color online) Feynman diagram representing two pro-
cesses relevant to the SSE in uniaxial antiferromagnets and ferrimag-
nets. (a) Spin current injected by αq magnons (I+

s ). (b) Spin current
injected by βq magnons (I−

s ). The signs of I+
s and I−

s are opposite.
The solid and wavy lines represent magnon and itinerant spin-density
propagators, respectively.

Here Nint is the number of localized spins at the F /N interface,
NN (NF ) is the number of lattice sites in N (sublattice
sites in F ), and [[|J ±

sd (k,q)|2]] = SA(JA
sdu

±
q )2 + SB(JB

sdu
∓
q )2.

In Eq. (8), χR(k,ω) = χN/(1 + λ2
Nk2 − iωτsf) where χN ,

λN , τsf are respectively the paramagnetic susceptibility, the
spin-diffusion length, and the spin-flip relaxation time in
N , and GR

±(q,ω) = 1/(ω − ω±
q + iα±ω) where α± is the

damping parameter in F . Note that the signs of the spin
current injected by the αq magnons (I+

s ) and that by the βq

magnons (I−
s ) are opposite. Note also that in our modeling the

temperature difference TF − TN between F and N is related
to the temperature gradient ∇T across the F/N interface as
TF − TN = (a + b)C∇T , where a (b) is the lattice spacing of
F (N ) and C is a constant of order unity.

We first consider the SSE in a uniaxial antiferromagnet.
As is depicted in Fig. 2(a), the two magnons in a uniaxial
antiferromagnet are degenerate if H0 = 0. Moreover, owing
to the equivalence of sublattices A and B, the s-d exchange
interactions at the interface for these two sublattices are the
same (JA

sd = JB
sd). From these conditions we obtain |I+

s | =
|I−

s | resulting in a null SSE due to Eq. (7), i.e., Is = 0.
Thus, the SSE vanishes in a uniaxial antiferromagnet under a
negligibly small external magnetic field because of the perfect
compensation of the spin injection by the two degenerate
magnons.

We next consider the SSE in a ferrimagnet close to the
magnetization compensation point, in which the two magnons
are no longer degenerate. Figure 4 shows the temperature
dependence of the SSE signal Is(T ) calculated from Eqs. (7)
and (8) for a compensated ferrimagnet Er3Fe5O12 by using the
same parameters as in Fig. 2(b). In Fig. 4 we also plot the
saturation magnetization

Ms = μ0

⎛⎝ gA

NF

∑
i∈A

〈
Sz

A,i

〉 + gB

NF

∑
j∈B

〈
Sz

B,j

〉⎞⎠ (9)

to determine the magnetization compensation point defined by
Ms(TM) = 0. In addition, we plot the total angular momentum

Stot = 〈Sz〉 (10)
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FIG. 4. (Color online) Temperature dependence of the SSE signal
Is [red, Eq. (7)], saturation magnetization Ms [blue, Eq. (9)], and
total angular momentum Stot [green, Eq. (10)], calculated for a
compensated ferrimagnet Er3Fe5O12 using the same parameters as
in Fig. 2(b). The case for a Ms pinned by the anisotropy field is
shown; the data is normalized by its value at T/TNéel = 0.1. Inset: The
case for a Ms pinned by the external magnetic field is shown.
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to determine the angular-momentum compensation point
defined by Stot(TA) = 0. Here, Sz is the z component of the
total spin S = SA + SB , i.e.,

Sz = 1

NF

∑
i∈A

Sz
A,i + 1

NF

∑
j∈B

Sz
B,j . (11)

Clearly we see that the SSE signal is unchanged across
both compensation points, either TM ≈ 0.15TNéel or TA ≈
0.32TNéel. We performed the same calculation for several
different choices of parameters, and confirmed that the SSE is
unchanged across TM and TA.

III. SPIN SEEBECK EFFECT IN EASY-PLANE
ANTIFERROMAGNETS

In this section, we show that the SSE in easy-plane
antiferromagnets vanishes under a zero magnetic field because
neither of magnons carries spins in easy-plane antiferromag-
nets. We consider the following Hamiltonian for easy-plane
antiferromagnets:37

HeAF = J
∑

〈i∈A,j∈B〉
SA

i · SB

j

+
∑

L=A,B

∑
i∈L

[
gμ0 H0 · SL

i − D

2

(̂
z · SL

i

)2
]

, (12)

where J is the nearest-neighbor exchange integrals, H0 =
H0 x̂ is the external magnetic field, g is the g factor, and D < 0
is the anisotropy constant which selects the x-y plane as an
easy plane. Note that the external magnetic field is applied
along the x axis, and we assume SA ‖ ẑ and SB ‖ −̂z when
H0 = 0. Following Ref. 37, we introduce the linear Holstein-
Primakoff transformation by choosing the direction of each
canted sublattice spin in the ground state as a spin quantizing
axis. Performing a π/4 rotation to the operators to separate
the mixing of the two spin operators and using the Bogoliubov
transformation, Eq. (12) is diagonalized to be

HeAF = h̄
∑

q

(ε+
q ξ †

qξq + ε−
q ζ †

q ζq), (13)

where ε±
q =√

(A±
q +2B±

q )(A±
q −2B±

q ), A±
q = 2z0JS cos 2θ + gμ0H0

sin θ + |D|S ∓ z0JS(cos 2θ − 1)γq , B±
q = ∓z0JS(cos 2θ −

1)γq − |D|S/2, and γq = z−1
0

∑
δ eiq·δ is defined by the sum

over z0 nearest neighbors. In the above equation, θ is the
canted angle of the sublattice magnetization, and the magnon
operators ξq and ζq are defined by the Bogoliubov transfor-
mation 1√

2
(aq + b−q) = uqξq + vqξ

†
−q and 1√

2
(aq − b−q) =

xqζq + yqζ
†
−q , where u2

q − v2
q = 1 and x2

q − y2
q = 1 are real

coefficients, and aq and bq are the Fourier transforms of
Holstein-Primakoff operators ai and bi . As is seen in Fig. 3 of
Ref. 37, the two magnons in the easy-plane antiferromagnet
are not degenerate even when H0 = 0.

Now we discuss the SSE in an easy-plane antiferromagnet
modeled by Eq. (12) by using the same procedure as in the
previous section. As before, we consider a system in which an
easy-plane antiferromagnet (eAF ) having local temperature
TeAF and a nonmagnetic metal (N ) having local temperature
TN are interacting weakly through the s-d exchange interaction

at the interface. In the absence of an external magnetic field, a
direct calculation shows that the spin current Is injected into
N is identically zero, i.e.,

Is = 0. (14)

This is understood by investigating the z component of
the total spin S = SA + SB [Eq. (11)]. In the case of a
uniaxial antiferromagnet discussed in the previous section,
the expectation value of Sz is given by

〈Sz〉 =
(

SA − 1

NF

∑
q

〈α†
qαq〉

)
−

(
SB − 1

NF

∑
q

〈β†
qβq〉

)
,

(15)

where αq and βq are the magnon operators defined in Sec. II.
Equation (15) means that the αq magnons carries negative
spin 1 while βq magnon carries positive spin 1 in a uniaxial
antiferromagnet. On the other hand, the expectation value
of Sz in an easy-plane antiferromagnet under discussion is
calculated to be identically zero, i.e.,

〈Sz〉 = 0. (16)

Equation (16) means that magnons in an easy-plane antifer-
romagnet are similar to a linearly-polarized photon and hence
neither of magnons carries spin if H0 = 0.

In the presence of a finite external magnetic field H0 = H0 x̂
with a nonzero canted angle θ , however, the x component of S
becomes nonzero. In this situation, the spin current Is injected
into N is shown to have the polarization along the x axis, and
its magnitude is given by

Is = gμ0H0

Jz0
(I+

s + I−
s ), (17)

where

I±
s = 4J 2

sdNint

NNNFh̄2

∑
k,q

∫
ω

ImχR(k,ω)ImFR
± (q,ω)

×
[

coth

(
h̄ω

2kBTN

)
− coth

(
h̄ω

2kBTeAF

)]
. (18)

Here, FR
± (q,ω) = 1/(ω − ε±

q + iα±ω) is the retarded com-
ponent of the magnon propagator with α± is the damping
parameter. Note that the signs of I+

s and I−
s are the same, in

contrast to the case of a uniaxial antiferromagnet.
From Eqs. (14) and (17), we conclude that the SSE vanishes

in an easy-plane antiferromagnet if H0 = 0.

IV. DISCUSSION AND CONCLUSION

The main result of this paper is that the SSE in an-
tiferromagnets vanishes, whereas the SSE in ferrimagnets
persists and is insensitive to either magnetization or angular-
momentum compensation effects. The interpretation is as
follows. For the SSE to occur, the existence of the transverse
fluctuations of the total spin, i.e., Sx

tot and S
y
tot, is needed.

For a ferrimagnet at TM or TA, fluctuations of Sx,y do not
vanish even when Stot = 0 or Ms = 0. Therefore, ferrimagnetic
magnons can always generate the SSE. Only for a uniaxial
antiferromagnet, where the two magnons are degenerate, do
the SSEs from the two degenerate magnons with the opposite
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sense compensate perfectly. Note that neither magnon in an
easy-plane antiferromagnet carries spins.

Our conclusion is not modified by considering the phonon-
drag contribution to the SSE38 because, as discussed in Refs. 39
and 40, phonon drag can be taken into account by replacing
TF and TN in Eq. (8) with an effective magnon temperature
T ∗

F and effective spin accumulation temperature T ∗
N . We also

note that the magnon excitations are well defined even at TA.
The presumed divergence of the magnon damping parameter
at TA

41 does not exist when we recall the condition justifying
the expansion used in Ref. 42, where such an effect manifests
itself as an enhancement of the damping parameter without
any divergence (see Appendix B). Note that the magnitude
of magnon damping has less effect on the longitudinal SSE,
although it has a large influence on the transverse SSE.

To conclude, we have theoretically investigated the SSE
in antiferromagnets and ferrimagnets, and shown that the
SSE vanishes in antiferromagnets whereas it persists at either
the magnetization or the angular-momentum compensation
points of ferrimagnets, despite the absence of its saturation
magnetization or total spin. Because a fringing field by
saturation magnetization is suppressed at the magnetization
compensation point, this phenomenon can be useful for
constructing a pure spin current device which is free from
crosstalk of the fringing field.
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APPENDIX A: LINEAR-RESPONSE EXPRESSION OF
MAGNON-DRIVEN SPIN INJECTION IN FERRIMAGNETS

In this Appendix, we derive Eq. (6) in the main text.
We consider a system described by the Hamiltonian (4),
and calculate the spin current Is = ∑

i∈N 〈∂tσ
z
i 〉. We use the

momentum representation of σ z
i and calculate the quantity

Is = √
NN 〈∂tσ

z
k0

〉k0→0. The Heisenberg equation of motion
for σ z

k0
gives

∂tσ
z
k0

= i

h̄

∑
k,q

[√
8SAJA

sd(k,q)√
NF NN

(u+
q α−

q + u−
q β+

q )σ−
k

+
√

8SBJB
sd(k,q)√

NF NN

(u+
q β+

q + u−
q α−

q )σ−
k

]
+ H.c.,

(A1)

where σ±
k = 1

2 (σx
k ± iσy

k ), JL
sd(k,q) = ∑

i∈N/F (L) J
L
sde

i(k−q)·r i

for sublattice L = A,B, and we have used the relation
[σ z

k ,σ±
k

′ ] = ± 2√
NN

σ±
k+k′ . Taking the statistical average of the

above quantity, the spin current is calculated to be

Is(t) = − 4
√

2√
NNNFh̄

Re
∑
k,q

[J +
sd (k,q)A<

k,q(t,t)

+ J −
sd (k,q)B<

k,q(t,t)], (A2)

where J ±
sd (k,q) = JA

sd(k,q)
√

SAu±
q + JB

sd(k,q)
√

SBu±
q . Here,

A<
k,q(t,t ′) = − i〈αq(t ′)σ−

k (t)〉 and B<
k,q(t,t ′) =−i〈β†

q(t ′)σ−
k (t)〉

measure the interface correlation functions between the
magnon operators (αq and βq) and spin-density operator
σ−

k . In the steady state the interface correlations A<
k,q(t,t ′)

and B<
k,q(t,t ′) depends only on the time difference t −

t ′. Introducing the frequency representation A<
k,q(t,t ′) =∫ ∞

−∞
dω
2π
A<

k,q(ω)e−iω(t−t ′) as well as using the relationship

A< = 1
2 [AK − AR + AA], we finally obtain Eq. (6) in the

main text.

APPENDIX B: MAGNON DAMPING NEAR
COMPENSATION POINTS

In this Appendix, we calculate temperature dependence of
the magnon damping parameter close to the compensation
points and show that the magnon excitation is well defined even
at compensation points without any divergences. We begin
with two Landau-Lifshitz-Gilbert equations for sublattice L =
A,B:41

d ML

dt
= −γL ML × HL + αL

Ms,L

ML × d ML

dt
, (B1)

where ML is the sublattice magnetization with its magnitude
given by ML, HL is the effective magnetic field, γL = gLμ0/h̄

is the gyromagnetic ratio, and αL is the Gilbert damping pa-
rameter. The effective fields are given by HA = H0 + Han

A −
λMB and HB = H0 + Han

B − λMA, where H0 = H0̂ z is
external magnetic field, Han

A = H an
A ẑ and Han

B = −H an
B ẑ are

the anisotropy fields, and λMA and λMB are the inter-
sublattice exchange fields with λ = z0JAB/(gAgBμ2

0).
Because we here focus on the uniform mode, the intra-
sublattice exchange couplings λA = 2z0JA/(gAμ0)2 and λB =
2z0JB/(gBμ0)2 are discarded in Eq. (B1).

Below the magnetization compensation point we set MA =
MÂz + mA and MB = −MB ẑ + mB , such that the effective
fields can be written as

HA = (
H0 + H an

A + λMB

)̂
z − λmB, (B2)

HB = (
H0 − H an

B − λMA

)̂
z − λmA. (B3)

Introducing the representation Eeff
A = −(H0 + H an

A + λMB)
and Eeff

B = −(H0 − H an
B − λMA), and linearizing with respect

to mA and mB , the Landau-Lifshitz-Gilbert equations are
transformed to be

dmA

dt
= ẑ ×

[
γA

(
λMAmB − Eeff

A mA

) + αA

dmA

dt

]
, (B4)

dmB

dt
= −̂z ×

[
γB

(
λMB mA + Eeff

B mB

) + αB

dmB

dt

]
. (B5)

We introduce m± = mx ± imy and substitute m+
L (t) =

m+
Le−iωt into Eqs. (B4) and (B4). Then we obtain(−iω − αAω + iγAEeff

A

)
m+

A − iλγAMAm+
B = 0, (B6)(−iω + αBω + iγBEeff

B

)
m+

B + iλγBMBm+
A = 0. (B7)
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FIG. 5. (Color online) Temperature dependence of the effective
magnon damping parameter αeff [red, Eqs. (B8) and (B9)], saturation
magnetization Ms [blue, Eq. (9)], and total angular momentum
Stot [green, Eq. (10)], calculated for a compensated ferrimagnet
Gd22Fe70Co8. The data are normalized by the value at T/TNéel = 0.05.

The eigenfrequency ω is determined by the equation(
ω − iαAω − γAEeff

A

)(
ω + iαBω − γBEeff

B

)
+ λ2γAγBMAMB = 0. (B8)

Above the magnetization compensation temperature, we
set MA = −MÂz + mA and MB = MB ẑ + mB because we
consider a situation in which the saturation magnetization
is pinned by an external magnetic field. This situation can
be analyzed by rewriting Eeff

A = −(H0 − H an
A − λMB) and

Eeff
B = −(H0 + H an

A + λMA) as well as reversing the signs
of αA and αB . We numerically solve Eq. (B8) by setting

ω = ω0 + iαeffω0. (B9)

Figure 5 shows the temperature dependence of the effective
Gilbert damping parameter αeff of the lower frequency mode,
calculated for a compensated ferrimagnet Gd22Fe70Co8.41,43,44

We assign the A sublattice for Gd ions and the B sublattice for
Fe ions, and neglect Co ions for simplicity. We set SA = 3.85,
SB = 3.5, gA = 2.0, gB = 2.05, H0 = 0.04 T, H an

A = 0.0 T,
H an

B = 0.02 T, αA = 0.004, and αB = 0.0039. The saturation
magnetization Ms = μ0(gA〈Sz

A〉 + gB〈Sz
B〉) and the total spin

Stot = 〈Sz
A〉 + 〈Sz

B〉 are calculated by using the mean field
approximation for the sublattice L = A,B:〈

Sz
L

〉 = SLBSL
(XL), (B10)

where

BSL
(XL) = 2SL + 1

2SL

coth

(
2SL + 1

2SL

XL

)
− 1

2SL

coth

(
1

2SL

XL

)
is the Brillouin function,17 XA = SA

kBTF
[(2JA(2z0) +

DA)〈SA〉 − z0JAB〈SB〉 + gAμ0H0], and XB = XA(A ↔ B).
Using JAB = 0.28 meV, JA = 0 meV, and JB = 0.34 meV
to reproduce TNéel = 500 K, we obtain TM ≈ 0.079TNéel and
TA ≈ 0.091TNéel. From the figure, we see that the Gilbert
damping constant is enhanced around the angular momentum
compensation point TA, but does not show any divergences.
A small discontinuity at TM stems from the fact that the spin
quantization axis is reversed at TM because of the pinning by
the external magnetic field. The result obtained here justifies
the statement in Sec. IV that the presumed divergence of the
magnon damping parameter at TA

41 does not exist when we
recall the condition justifying the expansion used in Ref. 42,
where such an effect manifests itself as an enhancement of
the damping parameter without any divergence.
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7I. Žutić, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004).
8A. Kirihara, K. Uchida, Y. Kajiwara, M. Ishida, Y. Nakamura, T.
Manako, E. Saitoh, and S. Yorozu, Nature Mater. 11, 686 (2012).

9C. M. Jaworski, R. C. Myers, E. Johnston-Halperin, and J. P.
Heremans, Nature (London) 487, 210 (2012).

10S. Bosu, Y. Sakuraba, K. Uchida, K. Saito, T. Ota, E. Saitoh, and
K. Takanashi, Phys. Rev. B 83, 224401 (2011).

11C. M. Jaworski, J. Yang, S. Mack, D. D. Awschalom, J. P. Heremans,
and R. C. Myers, Nat. Mater. 9, 898 (2010).

12C. M. Jaworski, J. Yang, S. Mack, D. D. Awschalom, R. C. Myers,
and J. P. Heremans, Phys. Rev. Lett. 106, 186601 (2011).

13K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota,
Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa,
and E. Saitoh, Nat. Mater. 9, 894 (2010).

14K. Uchida, T. Nonaka, T. Ota, H. Nakayama, and E. Saitoh, Appl.
Phys. Lett. 97, 262504 (2010).

15H. Adachi, J. I. Ohe, S. Takahashi, and S. Maekawa, Phys. Rev. B
83, 094410 (2011).

16J. Xiao, G. E. W. Bauer, K. C. Uchida, E. Saitoh, and S. Maekawa,
Phys. Rev. B 81, 214418 (2010).

17C. Kittel, Introduction to Solid State Physics, 6th ed. (John Wiley
& Sons, New York, 1986).

18B. G. Park, J. Wunderlich, X. Martı́, V. Holý, Y. Kurosaki,
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