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Incommensurate magnetic structures of multiferroic MnWO4 studied within
the superspace formalism
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The magnetic structures of the incommensurate phases of the prototypic multiferroic MnWO4 are analyzed
using superspace symmetry formalism. This approach shows in a very simple way the relation between the
magnetic symmetry of the incommensurate phases and any tensorial property, such as ferroelectricity. The
magnetic structures have been redetermined by single-crystal neutron diffraction experiments, which revealed
fine details of the AF3 and AF2 magnetic structures. The spin modulations of the two manganese ions of the
basic unit cell are symmetry-related in the paraelectric incommensurate-magnetic structure (AF3)—they are not
forced to be collinear but they must have opposite chirality—while in the multiferroic phase (AF2) they become
symmetry independent. It is due to this symmetry break that the electric polarization arises along the b axis.
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I. INTRODUCTION

Incommensurate magnetic structures have been tradition-
ally described by the representation analysis method developed
by Bertaut.1,2 In this analysis the magnetic point group
associated with the incommensurate magnetic ordering is
generally unknown. This is a drawback, especially in the field
of multiferroics, since the tensor properties (and, therefore, the
ferroic properties) are defined by this magnetic point group.
Alternatively, superspace formalism provides this information
in a very simple way,3–7 and is therefore a valuable tool
to understand and predict the ferroic properties induced by
incommensurate magnetic order. Although this formalism
has been known for the last thirty years,8 it has remained
essentially unused in the field of magnetic structures. But the
recent extension of the refinement program JANA20069 to
magnetic diffraction now permits us to analyze quantitatively
incommensurate magnetic structures using their superspace
symmetry properties.10–12 This allows us to rationalize the
physical properties induced by the incommensurate magnetic
order in the framework of a symmetry break. In this article
we analyze the incommensurate magnetic phases of MnWO4

within this approach.

MnWO4 is a multiferroic material in which the magnetic or-
der of one of its magnetic phases induces ferroelectricity.13–15

The crystal structure of the paramagnetic phase has the
symmetry P 2/c (No. 13, b-unique axis, standard setting), and
consists of edge-sharing oxygen octahedra that make zig-zag
chains along the c axis, with the Mn atoms located inside
the distorted octahedra and the W atoms located between the
chains.16 Below the Néel temperature (≈13.5 K), the system
exhibits three successive phases with different long range
magnetic orders, the so-called AF3, AF2, and AF1. According
to Lautenschläger et al.,16 for decreasing temperatures, the
first magnetic phase, AF3, is an incommensurate magnetic
structure where the magnetic moments are oriented along a
fixed oblique direction û in the ac plane, with amplitudes that
are sinusoidally modulated. Below 12.5 K, this frozen mag-
netic wave acquires an additional phase-shifted component
along the b axis, giving rise to a helical spin structure. These
two phases have approximately the same propagation vector
k = (−0.214, 1

2 ,0.457). By further decreasing the temperature
below 6.5 K, the AF1 structure is stabilized. The AF1
magnetic structure is a commensurate collinear structure with
k = (± 1

4 , 1
2 , 1

2 ), where the moments lie in the ac plane along
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the û direction in a + + −− like configuration. Among
these magnetic phases, only the AF2 phase is multiferroic,
with an electrical polarization directed along the b mono-
clinic axis. This orientation is expected from the relation
P ∼ [rij × (Si × Sj )], and is perpendicular to the spin chirality
(Si × Sj ) and the vector rij that connects Si and Sj .17,18 The
microscopic mechanism that gives rise to the ferroelectricity in
these type of materials is still unclear. On one hand, the inverse
Dzyaloshinskii-Moriya model predicts for cycloidal magnetic
structures net atomic displacements parallel to rij × (Si × Sj )
induced by the exchange striction.17 Unfortunately, these
displacements are expected to be too small19 to be easily
resolved, since in general macroscopic ferroelectricity is the
only evidence for their existence. On the other hand, the spin
current model proposed by Katusura, Nagaosa, and Balatsky18

suggests that changes in the electronic density break the
inversion symmetry of the charge distribution and are sufficient
to explain the ferroelectricity.

The magnetic structures of multiferroic MnWO4 and the
magnetic and electric effects that are related to the observed
phase transitions have been previously analyzed by using
the representation analysis method16 and the Landau theory
of phase transitions.20,21 In this work, we determine the
incommensurate structures of MnWO4, ascribing to each
phase its corresponding superspace group. We show how the
use of superspace formalism provides, in a simple manner, not
only the symmetry of the magnetic structures and their intrinsic
restrictions, but also information about the tensor properties
of each incommensurate phase, such as ferroelectricity or
magnetostructural properties.

II. EXPERIMENTS

Single crystals of MnWO4 were grown by a floating zone
method using light heating. The crystal growth was performed
in an air atmosphere at a linear speed of 8–10 mm/h with a
counter-rotation of crystal and feed rod ∼20 min−1. Finally,
the crystal was annealed at T = 1100 ◦C.22

Neutron diffraction experiments were performed on the
CEA-CRG single-crystal diffractometer D23 at the Institut
Laue Langevin (Grenoble, France), using λ = 1.286 Å
wavelength in normal-beam geometry. A set of 166 and
246 magnetic reflections were measured at 13 and 9 K,
for phases AF3 and AF2, respectively. All these reflections
were first-order magnetic satellites, with diffraction vectors
G + mk, where G is a reciprocal lattice vector of the nuclear
structure, and k is the wave vector of the magnetic modulation.
The reflections were therefore indexed by four integer numbers
(hklm), with m being +1 or −1. The neutron absorption in the
sample (μ = 0.033 mm−1) was corrected using the Cambrigde
Crystallography Subroutine Library,23 and the refinements
were done based on the structure factors using JANA2006.
Nuclear refinements were also done to obtain an absolute
scale factor for the magnetic reflections. Figures of magnetic
structures were produced using the program VESTA.24

III. SYMMETRY ANALYSIS

Since only first-order magnetic reflections have been
observed, one can describe the magnetic modulation with a

single harmonic. Hence, the magnetic moments of a magnetic
atom μ in the position rμ, inside the cell l of the crystal, can
be expressed as follows:

Mμ,l = Mμe−2πik·(l+rμ) + M∗
μe2πik·(l+rμ) (1)

In this context, the introduction of the superspace formalism
essentially reduces to the following steps.

(i) The introduction of a modulation function for each
magnetic atom μ, defined along a continuous coordinate x4,
which is directly related to the previous expression,

Mμ(x4) = Mμe−2πix4 + M∗
μe2πix4 . (2)

This simply states that the value of the magnetic moment
Mμ,l of the atom μ at any unit cell l is given by the
value of the corresponding Mμ(x4) modulation function for
x4 = k · (l + rμ).

(ii) The definition of a set of symmetry operations (the
superspace group) that in general constrain the possible form
of these modulation functions and correlate the modulation
functions of symmetry-related atoms within the unit cell,
such that only some of them are independent. In this way,
an asymmetric unit for both atomic positions and modulation
functions can be defined. The symmetry operations {R,θ |t,τ }
of the relevant superspace group (θ = −1 or + 1 labels the
inclusion or not of time reversal) are ordinary space group
operations {R,θ |t} belonging to the grey space group of the
paramagnetic phase, but followed by some specific translation
related with τ along the internal coordinate x4 of all atomic
modulation functions.

In the simplest case of a purely incommensurate propa-
gation vector (see Ref. 5 for the general expressions), the
symmetry relation between the magnetic modulation functions
of two atoms related by a superspace symmetry operation
{R,θ |t,τ } is given by

Mμ(RIx4 + τ ) = θ det(R)R · Mν(x4) (3)

with the average position of atom μ being related to that of
atom ν by the space group operation {R|t} : {R|t}rν = rμ + l.
Here, RI is +1 or −1 if R keeps k invariant or transforms k
into −k, respectively. For μ = ν, Eq. (3) defines a constraint
on the form of the modulation. Note that the symmetry
relations defined in the superspace formalism, in contrast
with the traditional Bertaut representation method, include
in general rotational or roto-inversion transformations that
change the sign of the propagation vector. These symmetry
transformations have been previously treated using a so-called
nonconventional use of the co-representations25 or within the
frame of Landau theory.20,21 As explained in Ref. 5, the use
of the superspace formalism introduces automatically and in
a simple form the symmetry constraints associated with these
operations, not only for the order parameter, but for any degree
of freedom of the structure, including nonmagnetic secondary
ones (see Sec. IV C).

The space group of the paramagnetic phase of MnWO4 is
P 2/c. In the crystallographic unit cell there is one independent
manganese atom located at the 2f Wyckoff position: Mn1 at
( 1

2 , y, 1
4 ) with y = 0.6849(6). The symmetry related atom

Mn2 within the unit cell is at ( 1
2 , −y + 1, 3

4 ) (see Table I
for a description of the complete crystal structure refined). In
general, for the symmetry analysis of a magnetic structure, the
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TABLE I. The crystal structure parameters of MnWO4, from
refinement of 154 reflections collected at 9 K (phase AF2). The
space group is P 2/c. Debye-Waller factors (Å2) and agreement
factors are also included. The refinement at 13 K (phase AF3) gave
the same result within experimental resolution. Rel. fac. stands for
reliability factors.

Cell parameters: a = 4.8237(7) Å, b = 5.7552(2) Å,
c = 5.0019(2) Å, β = 91.0838(7)◦

Atoms x y z Beq

Mn 1
2 0.6849(6) 1

4 0.3(1)

W 0 0.1798(5) 1
4 0.2(1)

O1 0.2105(3) 0.1024(2) 0.9412(7) 0.2(1)
O2 0.2503(4) 0.3744(2) 0.3938(6) 0.2(1)

Rel. fac. RF = 2.8, RF 2 = 4.8, RF 2w = 5.4%

parent symmetry has to be taken into account, which in this
case corresponds to the grey magnetic space group P 2/c1′ of
the paramagnetic phase, where 1′ refers to the time inversion
operation. This space group consists of all the symmetry
operations of the ordinary P 2/c space group, plus an equal
number of operations obtained by multiplying all of them by
time reversal {1′|0 0 0 0} (which is also a symmetry operation
of the paramagnetic phase). The incommensurate propagation
vector, k = (−0.214, 1

2 ,0.457), lies on the symmetry line G
(α 1

2 γ ) of the Brillouin zone.26 The corresponding little group,
formed by the symmetry operators that leave k invariant, is
Pm1′. There are two possible magnetic (odd for time reversal)
irreducible representations (irreps) of this little group. They
are both one-dimensional and are defined by the corresponding
irreps of the little cogroup m1′ (see Table II).

As explained in Ref. 5, if the magnetic order is realized
according to a single one-dimensional small irrep, a unique
superspace group can be assigned to the resulting magnetic
structure. All the operations of the little group are kept in
this superspace group, but a (0 0 0 1

2 ) translation (along the
internal space) has to be added to those operators that have −1
character. In addition, all operations transforming k into −k
are also maintained: its chosen representative (for instance the
space inversion) can be chosen with zero translation along
the internal space by a convenient choice of the phase of
the magnetic modulation, while the remaining operations can
be obtained from the application of the internal product of
the group. Following these rules, the two possible superspace
groups corresponding to the two possible active irreps at the
G line can be derived (the program JANA20069 has also an
option to derive them automatically). According to the notation
usually employed, they can be labeled as P 2/c1′(α 1

2γ )00s and
P 2/c1′(α 1

2γ )0ss, and their generators are listed in Table II. It
is important to stress that these superspace groups include

operations that transform k into −k. In both cases, the
corresponding magnetic point group is 2/m1′, which implies
the absence in such phases of any induced ferroelectricity
and of any linear magnetoelectric response. It is also worth
mentioning that the magnetic superspace groups associated
to magnetic irreps can also be obtained using the program
ISODISTORT27 (method 2), but in this case the symmetries are
given in standard settings, which are not the settings used here.

Centered unit cells are used to simplify the description
of crystal symmetry in standard crystallography. This can
also be done in the case of incommensurate superspace
symmetry. The propagation vector (α 1

2 β) is not purely
incommensurate, as it includes a component 1

2 along y.
Because of this commensurate component, the symmetry
relations and constraints of the modulations are given by an
equation more complex than Eq. (3).5 This complication can
however be avoided, and Eq. (3) can be applied, by using a
unit cell doubled along y, so that the propagation vector in
its reciprocal basis becomes k′ = (α 0 β). The effect of the
(0 1

2 0) component of the modulation propagation vector is
maintained by the introduction of an appropriate centering
translation in superspace. More specifically, one considers a
cell a, 2b, c such that now there are four Mn atoms per unit cell.
The (0 1

2 0) component of the original modulation only means
that the atoms within this unit cell related by a translation
b have modulations with a π phase shift. This is ensured
by including in the superspace group a centering translation
(0 1

2 0 1
2 ). Indeed, according to Eq. (3), if the atoms in the

doubled cell are labeled Mn1 = ( 1
2 , y1

2 , 1
4 ), Mn2 = ( 1

2 , −y1+1
2 , 3

4 ),
Mn11 = ( 1

2 , y1+1
2 , 1

4 ), and Mn22 = ( 1
2 , −y1+2

2 , 3
4 ), the modulations

of the atoms Mn11 and Mn22 are 1
2 shifted with respect to those

of the other two atoms:

MMn11 (x4) = MMn1 (x4 + 1
2 ),

(4)
MMn22 (x4) = MMn2 (x4 + 1

2 ).

The description of a superspace group with these optional
centered unit cells is usually indicated in the superspace
group label by means of an “X”. Thus P 2/c1′(α 1

2γ )0ss

becomes X2/c1′(α0γ )0ss and P 2/c1′(α 1
2γ )00s becomes

X2/c1′(α0γ )00s. The symmetry operations of the former are
described in detail in Table III. The apparent new reflections
introduced by the duplication of the basic unit cell are canceled
out due to the centering (0 1

2 0 1
2 ), as depicted in Fig. 1. In

the following, we will use this X-centered description of any
relevant superspace group.

A magnetic phase can result from the activation of several
primary irrep modes. In this case, if the propagation vector is
incommensurate, its superspace symmetry is described by the
intersection of the superspace groups associated with each
individual irrep. This intersection depends on the relative

TABLE II. Irreps of the little cogroup, m1′, which define the two possible magnetic irreps of the paramagnetic group P 2/c1′ with
k = (α 1

2 γ ). The label of the resulting superspace group as well as its generators are provided in each case.

Irrep 1 m 1′ Superspace group Generators

mG1 1 1 −1 P 2/c1′(α 1
2 γ )00s {my |0 0 1

2 0}, {1̄| 0 0 0 0}, {1′| 0 0 0 1
2}

mG2 1 −1 −1 P 2/c1′(α 1
2 γ )0ss {my |0 0 1

2
1
2}, { 1̄| 0 0 0 0 }, {1′|0 0 0 1

2}
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TABLE III. Representative operations of the space group P 2/c1′(α 1
2 γ )0ss described in primitive setting and in the X-centered one. Both

generalized Seitz-type notation (left column) and symmetry cards as used in JANA2006 are listed. The labels −m or m indicate whether the
operation includes the time inversion (−m) or not (m). The remaining operations are obtained by the internal product of the group.

P 2/c1′(α 1
2 γ )0ss

{1|0000} x1 x2 x3 x4 m

{2y |00 1
2

1
2} −x1 x2 −x3 + 1

2 x2 − x4 + 1
2 m

{1̄|0000} −x1 −x2 −x3 −x4 m

{my |00 1
2

1
2} x1 −x2 x3 + 1

2 −x2 + x4 + 1
2 m

{1′|000 1
2} x1 x2 x3 x4 + 1

2 −m

X2/c1′(α0γ )0ss

{1|0000} x1 x2 x3 x4 m

{2y |00 1
2

1
2} −x1 x2 −x3 + 1

2 −x4 + 1
2 m

{1̄|0000} −x1 −x2 −x3 −x4 m

{my |00 1
2

1
2} x1 −x2 x3 + 1

2 x4 + 1
2 m

{1′|000 1
2} x1 x2 x3 x4 + 1

2 −m

{1|0 1
2 0 1

2} x1 x2 + 1
2 x3 x4 + 1

2 m

phases of the corresponding modulations. In what follows
we discuss the symmetry resulting from two primary modes.
When two primary incommensurate irrep modulations are
superposed, only one of the two modulation phases can be ar-
bitrarily chosen. This is done by associating to a representative
operation of its superspace group transforming k into −k a null
translation along the internal space. For the calculation of the
intersection of the superspace groups associated with different
irrep modulations, one has to consider that if a magnetic
modulation is phase shifted by a quantity φ the symmetry
operators of its superspace group that leave invariant k do
not change, whereas the operations that transform k into −k

-k'

-k

(1 1 0 -1)
b*/2

k'

k

(1 1 0 1)

(1 0 0 0)

(0 1 0 -1)

(1 2 0 0)(0 2 0 0)

-k'

b*

a*

-k

Incident beam

FIG. 1. Scheme of the indexing (hklm) of diffraction peaks
according to an a, 2b, c supercell and a propagation vector
k′ = (α 0 β) together with a (0 1

2 0 1
2 ) centering translation (X

centering). Full circles and grey rhombuses correspond to nuclear and
magnetic reflections, respectively. Magnetic reflections are projected
on the plane (hk0). Empty circles and empty rhombuses represent
systematic extinctions caused by the X centering, which forces both
magnetic and nuclear reflections to obey the k + m = 2n reflection
condition.

acquire an additional (0 0 0 2φ) translation along the internal
space.5 If we consider the superposition of two primary modes
transforming according to any of the two possible mG1 and
mG2 irreps, taking into account all possible relative phase
shifts, several different superspace groups are possible and
can be readily calculated following these rules. They are listed
in Table IV. One can see therein that the superposition of
two modes mG1 or two modes mG2 reduce the magnetic
point group symmetry to m1′, i.e., a polar group that allows
a spontaneous electric polarization on the ac plane, while the
superposition in quadrature of a mode mG1 and a mode mG2

implies a 21′ point group symmetry, i.e., a polar symmetry that
allows the buildup of electrical polarization along b.

IV. RESULTS AND DISCUSSION

A. Paraelectric AF3 magnetic phase

If we assume that the paraelectric magnetic structure of the
AF3 phase corresponds to a single active irrep modulation,

TABLE IV. Superspace groups resulting from the superposition
of two irrep magnetic modulations with a phase shift �φ between
them. The magnetic point group of each superspace group is in the
last column.

�φ = 0, 1
2 mG1 + mG1 X2/c1′(α0γ )00s 2/m1′

mG2 + mG2 X2/c1′(α0γ )0ss 2/m1′

mG1 + mG2 X1̄1′(α0γ )0s −11′

�φ = 1
4 , 3

4 mG1 + mG1 Xc1′(α0γ )0s m1′

mG2 + mG2 Xc1′(α0γ )ss m1′

mG1 + mG2 X21′(α0γ )0s 21′

�φ = arbitrary mG1 + mG1 Xc1′(α0γ )0s m1′

mG2 + mG2 Xc1′(α0γ )ss m1′

mG1 + mG2 X11′(α0γ )0s 11′
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described in Table II, its magnetic symmetry should be
described by either the X2/c1′(α0γ )00s or X2/c1′(α0γ )0ss

superspace group. Both symmetries include the inversion op-
eration {1̄|0 1

2 0 1
2 } that relates atoms Mn1 and Mn2. According

to Eq. (3) this means that the magnetic modulations of both
atoms are in both cases related in the form

MMn2

(−x4 + 1
2

) = MMn1 (x4). (5)

This implies that only the modulation of one atom, say Mn1, is
independent, while the two atoms Mn2 and Mn1 have, in both
superspace groups, identical modulations but with opposite
chirality. The distinction between the two possible symmetries
comes from the operation {2y |00 1

2τ }, which keeps atom Mn1

invariant and therefore constrains the form of its modulation.
According to Eq. (3),

MMn1 (−x4 + τ ) = 2y · MMn1 (x4). (6)

If we call (M1x(x4), M1y(x4), M1z(x4)) the three components
of the magnetic modulation function of Mn1 along the three
crystallographic directions, in the first superspace group
τ = 0, according to Eq. (6), the modulation of the x, z

components of the magnetic moment should be sine-like, while
the y component should be cosine-like. On the other hand, for
X2/c1′(α0γ )0ss, τ = 1

2 and the constraint of sine and cosine
forms are exchanged, so that

Mα(x4) = Mc
α cos(2πx4) (α = x,z), (7)

My(x4) = Ms
y sin(2πx4), (8)

while according to Eq. (5) the spin modulation of atom Mn2

is given by cosine functions with opposite amplitudes for
components x and z, and a sine function of the same amplitude
for the y component. Thus, the real amplitudes Mc

x , Ms
y , and

Mc
z fully describe the magnetic structure.
It is important to stress that, even if the modulation of Mn1

were reduced to the plane ac, the choice of cosine or sine
functions for its description does not represent a mere phase
shift in the global spin wave, because Eq. (5) is also included in
the model, and it implies a completely different choice for the
correlation with the spins of Mn2 atoms, if one or the other su-
perspace group is chosen. In both alternative symmetries three
parameters are required to describe the magnetic structure.

It is worth to compare here with the usual representation
approach. As it is usually used, the representation analysis only
introduces the irrep restrictions corresponding to the symmetry

operations of the little group, which keeps k invariant. Atoms
Mn1 and Mn2 in the unit cell are related in the paramagnetic
phase by the space group operation {my |01 1

2 }, belonging to
the little group. Thus, the representation method introduces a
relation between the spin modulations of the two Mn atoms
corresponding to this symmetry operation. This relation is
equivalent to the one resulting from the superspace operation
{my |0 1

2
1
2 , 1

2 + τ } (X setting) with τ = 0 for mG1 and τ = 1
2 for

mG2, which is present in their respective superspace group.
However, no restriction equivalent to the one of Eq. (6) is
considered, and therefore, in the representation approach, the
spin modulation of one of the atoms is fully free.16 This
means that the relative phases between the modulations of
the three spin components are free parameters. As in an
incommensurate modulation, one of the phases can be fixed
arbitrarily, the number of refinable parameters of the model
is five, compared with only three parameters when using the
superspace group description. In fact, the model considered
in Ref. 16, applying the standard representation analysis
method, yields the same result as using the minimal superspace
groups Xc1′(α0γ )0s or Xc1′(α0γ )ss corresponding to the
superposition of at least two phase-shifted irrep modes of the
same irrep symmetry (see Table IV). Note that this model for
the magnetic structure would imply a magnetic point group
m1′, and therefore polarity within the xz plane. As in many
other studies, the additional restrictions necessary to increase
the symmetry of the model and to reduce the modulations to a
single irrep mode were subsequently introduced in Ref. 16 by
means of intuitive arguments based on the search for simple
modulations (collinear, spiral, etc.). In general, the structures
described applying the representation approach (as normally
used) are compatible with those obtained using the superspace
formalism, but fewer constraints are introduced, and they are
less symmetric.

Both superspace groups, X2/c1′(α0γ )00s and
X2/c1′(α0γ )0ss, were tried alternatively in the refinement
of the structure. The 166 observed magnetic reflections
resulted after averaging into 66 independent ones with
Rint = 8.67. From the refinement it can be clearly concluded
that the magnetic symmetry of the paraelectric AF3 phase is
X2/c1′(α0γ )0ss. The parameters that describe the magnetic
structure as well as the agreement factors are given in Table V
and the structure is depicted in Fig. 2. The refined value
of the amplitude Ms

y describing the symmetry-allowed sine
modulation along the y direction is very small, although larger

TABLE V. Refined parameters that describe the magnetic structure of MnWO4 at 13 K with constrains imposed by the X2/c1′(α0γ )0ss

superspace group, including and not including a y component in the magnetic modulation. Maximum and minimum values of the ordered
moments are given in the last two columns, i.e., the semi-major and semi-minor axes of the helix in the first model and the amplitude of the
modulation in the second model. Parameters are defined in the text.

Ms
x Ms

y Ms
z Mc

x Mc
y Mc

z |mmax| |mmin|
0.000a 0.05(3) 0.000a 1.46(3) 0.000a 1.18(2) 1.88(4) 0.05(3)

RF (obs) = 7.15, wRF (obs) = 5.51, wRF 2 (obs) = 10.59

0.000a 0.00b 0.000a 1.47(2) 0.000b 1.17(2) 1.88(3)

RF (obs) = 7.23, wRF (obs) = 5.63, wRF 2 (obs) = 10.86

aConstrained by symmetry.
bFixed manually.
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c 

a 

Mn2 
 
    Mn1 

FIG. 2. (Color online) Projection along the b axis of the AF3
phase of MnWO4 at 13 K (Table V). Only the nonperiodic modulation
within a region 4a × 2b × 2c is represented.

than its standard deviation. It was then fixed to zero, and
Table V also shows the result of this second refinement. This
latter refinement, with the weak Ms

y component neglected,
reduces the model to a sinusoidally modulated collinear
magnetic modulation in the ac plane, with the direction of the
moments (the so-called û direction) making approximately a
39(1)◦ angle with the a axis and 1.88(4)μB amplitude. This
approximate model is directly comparable and agrees with the
magnetic structure proposed in Ref. 16, where the amplitude
is 2.1μB and the angle is 35◦.

It is important to stress that the structure of the AF3 phase
is not forced by symmetry to be collinear. A Hamilton test28

indicates that the weak nonzero value of the amplitude Ms
y

is statistically significant. This nonzero modulation for the y

       Mn2 
 
 

 
    
 
Mn1 b 

a 

       Mn22 
 
 

 
    
 
Mn11 

FIG. 3. (Color online) Projection along the c axis of the AF3
phase with an arbitrarily large amplitude of the symmetry-allowed y

component of the magnetic modulations. The symmetry of the AF3
phase (a single mG2 irrep mode) allows a cycloidal component in the
Mn modulations but of opposite chirality for Mn1 and Mn2.

spin component makes the spin waves helical, but of opposite
chiralities in the two Mn atoms. This situation is represented
in Fig. 3, where for clarity an artificially large component Ms

y

has been introduced in the model. The two modulations are
related by space inversion [see Eq. (5)], which forbids any
induced net electric polarization.

B. AF2 multiferroic phase

The propagation vector k = (α, 1
2 , γ ) does not change

at the transition from the AF3 phase to the multiferroic
AF2 phase. The same values α = −0.214 and γ = 0.457
were experimentally observed as a clear signature that the
additional symmetry breaking leading to the AF2 phase with
spontaneous polarization is “commensurate” with respect to
the modulations in the paraelectric AF3 phase. In the simplest
scenario, one can consider that this symmetry breaking is due
to the activation of an additional irrep magnetic mode. Table IV
contains all possible superspace groups that can result from
the superposition of two primary irrep magnetic modes. One
can see that there are three magnetic symmetries in the table
that could in principle describe a multiferroic structure, as their
magnetic point groups are 21′, m1′, and 11′. Those point groups
allow the appearance of electric polarization along the b axis,
in the xz plane, or along an arbitrary direction, respectively. It
is known that the polarization in MnWO4 arises along the b
axis.13–15 Hence, according to Table IV the superspace group
symmetry that must correspond to phase AF2 is X21′(α0γ )0s

(see Table VI). The inversion and the glide plane that relate
Mn1 and Mn2 in the AF3 phase are therefore lost at the
transition, and these two manganese atoms become symmetry
independent. The symmetry X21′(α0γ )0s keeps, however, the
operation {2y |00 1

2
1
2 }.29 This means that the spin modulations

of both atoms Mn1 and Mn2 maintain the symmetry constraints
imposed by Eqs. (7) and (8), but with amplitudes that are no
longer symmetry related. There are therefore six parameters
to refine, three for each manganese atom.

TABLE VI. Representative operations of the space group
P 21′(α 1

2 γ )0s described in primitive setting and in the X-centered
one. Both generalized Seitz-type notation (left column) and sym-
metry cards as used in JANA2006 are listed. The labels −m or m

indicate whether the operation includes the time inversion (−m)
or not (m). The remaining operations are obtained by the internal
product of the group.

P 21′(α 1
2 γ )0s

{1|0000} x1 x2 x3 x4 m

{2y |00 1
2

1
2} −x1 x2 −x3 + 1

2 x2 − x4 + 1
2 m

{1′|000 1
2} x1 x2 x3 x4 + 1

2 −m

X21′(α0γ )0s

{1|0000} x1 x2 x3 x4 m

{2y |00 1
2

1
2} −x1 x2 −x3 + 1

2 −x4 + 1
2 m

{1′|000 1
2} x1 x2 x3 x4 + 1

2 −m

{1|0 1
2 0 1

2} x1 x2 + 1
2 x3 x4 + 1

2 m

014419-6



INCOMMENSURATE MAGNETIC STRUCTURES OF . . . PHYSICAL REVIEW B 87, 014419 (2013)

TABLE VII. Refined parameters of the magnetic modulations of the multiferroic phase of pure MnWO4 (9 K) in the superspace group
X21′(α0γ )0s. The results of constrained refinement forcing the two symmetry-independent atoms to have equal spiral modulation is also
included. Maximum and minimum values of the ordered moments are given in the last two columns, i.e., the semi-major and semi-minor axes
of the helixes.

Mni Ms
x Ms

y Ms
z Mc

x Mc
y Mc

z |mmax| |mmin|
i = 1 0.0a 3.26(7) 0.0a 3.28(8) 0.0a 2.49(6) 4.1(1) 3.26(7)

i = 2 0.0a −2.97(6) 0.0a −3.11(8) 0.0a −1.78(6) 3.6(1) 2.97(6)

RF (obs) = 3.54, wRF (obs) = 3.45, wRF 2 (obs) = 6.20
i = 1 0.0a 3.14(3) 0.0a 3.21(4) 0.0a 2.14(5) 3.86(8) 3.14(3)

i = 2 0.0a −3.14b 0.0a −3.21b 0.0a −2.14b 3.86(8) 3.14(3)

RF (obs) = 3.94, wRF (obs) = 3.75, wRF 2 (obs) = 6.71

aConstrained by symmetry.
bFixed manually.

The refinement done from 162 independent magnetic
reflections (averaged from 246 reflections collected at 9 K
with Rint = 2.50) confirmed the superspace symmetry
X21′(α0γ )0s for the AF2 phase, and therefore a spin
modulation according to a superposition in quadrature of
mG2 and mG1 modes. The refined parameters are listed in
Table VII and a scheme of the magnetic structure is plotted
in Fig. 4. The moments rotate according to an ellipse in the
ub plane, where û is the easy direction in the ac plane. In

b 

a 

Mn2 
 
 
 
 
  Mn1 

c 

a 

(a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b)  

       
Mn22 
 
 
 
 
Mn11 

Mn2 
    Mn1 

FIG. 4. (Color online) AF2 multiferroic magnetic structure of
MnWO4 at 9 K. (a) Projection along the c axis showing the chirality
of the structure. (b) Projection along the b axis. Only the nonperiodic
modulation within a region 4a × 2b × 2c is represented.

this case, in contrast with the AF3 phase, the chirality of the
two Mn1 and Mn2 spin chains is the same, see Fig. 4 (a),
giving rise to a net electrical polarization by some mechanism
such as the spin-orbit driven inverse Dzyaloshinskii-Moriya
effect. Note that, although in Fig. 4 (a) the projection of
the modulation is done perpendicular to c, the propagation
direction of these spirals also has a component parallel to the
a axis [x4 = (α0γ ) · (l + rμ) in Eqs. (7) and (8)]. As can be
seen in Table VII the deviation from a circular spiral of the
modulations of both Mn atoms is very significant. The elliptical
orbits have semi-axes (in Bohr magnetons) of [4.1(1), 3.26(7)]
and [3.6(1), 2.97(6)], for Mn1 and Mn2 respectively. The
direction û of the magnetic moments also differs between the
two atoms, forming an angle with the a axis of about 37(2)◦ for
Mn1 and of 30(2)◦ for Mn2. These differences between the two
modulations are basically due to the strong difference of the
modulation amplitude along the z axis (see Table VII). While
the x and y modulation amplitudes have similar magnitude
for both atoms, the amplitude along z differs substantially, and
changes both the spiral plane and the elliptical orbit of the
magnetic moments.

Table VII also shows the results of a refinement where the
amplitudes of the modulations along the three crystallographic
directions of the two atoms were forced to be, respectively, of
equal magnitude but with opposite sign. These restrictions
makes equal the elliptical helix modulations of the two atoms,
except for a π phase shift, and reduces the number of refinable
parameters to three. This is the model of phase AF2 that
was proposed in Ref. 16. In this constrained refinement, the
obtained elliptical helix, forced to be common to both atoms,
has 3.86(5) μB and 3.14(3) μB as semi-axes and its plane
forms an angle of 34(2)◦ with the a axis, in agreement with
the values reported in Ref. 16. In this constrained model the
two superposed magnetic modes are such that the mG2 mode
is restricted to the plane xz, while the mG1 mode is limited to
the y direction. In this way, the sign correlation of neighboring
spins is the same for the two modes, which will have then the
same exchange energy terms. This model therefore neglects
those degrees of freedom in the spin arrangement that, although
allowed by symmetry, have sign correlations of neighboring
spins which are not favored by the exchange coupling.

The simplification included in the model proposed in
Ref. 16 is consistent with the prevailing role of the isotropic
exchange energy, but the better results of the refinement of
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a nonconstrained model, only restricted by the superspace
symmetry of the phase, demonstrates that the modulations
of the two Mn atoms have significant differences, due to some
non-negligible contribution of spin mode components with
unfavorable exchange energies. Anisotropic effects beyond
the exchange interaction, although weak, are an essential
ingredient of multiferroics, and this feature of the magnetic
structure of the AF2 phase, demonstrated by the present study,
can be considered one of them. This is similar to what happens
in weak ferromagnets, where the magnetic ordering exhibits
ferromagnetic correlations along some directions, despite
being unfavorable from the viewpoint of exchange energy.
They appear as secondary effects because they are permitted by
symmetry. The application of superspace symmetry allows us
to predict similar effects in incommensurate magnetic phases,
distinguishing the rigorous restrictions coming from symmetry
from those that are only approximate and are associated with
the overwhelming role of the isotropic exchange interactions.

C. Atomic modulations

Apart from the constraints on the magnetic modulations,
the superspace symmetry of an incommensurate magnetic
phase also provides information on the possible displacement
modulations of the atoms positions.

Although the structural modulations induced by magne-
tostructural coupling are in general very weak, and have
not been considered in the measurements reported here, it
is important to have in mind their possible existence and their
expected characteristics. The ferroelectric behavior observed
in MnWO4 is in fact part of this induced structural distortion
resulting from the magnetic symmetry break, and corresponds
to a k = 0 polar structural modulation. In this section we
present the symmetry constraints of the atomic (positional)
structures of the AF3 and AF2 magnetic phases.

The structural distortions resulting from magnetostructural
coupling with the magnetic ordering are subject to the same
symmetry than the actual magnetic ordering. This means that
the atomic positions can in principle become modulated, but
their modulations will be restricted by the same superspace
group operations as the magnetic modulations. Their effect
is, however, different due to the invariance of the structural
modulation for time reversal. Thus, the symmetry operation
{1′|000 1

2 }, common to both phases, force the possible dis-
placive modulations of any atom to the condition

ui

(
x4 + 1

2

) = ui(x4). (9)

This means that any possible induced structural modulation
is limited to even harmonics. This is a quite general feature
of single-k incommensurate magnetic phases (see Ref. 5),
restricting possible satellite structural diffraction peaks to even
m indices, while magnetic ones are necessarily odd ones if the
modulation becomes anharmonic. Second-order satellites due
to induced structural modulations, although weak, are indeed
quite common,30–33 and they have been also found in MnWO4

by synchrotron x-ray diffraction.30

Note that Eq. (9) implies that the nonmagnetic atomic mod-
ulations of Mn1 and Mn11 (as those of Mn2 and Mn22), related
by the centering X, are identical. In principle, provided that
second-order satellites are strong enough to be measurable, the

atomic modulated structure could be determined separately
from the magnetic one using the nonmagnetic superspace
group (with modulation wave vector 2k), resulting from
substituting the operation {1′|000 1

2 } by {1|000 1
2 }, and applying

then the usual procedures that have become standard for
nonmagnetic incommensurate structures. This is, however, not
necessary and could be misleading, because magnetic super-
space symmetry provides an unified framework that constrains
all degrees of freedom, and clarifies the correlation between the
constraints imposed upon magnetic and nonmagnetic degrees
of freedom.

The Mn and W atoms are kept invariant by the symmetry
operation {2y |00 1

2
1
2 }, which is common both to AF3 and AF2

phases, and this implies, according to the analog of Eq. (3) that
their displacive modulations must satisfy

ui

(−x4 + 1
2

) = 2y · ui(x4), (10)

where i is any Mn or W atom in the paramagnetic unit cell.
Hence, the x and z components of these modulations are

restricted to sine terms while the y component can only contain
cosine terms:

uiα(x4) = u1
iα sin(4πx4) (α = x,z), (11)

uiy(x4) = u0
iy + u1

iy cos(4πx4), (12)

where i = Mn, W.
The displacive modulations that can happen in W and Mn

atoms by any kind of magnetostructural coupling are therefore
π
2 shifted with respect to the magnetic modulation of the Mn
atoms, independently of the specific atomistic mechanism at
work.

In the AF3 phase, any pair of atoms i = 1,2, related by
{1̄|0 1

2 0 1
2 }, as Mn1 and Mn2, have their structural modulations

related by

u2
( − x4 + 1

2

) = −u1(x4) (13)

which according to Eqs. (11) and (12) implies equal amplitudes
for the x, z sine terms, and opposite ones for the y amplitudes.
Mn and W are allowed to have homogeneous (k = 0) dis-
placements along y [see Eq. (12)], but Eq. (13) implies that
in the AF3 phase each pair of atoms related by inversion will
have opposite homogeneous displacements, consistently with
the centrosymmetric point group symmetry 2/m of this phase.
Something similar happens for the more general modulations
of the oxygen atoms in general positions that can have an
homogeneous components along the three crystallographic
directions. In contrast, in the AF2 phase, as the inversion
symmetry operation is no longer valid, the constraint limiting
the homogeneous displacements along y of inversion-related
atoms to opposite values disappears and a polar distortion
mode is allowed.

Summarizing, both AF3 and AF2 phases may exhibit a
magnetic induced structural modulation with 2k as primary
modulation wave vector. In the AF3 phase this structural mod-
ulation maintains an average structure with P 2/c symmetry,
i.e., the same space group as in the paramagnetic phase, while
the structural modulation in the AF2 phases looses some of its
constraints and has only as symmetry for the average structure
the space group P 2.
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The symmetry constraints on magnetically induced struc-
tural distortions have their ultimate origin in the properties
of any possible magnetostructural mechanism. Superspace
symmetry is a convenient and efficient method to automatically
derive these constraints, but one can always trace them back,
through a proper Landau theory analysis, to the restrictions
on the allowed magnetostructural couplings of the system. An
extended discussion of the relation of the general symmetry
constraints of magnetically induced structural distortions with
the restrictions on the possible magnetostructural coupling
terms can be found in Ref. 5.

V. CONCLUSIONS

The two incommensurate magnetic phases of the multi-
ferroic MnWO4 have been analyzed using the superspace
formalism. The superspace group corresponding to each phase
has been identified, and the structures have been redetermined
under these symmetries, using single-crystal nonpolarized
neutron diffraction data. The spin modulations of the Mn atoms
have been fully determined, distinguishing those features
forced by symmetry and fulfilled exactly from those only
approximate and essentially caused by the strong weight of
the isotropic exchange interaction. The study shows that, in the
paraelectric antiferromagnetic phase AF3, the modulations of
the two Mn atoms in the unit cell can have a (small) cycloidal
component, exactly equal but with opposite chiralities in the
two atoms, such that their effects cancel and they cannot induce
any electric polarization. In contrast, in the AF2 phase, the
addition of a second magnetic mode to the spin modulations
breaks the symmetry relation between the two manganese
atoms, the two modulations have then chiralities of the same
sign, and their effect add up in the buildup of an electric
macroscopic polarization.

The superspace group of each phase also determines the
magnetic point group governing its crystal tensor properties.

The ferroic properties of the multiferroic AF2 phase can
then be characterized by the point-group symmetry break
2/m1′ → 21′, i.e., by the ferroic species 2/m1′F21′.34 This
ferroic species implies that there can only be two types
of ferroic domains in the AF2 phase, related by the space
inversion lost in the symmetry break (or equivalently by the
mirror plane). Thus, the correlated switching properties of
electric polarization and magnetic modulations in phase AF2
can be readily predicted: space inversion switches polarization,
while it keeps invariant the (real) amplitude the mG2 irrep
mode and changes sign of the (imaginary) amplitude of the
mG1 irrep modulation. This means that the two domains with
opposite polarization have also spin modulations of opposite
chirality (related by inversion).

The application of superspace formalism to the quantitative
experimental analysis of incommensurate magnetic phases is
a promising new development with yet few examples in the
literature. We explained here with much detail its application,
in order to show this methodology at work in a practical simple
case, and demonstrated its prospect as a powerful tool to
describe and use systematically the symmetry properties of
incommensurate magnetic structures.

As supplemental material,35 files with complete informa-
tion of the magnetic refinements, including the experimental
data used, have been deposited.
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