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Spin nematic states in antiferromagnets containing ferromagnetic bonds
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The majority of recent works devoted to spin nematic phases deal with either frustrated magnets or with those
described by Hamiltonians with large non-Heisenberg terms. We show in the present study that nonfrustrated
antiferromagnets (AFs) containing ferromagnetic (FM) bonds can show nematic phases in a strong magnetic field.
Among the particular spin systems discussed are a ladder with FM rungs, two AF layers coupled ferromagnetically,
a chain containing alternating AF and FM bonds, and an AF anisotropic spin-1 chain.
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Introduction. Frustrated spin systems have offered in recent
years a wealth of opportunities for the study of a broad range of
novel types of states and phase transitions. Spin nematic phases
form a class of objects in this area which has received much
attention. Spin nematic states are spin-liquid-like states which
show a multiple-spin ordering without the conventional long-
range magnetic order. The two-spin ordering can be generally
described by the tensor1 Q

αβ

jl = 〈Sα
j S

β

l 〉 − δαβ〈Sj Sl〉/3. The

antisymmetric part of Q
αβ

jl is related to the vector chirality
〈Sj × Sl〉 and describes a vector chiral spin liquid which can
be stabilized in quantum spin models at T = 0 by a sizable
ring exchange,2 and can be found in classical frustrated spin
systems at T �= 0.3 The symmetric part of Q

αβ

jl describes a
quadrupolar order which has been extensively studied both
theoretically and experimentally in frustrated systems with fer-
romagnetic (FM) and antiferromagnetic (AF) nearest-neighbor
and next-nearest-neighbor couplings, respectively, in strong
magnetic field H (see, e.g., Ref. 4 and references therein) and
in magnets with large non-Heisenberg spin couplings such
as the biquadratic exchange (S1S2)2.5 It has been also shown
recently that quantum fluctuations accompanied by a sizable
single-ion easy-axis anisotropy can also stabilize a nematic
phase in the kagome spin-1 antiferromagnet.6 This study was
motivated by recent experiments on Ni3V2O8.

It is well established that the attraction between magnons
caused by frustration is the origin of quadrupolar and multi-
polar phases in quantum magnets.7 In particular, the bottom
of the one-magnon band lies above the lowest multimagnon
bound state at H = Hs , where Hs is the saturation field, as a
result of this attraction in magnets with FM and AF couplings
between nearest- and next-nearest neighbors, respectively.
Then, transitions to nematic phases at H < Hs in such systems
are characterized by a softening of the multimagnon bound-
state spectrum rather than the one-magnon spectrum.

We show in the present paper that FM bonds in AF nonfrus-
trated spin systems can also lead to a magnon attraction and to
the stabilization of nematic phases in a strong magnetic field.
To be specific, we discuss a spin- 1

2 ladder with FM rungs, two
AF layers coupled ferromagnetically, and a chain containing
alternating AF and FM bonds, which are presented in Figs.
1(a)–1(c). The spin ladder with FM rungs has been actively
discussed in recent years (Ref. 8) and numerical evedence
is presented in Ref. 9 for the nematic phase appearence in
strong field. Alternating chains have also received considerable
interest recently which has not been related, however, to

their nematic behavior in magnetic field (see Ref. 10 and
references therein). Although the interaction between spins
is antiferromagnetic in the majority of compounds containing
weakly coupled spin chains, ladders, or bilayers, some (mainly
organic-based) materials containing FM bonds have been
synthesized recently,11 which has stimulated the theoretical
activity in this field.

Model and technique. All spin- 1
2 systems under discussion

are described by the Hamiltonian

H = J
∑
〈i,l〉

(S1,iS1,l + S2,iS2,l) − j
∑

i

S1,iS2,i

−A
∑

i

Sz
1,iS

z
2,i − H

∑
i

(
Sz

1,i + Sz
2,i

) + H′, (1)

where Sn,i is the nth spin in the ith FM bond, j and A are values
of the isotropic and anisotropic parts of the FM exchange cou-
pling, respectively, 〈i,l〉 denote nearest-neighbor spins coupled
antiferromagnetically, we set the AF coupling constant J to
be equal to unity in our calculations, and H′ describes a small
interladder (interbilayer or interchain) interaction.

The ground state of Hamiltonian (1) has a collinear antifer-
romagnetic spin structure at small H and the magnon spectrum
has a gap induced by the easy-axis anisotropy A. There is a
sequence of phase transitions upon the field increasing.

If the easy-axis anisotropy A is smaller than a critical
value Ac [the classical value of Ac is J0, where Jp =
J

∑
j exp(ipRj l), that does not depend on j ], the first phase

transition is the first-order spin flop one that happens when
the field reaches a value Hsf. One has, for the classical value
of Hsf,

H cl
sf = 1

2

√
A(2J0 − A). (2)

There is a canted AF spin structure at H > Hsf and one
of the magnon branches is gapless [as a consequence of
the continuous SO(2) symmetry breakdown in this phase].
Our experience suggests that there would be only one phase
transition to the fully polarized phase at H = Hs upon further
field increasing. However, we show below that in a range of
parameters the fully polarized phase is preceded by a nematic
one with the order parameter 〈S−

1,iS
−
2,i〉 [see Fig. 1(d)]. A

consideration of the nematic order parameter symmetry shows
that SO(2)/Z2 symmetry is broken in the nematic phase (see,
e.g., Ref. 4). Then there is a Goldstone mode in the nematic
phase and the transition from the canted AF phase to the
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FIG. 1. (Color online) (a)–(c) Spin- 1
2 systems which show a

nematic phase in a strong magnetic field and which are discussed in
the present paper in some detail. Antiferromagnetic and ferromagnetic
bonds are shown in black and blue, respectively. (d) A sketch of the
phase diagram at small T of the considered systems. The canted or the
nematic phase is absent in some cases (see the text). Small interchain,
interbilayer, and interladder couplings are taken into account.

nematic one is apparently of a two-dimensional (2D) Ising
type because the Z2 subgroup breaks down.

If A is large enough (e.g., at A � J,j ), there is no canted
phase. We show below that even in this case the collinear and
the fully polarized gapped phases are separated by the gapless
nematic one.

We examine in the present paper the possibility of nematic
phase formation just below the saturation field Hs by consid-
ering the transition from the fully polarized phase. We use for
this purpose the approach suggested recently by one of us in
Ref. 4 for a high-field nematic phases analysis that is based on
the following bond-operator spin representation:

S+
1,i = b

†
i ai + ci, S+

2,i = c
†
i ai + bi,

S−
1,i = a

†
i bi + c

†
i , S−

2,i = a
†
i ci + b

†
i , (3)

Sz
1,i = 1

2 − a
†
i ai − c

†
i ci , Sz

2,i = 1
2 − a

†
i ai − b

†
i bi,

where a
†
i , b†i , and c

†
i are Bose operators which create three spin

states from the vacuum |0〉 = |↑↑〉 as follows: a
†
i |0〉 = |↓↓〉,

b
†
i |0〉 = |↑↓〉, and c

†
i |0〉 = |↓↑〉, where all spins have a maxi-

mum projection on the field direction at the state |0〉. To avoid
the contribution of unphysical states containing more than one
particle a, b, or c on a FM bond, we add to the Hamiltonian con-
straint terms describing an infinite repulsion between particles
on each FM bond: U

∑
i(a

†
i a

†
i aiai + b

†
i b

†
i bibi + c

†
i c

†
i cici +

a
†
i b

†
i aibi + b

†
i c

†
i bici + a

†
i c

†
i aici), where U → +∞. In partic-

ular, it is shown in Ref. 4 that (i) this approach is quite
convenient for a discussion of the quantum phase transition
to the nematic phase, (ii) along with some different results
it yields also those obtained by other methods,7,12 and (iii)
although it gives quantitatively correct results at H ≈ Hs when
H < Hs , it works in the nematic phase qualitatively also when
H is not very close to Hs . For the sake of self-consistency, we
present below some details of this approach. We confirm below
our key analytical results by numerical ones obtained using the
finite cluster diagonalization technique.13

Substituting Eqs. (3) into Hamiltonian (1), taking into
account the constraint terms, and for a moment neglecting
H′, one obtains for the ladder and the bilayer

H2 =
∑

p

[
(b†pbp + c†pcp)

(
H + 1

2
(Jp − J0) + 1

2
(j + A)

)

− 1

2
j (b†pcp + c†pbp) + a†

pap(2H − J0)

]
, (4)

H3 = 1

2
√

N

∑
[a†

1b2c3(J2 + J3) + b
†
1c

†
2a3(J1 + J2)], (5)

H4 = 1

N

∑[
a
†
1a

†
2a3a4(J1−3 + U ) + Ub

†
1c

†
2b3c3

+ (a†
1b

†
2a3b4 + a

†
1c

†
2a3c4)

(
J1−3 + 1

2
J1−4 + U

)

+ (b†1b
†
2b3b4 + c

†
1c

†
2c3c4)

(
1

2
J1−3 + U

)]
, (6)

where N is the number of FM bonds, the momentum
conservation laws

∑
i pi = 0 are implied in Eqs. (5) and (6),

and we omit some indexes p in Eqs. (5) and (6). It is convenient
to introduce the following Green’s functions:

Ga(k) = −i〈aka
†
k〉, (7)

Gb(k) = −i〈bkb
†
k〉, Gc(k) = −i〈ckc

†
k〉, (8)

F (k) = −i〈bkc
†
k〉, F (k) = −i〈ckb

†
k〉. (9)

Poles of Ga(k) give the spectrum of a particles, whereas
poles of Gb(k), Gc(k), F (k), and F (k), which have the
same denominator, determine the spectra of two one-magnon
branches.14

Particles b and c carrying spin 1 are of a one-magnon nature.
Their spectra calculated at H > Hs using Eqs. (3) coincide
with those derived using the conventional approaches such as
the Holstein-Primakoff transformation. It can be shown4 that
spectra of one-magnon excitations are determined solely by
H2 [Eq. (4)] at H � Hs and they have the form

ε1(p) = H + 1
2 (Jp − J0) + 1

2A, (10)

ε2(p) = ε1(p) + j. (11)

The lower branch ε1(p) has a minimum at p = π [or (π,π )]
and a gap which closes when H becomes equal to

Hc = J0 − A/2. (12)

In contrast to b and c particles, a particles carrying spin 2
are of a two-magnon nature. Their spectrum coincides with the
two-magnon bound-state spectrum found using conventional
methods.14 To find the spectrum εa(p) of a particles at H � Hs

one has to take into account diagrams shown in Fig. 2(a)
which contain three-particle vertices. Equations for them are
presented in Fig. 2(b). The minimum of εa(p) is at p = 0 and
the gap in εa(p) closes at H = H ′

c. If Hc > H ′
c, the transition

takes place at H = Hc = Hs to the canted phase, which can
be described as the Bose-Einstein condensation (BEC) of
one-magnon excitations. As it is seen from Eqs. (3), 〈S⊥

n,i〉
becomes finite in this case, where ⊥ denotes the projection
on the xy plane. In contrast, if Hc < H ′

c, the transition from
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(a)

(b) = + +

+= + + +

FIG. 2. (Color online) (a) Diagrams for the self-energy part �a(k)
of a particles at H � Hs . Green’s functions of b and c particles
Gb(p), Gc(p), F (p), and F (p) are defined by Eqs. (8) and (9).
Circles represent renormalized vertices. Equations for the vertices
are presented in (b). Bare vertices are defined by Eqs. (5) and (6).

the fully polarized phase to the nematic one takes place at
H = H ′

c = Hs , which can be described within our approach as
the BEC of a particles. It is seen from Eqs. (3) that 〈S⊥

n,i〉 = 0 in

the nematic phase and 〈S−
1,j S

−
2,j 〉 ≡ 〈a†

j 〉 ∝ e−iφ
√

Hs(T ) − H

is the nematic order parameter (for H′ �= 0), where φ is an
arbitrary phase.4 All the static two-spin correlators decay
exponentially in the nematic phase. We calculate below εa(p)
for the selected spin systems and find stability conditions of
the nematic states.

AF ladder with FM rungs [see Fig. 1(a)]. Unfortunately,
the general expression for εa(p) is quite complicated but it is
simplified greatly in the limiting case of the Ising exchange on
the FM bond (i.e., at j = 0). To illustrate the main properties
of the nematic phase we consider here in some detail the case
of j = 0. In particular, one finds at H′ = 0 and H � Hs ,

εa(p) = 2H − 2 + A −
√

4 cos2
p

2
+ A2. (13)

The gap in εa(p) vanishes at Hs = 1 +
√

1 + A2/4 − A/2,
which is larger than Hc = 2 − A/2 [see Eq. (12)] at all positive
A. Then, the nematic phase is stable at A > 0 when j = 0.
Interestingly, the nematic phase arises also in the case of
A � 1, when the canted phase is absent. Thus, the gapless
nematic phase separates two gapped phases at large A, the
fully polarized and the collinear ones.

Spectrum (13) has a quadratic dispersion near its minimum
at p = 0: εa(p) ≈ 2H − 2 + A − √

4 + A2 + D‖p2, where
D‖ = 1/2

√
4 + A2. The spectrum remains quadratic also

after taking into account a small H′ that leads to the three-
dimensional (3D) BEC relation Hs(0) − Hs(T ) ∝ T 3/2.4

One obtains in the first order in ρ and in the leading order
in the interladder interaction, as it is done in Ref. 4 for quasi-
one-dimensional (1D) frustrated systems,

〈S−
1,j S

−
2,j+n〉 = √

ρe−iφ 4

A2

(
A

2
−

√
1 + A2

4

)n

, (14)

〈S+
1,j S

−
1,j+n〉 = 〈S+

2,j S
−
2,j+n〉

= ρ
4

A2

(
4n

A2
+ 4

√
4 + A2

A3
− 2

)

×
(

A

2
−

√
1 + A2

4

)n

, (15)〈(
Sz

1,j − 1
2

)(
Sz

2,j+n − 1
2

)〉 = |〈S−
1,j S

−
2,j+n〉|2, (16)

where n > 0 and ρ = 〈a†
i ai〉 ∝ [Hs(T ) − H ] is the “con-

densate” density. The rest of the two-spin static correlators
containing S+ or S− are equal to zero and 〈Sz

1,j S
z
1,j+n〉 =

〈Sz
2,j S

z
2,j+n〉 ∼ ρ2. It is seen from Eqs. (14)–(16) that all

correlators decay exponentially at A > 0.
One obtains for the magnetization

〈
Sz

q,j

〉 = 1

2
−

(
2 − 8

A2
+ 16

√
4 + A2

A5

)
ρ, (17)

where q = 1,2. It may seem that Eqs. (14)–(17) are invalid for
arbitrary small A. However, the above results are valid in the
near vicinity of Hs (i.e., at very small ρ) in this case because
Hs and Hc merge in the limit A → 0.

It is implied in Eqs. (14)–(17) that H′ �= 0 so that ρ �= 0.
The situation is completely different in the purely 1D case
because ρ ≡ 0 and there is no long-range nematic order.
Bearing in mind the quadratic dispersion of εa(p) near its
minimum and using the results of 1D Bose-gas discussions,15

one obtains,14 at H ≈ Hs and T = 0,

1

2
− 〈

Sz
q,j

〉 = 〈a†
j aj 〉 = 1

π

√
2(Hs − H )

D‖
, (18)

〈
Sz

q,j+n(t)Sz
p,j (0)

〉 ≈ 〈
Sz

j

〉2 − 1

π

(
1

(n + iut)2
+ 1

(n − iut)2

)

+B1

cos(π〈a†
j aj 〉n)

n2 + u2t2
, (19)

〈S+
1,0(t)S+

2,0(t)S−
1,n(0)S−

2,n(0)〉 ≈ B2√|n + iut | , (20)

where q,p = 1,2, n → ∞, u = 4πD‖〈a†
j aj 〉, and B1,2 are

constants.
An analysis of the general expression for εa(p) gives the

following general criterion of the nematic phase stability,

A >
4j

j + 2
√

j (j + 2)
, (21)

which is shown graphically in Fig. 3. One concludes from
Eq. (21) that only large A � j can stabilize the nematic phase
if j ∼ 1. In contrast, quite small anisotropy on FM bonds
j � A ∼ 1 is sufficient for this purpose if j � 1.

In the limiting case of j → ∞, our model describes the
spin-1 AF chain with the easy-axis single-ion anisotropy A.
The nematic order parameter reads in this case as 〈(S−

i )2〉, and
one obtains from Eq. (21) that the nematic phase is stable at
A > 4/3. A similar nematic phase is discussed in Ref. 6 in a
spin-1 kagome AF with large single-ion easy-axis anisotropy
at H = 0.

Our finite cluster calculations confirm that the transition
takes place at H = Hs to the nematic phase when inequality
(21) holds. This numerical consideration is simplified by the
fact that the Hamiltonian (1) commutes with the z component
of the total spin Sz and with the Zeeman term. As a result all
the Hamiltonian eigenstates can be classified by eigenvalues
M of Sz. Let us denote E(M) the minimum energy in each
M sector at H = 0. The ground state energy of a cluster with
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FIG. 3. (Color online) Regions of the nematic phase stability in
the ladder with FM rungs [inequality (21)], in the bilayer with FM
coupling [inequality (22)], and in the alternating chain.

L spins in a magnetic field is given by the minimum value
of E(M) − HM . An important observation is that the values
E(M) − HM at even Msat − M are smaller than those with
odd Msat − M when H is close to its saturation value, where

Msat = L/2. Thus, one can expect that a condensation takes
place in the thermodynamic limit of elementary excitations
carrying spin 2. Then, the lowest state in each even (Msat − M)
sector has zero momentum (if the periodic boundary conditions
are applied), which is also in agreement with the bound-state
condensation scenario. Values of Hs obtained numerically as a
result of an analysis of clusters with L = 8–48 are in excellent
agreement with the corresponding values found analytically.
A numerical consideration of clusters with L = 8–26 similar
to that performed in Ref. 16 confirms also the validity of
Eq. (18). For example, one obtains for j = 0 and A = 2 that
1
2 − 〈Sz

q,j 〉 = α(Hs − H )1/δ , where α = 1.04 ± 0.11 and δ =
2.05 ± 0.05, which is in good agreement with the analytical
result 〈a†

j aj 〉 ≈ 1.07
√

Hs − H . Our numerical results are also
fully consistent with those of Ref. 9.

AF bilayer with FM coupling [see Fig. 1(b)]. The analytical
analysis of this system is much more complicated than that
carried out above for the ladder. Then, we restrict ourselves by
a discussion of the region of the nematic phase stability that is
defined by the inequality (see Fig. 3)

A >
8 − 8jf (j )

(8 + j )f (j ) − 1
, (22)

f (j ) = 1

(2π )2

∫ 2π

0

dxdy

j + 2 + cos x + cos y
. (23)

One concludes from Eq. (22) that, similar to the ladder with
FM rungs, only large A � j can stabilize the nematic phase
if j ∼ 1. In contrast, quite small anisotropy on FM bonds
j � A ∼ 1 is sufficient for this purpose if j � 1.

Alternating chain [see Fig. 1(c)]. Particular expressions
are quite cumbersome in this case. Then we restrict ourselves
by a graphical representation of the nematic phase stability
region which is also shown in Fig. 3. It is seen that the graphic
resembles those for the ladder and the bilayer. A numerical
consideration confirms the existence of the nematic phase and
the validity of Eq. (18). Numerical values of Hs are in excellent
agreement with analytical results.

Conclusion. We demonstrate that FM bonds in nonfrus-
trated antiferromagnets can lead to nematic spin states in
a strong magnetic field. The uniaxial anisotropy on the
FM bond is necessary for nematic phase stabilization in all
the considered systems. The present study should stimulate
further theoretical and experimental activity in nematic phase
discussions both in the considered systems and in other ones
containing FM bonds.
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2A. Läuchli, J. C. Domenge, C. Lhuillier, P. Sindzingre, and
M. Troyer, Phys. Rev. Lett. 95, 137206 (2005).

3F. Cinti, A. Rettori, M. G. Pini, M. Mariani, E. Micotti,
A. Lascialfari, N. Papinutto, A. Amato, A. Caneschi, D. Gatteschi,
and M. Affronte, Phys. Rev. Lett. 100, 057203 (2008); A. O. Sorokin
and A. V. Syromyatnikov, Phys. Rev. B 85, 174404 (2012), and
references therein.

4A. V. Syromyatnikov, Phys. Rev. B 86, 014423 (2012).

014410-4

http://dx.doi.org/10.1103/PhysRevLett.95.137206
http://dx.doi.org/10.1103/PhysRevLett.100.057203
http://dx.doi.org/10.1103/PhysRevB.85.174404
http://dx.doi.org/10.1103/PhysRevB.86.014423


SPIN NEMATIC STATES IN ANTIFERROMAGNETS . . . PHYSICAL REVIEW B 87, 014410 (2013)
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