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Analytical treatment of ultrafast laser-induced spin-flipping � processes on magnetic nanostructures
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Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, PO Box 3049, 67653 Kaiserslautern, Germany

(Received 13 August 2012; revised manuscript received 21 November 2012; published 3 January 2013)

In this paper, we analytically treat ultrafast, laser-induced, spin-flipping processes based on � model systems
with triplet ground state. After obtaining the wave functions, we give analytical solutions for the induced material
polarization in the time domain. Compact summation formulas for the time-dependent (windowed) induced
polarization of the material in the frequency domain, as well as its helicity (fourth Stokes parameter), are given.
These solutions compare excellently with numerical results obtained for realistic systems (i.e., systems that
can or have been synthesized and were treated with high-level quantum chemical methods including electron
correlations and relativistic effects). We thus analytically show that laser-induced spin flip is possible and can
be detected from the helicity of the emitted light during the process. Additionally, we analyze the effects of a
finite temperature and the time window of a measuring apparatus on the signal detected. These are very crucial
steps not only for verifying the validity of previous numerical results, but also for the deeper understanding of
the physical mechanisms involved.
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I. INTRODUCTION

Ever since the discovery of laser-induced, ultrafast demag-
netization in magnetically ordered materials,1 optical manipu-
lation of the spin degree of freedom on the subpicosecond scale
has been the object of intense theoretical and experimental
research since the relevant electronics applications may satisfy
the growing industrial interest for speed upgrade and size
downscale of computer elements.1–6 Although there is an
ongoing discussion about the exact nature of all participating
mechanisms at different time scales, there seems to be a
consensus that (at least to some extent) light can serve as
an angular momentum reservoir.5–7 In a previous work, we
presented numerical results which show that during a spin-
flipping � process, the material absorbs and emits the correct
light helicity provided that it is present in the environment
(our calculations were performed within the semiclassical
approximation, therefore the presence of light is necessary
for emission as well).8 In this paper, we delve deeper into the
nature of the mechanisms involved and present an analytic
treatment of this scenario on a model � system, which is
in perfect accord with the numerical results obtained for the
highly complicated case studied in Ref. 8. Furthermore, this
analytical model is capable of describing laser-induced spin-
flipping processes on magnetic materials with triplet ground
state and strongly localized spin density. Such materials
can comprise, among others, linear or branched metallic
chains deposited on inert surfaces,9–11 metallic clusters in
the gas phase (with or without chromophores such as CO as
experimental magnetic-state markers),12 and ligand-stabilized
complexes in solution.13,14 For the time evolution of the
system, we use a wave function rather than a density-matrix
approach exploited by other authors (see Refs. 15–17 and
references therein). This is mainly in order to follow the same
formalism we use for our numerical results applied to small,
real-space objects (more convenient and numerically more
stable).

Although analytical solutions to the time-dependent
Schrödinger equation describing a driven system are extremely
rare,18 some three-level systems have already been extensively

investigated in the past.19 However, almost all of them have
concentrated on the effect of the laser pulse on the system
with respect to its magnetization. Chen et al. have investigated
arbitrary rotations of the spin of a single electron in a quantum
dot via Raman transitions in the adiabatic limit,20 while Wu
et al. have looked upon the selective excitation from the spin
ground states to the trion state through phase-sensitive control.
The mechanism they use is an external magnetic field in the
Voigt geometry, in which the trion states remain unaffected
(pertinent to semiconductors).21 Bao et al. have studied
the nonlocal behavior of measurements performed on many
electrons and presented a microscopic theory of impulsive
stimulated Raman scattering and multispin entanglement.22

At the same time, purely theoretical studies have dealt with
additional relativistic corrections due to the field of the pulse23

and susceptibility during laser-induced magnetism control.24

Here, we go one step further and we look into the role of the
polarization of the light in the angular momentum conservation
of the spin-flipping process, which is identified in the induced
polarization of the material. This way, we go beyond classical
models based on the the Landau-Lifshitz-Gilbert types (and
derivatives) of equations of motion.25

The paper is organized as follows: first the model and the
derivation of the transition matrix elements are presented both
for the degenerate and the quasidegenerate initial and final
states (Sec. II), followed by the analysis for finite temperatures
(Sec. III). Finally, some general conclusions are drawn
(Sec. IV).

II. THE � PROCESS

For our model Hamiltonian, we assume a three-level system
(|a〉, |b〉, and |c〉 are the initial, final, and intermediate states,
respectively). The main idea of a � process is that the initial
and the final states are (quasi)degenerate, while the interme-
diate state is energetically far away and optically addressable
(with electric-dipole transitions), so instead of a slow direct
transition |a〉 → |b〉, we first excite to the intermediate state
and then deexcite to the final state |a〉 → |c〉 → |b〉 which can
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FIG. 1. � systems. Left panel: degenerate case; right panel:
symmetric nondegenerate case.

be a far faster process (Fig. 1). For our scenarios we use a single
laser pulse to drive both transitions. Depending on the partic-
ular properties of the initial and the final states, one can derive
different scenarios which can lead to optical, coherent manipu-
lation of the magnetization of the system on the subpicosecond
scale. So (a) if the two states exhibit parallel magnetization
with different magnitude of the magnetization vectors, we have
(partial) demagnetization, (b) if the magnetization vectors are
antiparallel and the spin density is localized on the same atom
(e.g., spin-up and -down terms of the same singlet or triplet
state) we have spin flip, and (c) if the two magnetization vectors
are parallel to each other but the spin density is localized on dif-
ferent atoms, we have spin transfer. Conceptually one can think
of a fourth case as well, which is a combination of cases (b)
and (c), i.e., simultaneous spin flip and spin transfer, a scenario
which, however, we have not been able to achieve on any real-
istic system thus far. In the case of spin-flip processes [(b) or
(d)], the intermediate state needs to be addressable from states
with different spin orientation and thus has to be spin mixed.
Here, the spin mixing results from spin-orbit coupling (SOC)
which accordingly changes the optical selection rules.8,26

A. Degenerate case

We build our � system (Fig. 1, left panel) choosing
the states as follows. The initial ground state and the final
ground state are the spin-down and -up triplets of an S
state, respectively. So, we have |a〉 = |0,0〉 ⊗ |↓↓〉 and |b〉 =
|0,0〉 ⊗ |↑↑〉. The intermediate state is the |j = 1,mj = 0〉
term (3P1) resulting from the consideration of SOC in an
excited triplet P state (the use of SOC splits the triplet 3P to a
quintet 3P2, a triplet 3P1, and a singlet 3P0 in spectroscopic
notation 2s+1Lj ; j refers to the total angular momentum
when spin and orbital angular momentum are coupled). Using
Clebsch-Gordan coefficients (or diagonalizing the respective
SOC Hamiltonian), we find that

|c〉 = |j = 1,mj = 0〉
= 1√

2
(|1,1〉 ⊗ |↓↓〉 − |1, − 1〉 ⊗ |↑↑〉) ,

where |1, ±1〉 = p± = 1√
2

(
px ± ipy

)
(note that the two

numbers in the ket refer to the eigenvalues l and lz of the orbital

angular momentum, unless explicitly specified otherwise). We
can then calculate the transition matrix elements

〈a|x̂|c〉 = 1√
2
〈0,0|x̂|1,1〉

= 1

2
(〈s|x̂|px〉 + i〈s|x̂|py〉) = 2μ,

〈b|x̂|c〉 = − 1√
2
〈0,0|x̂|1, − 1〉

= −1

2
(〈s|x̂|px〉 − i〈s|x̂|py〉) = −2μ,

〈a|ŷ|c〉 = 1√
2
〈0,0|ŷ|1,1〉

= 1

2
(〈s|ŷ|px〉 + i〈s|ŷ|py〉) = i2μ,

〈b|ŷ|c〉 = − 1√
2
〈0,0|ŷ|1, − 1〉

= −1

2
(〈s|ŷ|px〉 − i〈s|ŷ|py〉) = i2μ

with 〈s|x̂|px〉 = 〈s|ŷ|py〉 = 4μ [we set the integral equal
to 4μ in order to simplify the equations of motion of the
system, Eqs. (1)]. The integrals 〈s|x̂|py〉 = ∫

fs(r)yfpx
(r) dV

and 〈s|x̂|py〉 = ∫
fs(r)xfpy

(r) dV vanish [fs(r), fpx
(r), and

fpy
(r) are the radial parts of the wave functions of the

states |s〉, |px〉, and |py〉, respectively].27 In fact, for this
system one can always make the perturbation element Ĥ ′

ij (t) =
E(t) · 〈i|r̂|j 〉 real by a proper choice of the time origin. We
start our investigation with the simplest case, when (i) the
initial and the final states are degenerate (Ea = Eb = 0), and
(ii) the transition matrix elements between those states and the
intermediate state |c〉 have equal magnitudes (|μac| = |μcb| =
μ). The system is irradiated with a linearly polarized laser pulse
E = (Ex,0,0). (Due to the generality of the formulas used, we
do not discuss units in the manuscript and for simplicity we
also set h̄ = 1. The only assumption is that the value of μ is
small enough to make the time-dependent perturbation theory
applicable.)

Adopting the interaction picture, we get a system of coupled
ordinary differential equations. In the simplest case, the laser
pulse is resonant to the excitation energy ωl = Ec − Ea =
Ec − Eb. This can be achieved, if one eliminates any phase
difference, by proper tilting of the laser pulse (numerical
results indicate that for this energy difference the phase
is not important). The initial conditions are a(0) = 1 and
b(0) = c(0) = 0. The system has constant coefficients and
can thus be solved with the matrix method. Then, the phase
factors are attached [the differential equation system is in the
interaction picture and within the rotating-wave approximation
(RWA)]:

ȧ(t) = −iμ c(t), ḃ(t) = iμ c(t), ċ(t) = −iμ [a(t) − b(t)]

(1)

with the well-known solution28–30

a(t) = 1

2
[1 + cos(

√
2μt)], b(t) = 1

2
[1 − cos(

√
2μt)],

c(t) = − i√
2

sin(
√

2μt). (2)
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FIG. 2. (Color online) Time evolution of the induced polarization
in the material for the symmetric system (ωl = 1 and μ = 0.01). The
black solid line is the 〈Dx(t)〉 and the red dashed line the 〈Dy(t)〉
component. Note their relative phase difference at early and late times
connected to the absorption and emission phases of the � process,
respectively (relate to Fig. 1, left panel). This clearly indicates
different helicities of absorbed and emitted light, a fact which, in
turn, is in line with the total angular momentum conservation of the
system and the light (Ref. 8).

The population of the final state is Pb(t) = 1
4 [1 −

cos(
√

2μt)]2 and gets maximized at time tmax = kπ√
2μ

where
k is an odd integer. Note that since we are working in the
interaction picture, a phase factor e−iEct must be attached to the
wave function of the excited state |c〉 (if we define Ea = Eb =
0, this is not necessary for |a〉 and |b〉 since e−iEat = e−iEbt =
e0 = 1). So, the total wave function of the system becomes
|�(t)〉 = a(t)|a〉 + b(t)|b〉 + c(t)e−iEct |c〉. We calculate the
density matrix of the system ρ(t) = |�(t)〉〈�(t)| and with
the use of the electric-dipole transition matrices

Dx = 2μ

⎛
⎝ 0 0 1

0 0 −1
1 −1 0

⎞
⎠, Dy = 2μ

⎛
⎝ 0 0 i

0 0 i

−i −i 0

⎞
⎠,

we get for the expectation values of the components of the
induced polarization31

〈Dx(t)〉 = Tr[ρ(t)Dx] = −
√

2μ sin(2
√

2μt) sin(ωlt),
(3)

〈Dy(t)〉 = Tr[ρ(t)Dy] = −2
√

2μ sin(
√

2μt) cos(ωlt),

where ωl is the resonant laser frequency. Since we are
interested in the time-dependent polarizations during the pulse
(when the intermediate states also get populated), we need
the full 3 × 3 density matrix; this would not be necessary
if we investigated the system only after the pulse.21 The
resulting interferences are of quantum nature since only one
laser pulse is involved (as opposed to Blanchet et al. who use
two identical laser pulses).32 As one can clearly see in Fig. 2,
the phase difference between the x and the y components
alternates in sign, meaning that during half of the period (which
corresponds to the absorption phase) the induced polarization
has one helicity (σ+), while during the second half of the
period (the emission phase of the � process) it has the opposite
helicity (σ−). This finding can be quantified by calculating the
time-resolved Stokes vector S for the induced polarization
D(t). To this end, we Fourier transform Eqs. (3) using a

Gaussian distribution with standard deviation σ :

G(σ,t − t ′) = 1√
2πσ 2

e
− (t−t ′)2

2σ2 (4)

as the normalized time-dependent window function. For the
actual calculations, it is important to choose a σ that extends
over several periods of the laser frequency, otherwise the
frequencies get erroneously blue-shifted. After integration and
some lengthy but rather straightforward algebraic manipula-
tions, we arrive at two compact summation formulas

D̃x(ω,t) =
∫ ∞

−∞
〈Dx(t ′)〉G(σ,t − t ′)eiωt ′ dt ′

= μ

2
√

2

4∑
k=1

(−1)keiAkt− 1
2 σ 2A2

k , (5)

D̃y(ω,t) =
∫ ∞

−∞
〈Dy(t ′)〉G(σ,t − t ′)eiωt ′ dt ′

= iμ

2
√

2

4∑
k=1

(−1)keiBkt− 1
2 σ 2B2

k , (6)

where the real constants Ak and Bk are given by

A1 = ω + ωl − 2
√

2μ, A2 = ω + ωl + 2
√

2μ,

A3 = ω − ωl + 2
√

2μ, A4 = ω − ωl − 2
√

2μ,
(7)

B1 = ω − ωl −
√

2μ, B2 = ω + ωl +
√

2μ,

B3 = ω + ωl −
√

2μ, B4 = ω − ωl +
√

2μ

[the order of Ak and Bk with respect to the signs is intentionally
not the same, so that the factors (−1)k in the sums of
Eqs. (5) and (6) give the correct signs]. Note that Eqs. (5)
and (6) approach the exact (nonwindowed) Fourier transform
of 〈Dx(t)〉 and 〈Dy(t)〉 for σ → ∞, as expected. Since μ � ω,
when investigating the behavior around the light frequency,
one could in principle even omit the terms involving ω + ωl ,
something that would be in line with the RWA used. We see that
the frequencies of D̃x(ω,t) and D̃y(ω,t) have slightly different
time-dependent phase factors (eiAkt and eiBkt , respectively),
which lead to alternating time ordering of their respective
maxima and minima (Fig. 2). The helicity of the circular
polarization is given by the sign of the fourth component of
the Stokes vector S(I,Q,U,V ):

V (ω,t) = 2 Im[D̃∗
y (ω,t)D̃x(ω,t)]

= −μ2

2

4∑
j=1
k=1

{
(−1)j+k cos[(Aj − Bk)t]e− 1

2 σ 2(A2
j +B2

k )}.
(8)

Figure 3 shows the induced polarization in the system, i.e.,
the fourth component of the Stokes vector V (ω,t) during
a full period. Note here that the choice of the width of
the window function through σ influences the shape of the
peaks: a wide window gives better frequency but worse time
resolution, while a narrow window gives an enhanced time
and reduced frequency resolution (narrow-band and wide-band
transforms). The peaks are not symmetrically located around
the resonant laser frequency (taken to be 1 in Fig. 3) but
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FIG. 3. (Color online) Fourth component V (ω,t) of the Stokes
vector indicating the helicity of the induced polarization in the
system (ωl = 1, σ = 4, μ = 0.01). The different helicities between
absorption (σ+) and emission (σ−) phases are evident (Ref. 8). V (ω,t)
is magnified 30 000 times.

slightly extend to higher frequencies (not visible in Fig. 3).
The reason is that the occupations of the levels change with
time (if the transition matrix elements become infinitesimal,
then the center of the peak is at the same frequency as the laser
pulse). These analytical results are completely consistent and
further corroborate the numerical results on a realistic system
published previously.8

It is clear that the width of the weighting window, given
by the experimental setup of the measurement apparatus and
mathematically expressed by σ , influences the result of the
measurement (Fig. 4). If σ is too large with respect to the
population transfer time tmax, then the measured light becomes
falsely linearly polarized simply because the experiment
averages out the absorption and the emission phase. If it is
too small, then it does not correctly capture the frequency.
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FIG. 4. (Color online) Maximal magnitude of the fourth com-
ponent of the Stokes vector Vmax = V (ω,tmax) vs σ (in logarithmic
scale). μ = 0.01 and ωl = 1. The black solid line is for the resonant
frequency ω = ωl , the red dashed lines are for smaller and the green
dotted lines for larger frequencies. Changing the magnitude of the
transition matrix elements μ does not change the shape or magnitude
of Vmax and only moves the lines to smaller or larger σ values (for
larger and smaller μ values, respectively). Vmax is magnified 30 000
times.

0.065 0.052
0.039 0.0260.013

0

0.013

0.026

0.039
0.052

0 50 100 150 200
0.0

0.5

1.0

1.5

2.0

time

fr
eq

u
en

cy

0.07

0.07

FIG. 5. (Color online) Third component U (ω,t) of the Stokes
vector indicating the linear induced polarization in the system
along the quadrant bisectors (ωl = 1, σ = 4, μ = 0.01). U (ω,t) is
magnified 30 000 times.

One can also calculate the other Stokes parameters, e.g.,
the third parameter U (ω,t) which gives the linear polarization
along the x − y diagonals (Fig. 5):

U (ω,t) = 2 Re[D̃∗
y (ω,t)D̃x(ω,t)]

= −μ2

2

4∑
j=1
k=1

{
(−1)j+k sin[(Aj − Bk)t]e− 1

2 σ 2(A2
j +B2

k )}.
(9)

We see a that there is a splitting of the linear polarization in
this direction: For slightly higher than resonant frequencies
(ω > ω0), the polarization plane is in the I and III quadrants,
while for slightly lower energies (ω < ω0), the plane is in the
II and IV quadrants (parallel to the z axis). For ω = ω0, the
two cancel out at all times.

B. Symmetric nondegenerate case

If the initial and final states are nondegenerate and the pulse
is set to the mean value of the two resonances ωl = Ec −
1
2 (Ea + Eb), in which case we can define Ec − Ea − ωl = �

and Ec − Eb − ωl = −�, the system can still be analytically
solved (Fig. 1, right panel). The system of the differential
equations within the interaction picture and using the RWA
becomes

ȧ(t) = −iμc(t)e−i�t , ḃ(t) = iμc(t)ei�t ,

ċ(t) = −iμ [a(t)ei�t − b(t)e−i�t ]︸ ︷︷ ︸
=f (t)

(10)

or

ȧ(t)ei�t = −iμc(t), ḃ(t)e−i�t = iμc(t), ċ(t) = −iμf (t)

(11)

with the same initial conditions as in the degenerate case.
By differentiating the newly defined function f (t), one
easily finds that f̈ (t) + 	2f (t) = 0 with 	 =

√
2μ2 + �2

and initial conditions f (0) = a(0)e0 − b(0)e0 = 1 and ḟ (0) =
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FIG. 6. (Color online) Time-dependent populations for sym-
metric detuning � = 0.005, ωl = 1 and transition matrix elements
μac = μcb = 0.01. The black solid line is the population of the initial
state |a〉, the red dashed line the population of the final state |b〉, and
the dotted green line the population of the intermediate state |c〉.

−i2μc(0) + i�[a(0)e0 + b(0)e0] = i�. From its solution and
Eqs. (11), we can find c(t):

f (t) = cos(	t) + i�

	
sin(	t) ⇒

c(t) = μ�

	2
[1 − cos(	t)] − iμ

	
sin(	t).

Now we can find a(t) and b(t) by integrating and taking into
account the boundary conditions. The resulting ground-state
wave-function coefficients become

a(t) =
[
	 cos

(
	t

2

)
+ i� sin

(
	t

2

)]2
e−i�t

	2
,

b(t) = 2 sin2

(
	t

2

)
μ2ei�t

	2
. (12)

Figure 6 shows the resulting population for a sinusoidal
laser pulse. Note that the magnitude of the transition matrix
elements affects only the period, and not the maximum transfer
achieved. This means that a nonresonant system (� �= 0)
can never exhibit a full population transfer (see Fig. 7). It
is important however, that the value of μ does not become
too strong with respect to the energy separation of the states
(ω), otherwise the time-dependent perturbation theory applied
[Eq. (10)] is no longer valid.
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max

FIG. 7. Maximum population transfer P max
b in the case of sym-

metric detuning � and transition matrix elements μac = μcb = 0.01.
For � → 0, we get the degenerate case and a 100% population
transfer. The horizontal line at � = 0.003 corresponds to Fig. 8.
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FIG. 8. (Color online) Time evolution of the induced polarization
in the material for the quasidegenerate system (� = 0.003, ωl = 1,
and μ = 0.01). The black solid line is the 〈Dx(t)〉 and the red dashed
line the 〈Dy(t)〉 component. Note again their relative phase difference
at early (absorption) and late (emission) times (see also Fig. 1, right
panel). Unlike the degenerate case (Fig. 2), the plot is no longer
symmetric.

The population of the final (target) state is

Pb(t) = b∗(t)b(t) = 4

[
μ

	
sin

(
	t

2

)]4

(13)

and first attains its maximum value P max
b = 4μ4

	4 at time tmax =
π
	

(see Figs. 6 and 7).
We can again calculate the expectation values of the time-

dependent, induced material polarization:

〈Dx(t)〉 = −4μ2

	3

{
2�	 cos(ωlt) sin2

(
	t

2

)

+ [�2 + 2μ2 cos(	t)] sin(	t) sin(ωlt)

}
, (14)

〈Dy(t)〉 = 4μ2

	4

{
2�[�2 + 2μ2 cos(	t)] sin2

(
	t

2

)
sin(ωlt)

−	3 cos(ωl t) sin(	t)

}
(15)

[note that for � = 0, these equations reduce to Eqs. (3)].
The behavior of the helicity of the induced material polariza-
tion is again similar to the degenerate case (Fig. 8).

Fourier transforming with a Gaussian window results in
similar, although more complicated, summation formulas. If
we keep only the terms with amplitudes of zeroth order with
respect to �, we get (for the full formulas, see the Appendix)

D̃x(ω,t) = μ2

	3

4∑
k=1

(−1)keiAkt− 1
2 σ 2A2

k ,

D̃y(ω,t) = iμ2

	

4∑
k=1

(−1)keiBkt− 1
2 σ 2B2

k , (16)

where

A1 = ω − 2	 + ωl, A2 = ω + 2	 + ωl,

A3 = ω + 2	 − ωl, A4 = ω − 2	 − ωl
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FIG. 9. (Color online) Fourth component V (ω,t) of the Stokes
vector indicating the helicity of the induced polarization in the system
(ωl = 1, σ = 1, μ = 0.2, � = 0.05). The different helicities between
absorption (σ+) and emission (σ−) phases are evident. Notice the
blue-shifting during the absorption phase and the red-shifting of the
emission phase. The magnitude of the transition matrix elements
μ are exaggerated in order to render the frequency shifting during
absorption (blue-shift) and emission (red-shift) phases visible.

and

B1 = ω − 	 − ωl, B2 = ω + 	 + ωl,

B3 = ω − 	 + ωl, B4 = ω + 	 − ωl.

Note again that the numbering order of Ak and Bk is not
the same. From Eqs. (16) it is again possible to derive
analytic expressions for the Stokes parameters. Note again
that for � → 0 they become the same as in the degenerate
case. The common feature of both the degenerate and the
quasidegerenate cases is that the terms of the sums have the
form exp(iAkt − 1

2σ 2A2
k) and exp(iBkt − 1

2σ 2B2
k ), so along

the time axis we get frequencies Ak (and Bk), while along the
ω axis we get Gaussian distributions centered at ±2	 ± ωl

(and ±	 ± ωl). Plotting the fourth Stokes parameter reveals
an interesting effect of the lift of degeneracy, i.e., the positive
helicity during the absorption phase gets slightly blue-shifted,
while the negative helicity during the emission phase gets
red-shifted. This is of course consistent with the fact that the
final state |b〉 is energetically closer to the intermediate state
|c〉 than that initial state |a〉 (Fig. 9).

III. FINITE TEMPERATURE

In order to include temperature in a microcanonical ensem-
ble, the most common way is the use of the density matrix, the
diagonal elements of which correspond to the population of the
several levels due to the temperature distribution (Boltzmann
distribution). There is, however, another possibility which
turns out to be computationally more practical if one uses
wave functions rather than density matrices to propagate the
system in time.33 The idea behind it is that every quantum state
which has the correct energy and maximizes the entropy of the
system can describe it, thus the thermal distribution is nothing

1 10 100 1000
T

0.002

0.004

0.006

0.008

0.010

0.012

0.014
V Ω

FIG. 10. (Color online) Fourth Stokes parameter as a function
of the temperature (logarithmic scale). The values used for the plot
are ω = ωl = Ec = 1 eV, σ = 1, μ = 0.01 [note that Eb enters only
the population distribution Pb(0) = b0]. The black solid line is for
Eb = 2.0 meV, the red dashed line for Eb = 1.5 meV, the green
dotted line for Eb = 1.0 meV, and the blue dashed-dotted line for
Eb = 0.5 meV. Clearly, the signal becomes much weaker but it does
not disappear for room temperature.

more than the integral over all such states

ψ =
∑

n

λnψn, (17)

where ψn are the eigenstates of the Hamiltonian. The
coefficients λn satisfy the convex sum |λn|2 = 1. Clearly, |λn|2
is the population Pn of state |n〉, which practically means that
the coefficient λn of state |n〉 in the above expansion is the
square root of its population with some arbitrary phase eiφn .
By using the ergodic theorem, we can calculate the system’s
response to a laser pulse for the general state and then
integrate over all phases. For realistic cases of our � system,
the intermediate excited state |c〉 has an energy of the order

0.5 1.0 1.5 2.0 2.5 3.0
Ec
�eV�

0.01

0.02

0.03

0.04

0.05

0.06

Vmax
�Ω�

FIG. 11. Fourth Stokes parameter as a function of Ec for
T = 300 K, σ = 1.0, μ = 0.05, and ω = ωl = 1 eV. The maximum
V (ω,t) value scales with T , but the behavior remains the same
(practically only the values of the ordinate axis change). See also
Fig. 10. Eb = 10 meV. The beatings have frequency 2

√
2μ and

therefore depend on the magnitude of the transition matrix elements,
which, at the same time, dictate the speed of the � process. μ is set
to 0.05 to make the beatings visible.
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of 1 eV and thus remains practically unpopulated at room
temperature (since Pc < 5 × 10−6 for T � 1000 K, we set
approximately Pc = 0). Without loss of generality, we can also
set the t = 0 at a time for which φa = 0 (since we will integrate
over all phases at the end). So, we change the initial conditions

of Eq. (1) to a(0) =
√

1
Z(T ) exp(− Ea

KT
) = cos θ

2 = a0 and

b(0) = eiφ
√

1
Z(T ) exp(− Eb

KT
) = eiφ sin θ

2 = eiφb0, where T is

the temperature, K the Boltzmann constant, Z(T ) the partition
function, and φ = φb − φa = φb the phase difference between
states |a〉 and |b〉 at time t = 0. The parameters {θ,φ} give the
point on the Bloch sphere for the two states and describe the
initial distribution.34 The solutions now for the general state
ψ become

a(t) = 1

2
[a0 + b0e

iφ + a0cos(
√

2μt) − b0e
iφcos(

√
2μt)],

b(t) = 1

2
[a0 + b0e

iφ − a0cos(
√

2μt) + b0e
iφcos(

√
2μt)],

c(t) = − i√
3

[(a0 − b0e
iφ) sin(

√
2μt)], (18)

which leads to the time-dependent polarization

〈Dx(t)〉 = 1√
2

sin(Ect) sin(2
√

2μt)[2a0b0 cos φ − 1],

〈Dy(t)〉 = −
√

2 sin(
√

2μt) (19)

× [(
a2

0 − b2
0

)
cos(Ect) − 2a0b0 sin(Ect) sin φ

]
.

Clearly, these still depend on φ. Fourier transforming using
again a Gaussian distribution as a window function, forming
the fourth Stokes parameter V (ω,t), and integrating over φ

(random phase approximation35,36) leads to

V (ω,t) = 1
8

(
2b2

0 − 1
)
e−σ 2[5μ2+3

√
2μ(ω+ωl )+(ω+ωl )2]{[−1 + e2σ 2(3

√
2μ+2ω)ωl − e6

√
2μσ 2(ω+ωl ) + e2σ 2ω(3

√
2μ+2ωl )]cos(

√
2μt)

+ [e2
√

2μσ 2(ω+ωl ) + e4
√

2μσ 2(ω+ωl ) − e2σ 2[2ωωl+
√

2μ(2ω+ωl )] − e2σ 2[2ωωl+
√

2μ(ω+2ωl )]]cos(3
√

2μt)

− e2σ 2(2
√

2μ+ω)ωl (e6
√

2μσ 2ω − 1)cos[(
√

2μ − 2ωl)t]e
2σ 2[ωωl+

√
2μ(ω+3ωl )](e2

√
2μσ 2ω − 1)cos[(3

√
2μ − 2ωlt)]

× e2σ 2(
√

2μ+ω)ωl (e6
√

2μσ 2ω − 1)cos[(
√

2μ + 2ωl)t][e
2σ 2ω(

√
2μ+ωl ) − e2σ 2ω(2

√
2μ+ωl )]cos[(3

√
2μ + 2ωl)t]}. (20)

Equation (20) may seem complicated but it gives insight
into the thermal behavior of the helicity signal in a spin-flip
experiment. The prefactor 2b2

0 − 1 describes the loss of the
signal as a function of the initial (thermal) population of
the final state |b〉 (Fig. 10). Another very interesting result is the
maximum signal as a function of the energy of the intermediate
level Ec (Fig. 11). The signal becomes maximal for Ec ≈ 1 eV,
although the efficiency of every single coherent � process
is close to 100%. This means that thermal distributions do
not completely conceal the effect, which survives in an
ensemble measurement. The reason for this is that there is
a net contribution to V (ω,t) from every pure state ψ . The
phenomenon is mathematically analogous to the observation
that the static phonon contributions to the optical susceptibility
of a system as function of the phononic coordinate (and
therefore again pertinent to the temperature discussion) do not
vanish when integrating over the whole period of the phononic
mode, provided that there are some nonlinear contributions
(quadratic terms).37

IV. CONCLUSIONS

We analytically solve the � model system for triplet states
under the influence of a spin-flipping laser pulse. We derive
a compact analytic form for the time-dependent, induced
polarization in the material both in the time and the frequency
domain (the latter using a Gaussian window function). We
thus show analytically that the process consists of two phases:
(i) an absorption phase during which the material absorbs light
of σ+ helicity, and (ii) an emission phase during which the
material emits light of σ− helicity. We find that in a degenerate

case, the two helicities occur at the same frequency, while for
quasidegenerate cases they are energetically shifted to opposite
directions. Our analytical results are in perfect accord with
other numerical results and they thus validate each other (to the
extent of the approximations done, i.e.. weak perturbations and
lifting of degeneracies at least two orders of magnitude smaller
than the energetic distance of the intermediate excited states).
We also analyze the process starting from a thermal distribution
and integrating over all possible relative phases. We find that
the averaged induced material polarization becomes weaker
but does not completely disappear, thus suggesting that the
measured signal in an experiment does not vanish for finite
temperatures. Finally, we find that the intensity of the signal
depends both on the frequency-measurement time window of
the apparatus used (mathematically expressed as σ ) as well as
on the energy of the intermediate level, although the coherent �
process can reach as much as 100%. These analytical findings
shed new light on the coherent ultrafast spin dynamics. They
analytically establish the importance of the light as an angular
momentum reservoir during laser-induced spin manipulation
in that they consider the irradiated material as an active light
source, the polarization of which makes sure that the total
angular momentum remains a conserved quantity.
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APPENDIX

The full-windowed Fourier transform of Eq. (14) is

D̃x(ω,t) = −μ4eit(ω+2	−ωl )− 1
2 σ 2(ω+2	−ωl )2

	3
− μ4eit(ω−2	+ωl )− 1

2 σ 2(ω−2	+ωl )2

	3
+ μ4eit(ω−2	−ωl )− 1

2 σ 2(ω−2	−ωl )2

	3

+μ4eit(ω+2	+ωl )− 1
2 σ 2(ω+2	+ωl )2

	3
− 2μ2eit(ω−ωl )− 1

2 σ 2(ω−ωl )2
�

	2
+ μ2eit(ω+	−ωl )− 1

2 σ 2(ω+	−ωl )2
�

	2

−2μ2eit(ω+ωl )− 1
2 σ 2(ω+ωl )2

�

	2
+ μ2eit(ω−	+ωl )− 1

2 σ 2(ω−	+ωl )2
�

	2
+ μ2eit(ω−	−ωl )− 1

2 σ 2(ω−	−ωl )2
�

	2

+μ2eit(ω+	+ωl )− 1
2 σ 2(ω+	+ωl )2

�

	2
− μ2eit(ω+	−ωl )− 1

2 σ 2(ω+	−ωl )2
�2

	3
− μ2eit(ω−	+ωl )− 1

2 σ 2(ω−	+ωl )2
�2

	3

+μ2eit(ω−	−ωl )− 1
2 σ 2(ω−	−ωl )2

�2

	3
+ μ2eit(ω+	+ωl )− 1

2 σ 2(ω+	+ωl )2
�2

	3
.

The full-windowed Fourier transform of Eq. (15) is

D̃y(ω,t) = iμ2eit(ω+	−ωl )− 1
2 σ 2(ω+	−ωl )2

	
− iμ2eit(ω−	+ωl )− 1

2 σ 2(ω−	+ωl )2

	
− iμ2eit(ω−	−ωl )− 1

2 σ 2(ω−	−ωl )2

	

+ iμ2eit(ω+	+ωl )− 1
2 σ 2(ω+	+ωl )2

	
− 2iμ4eit(ω−ωl )− 1

2 σ 2(ω−ωl )2
�

	4
+ 2iμ4eit(ω+	−ωl )− 1

2 σ 2(ω+	−ωl )2
�

	4

− iμ4eit(ω+2	−ωl )− 1
2 σ 2(ω+2	−ωl )2

�

	4
+ 2iμ4eit(ω+ωl )− 1

2 σ 2(ω+ωl )2
�

	4
+ iμ4eit(ω−2	+ωl )− 1

2 σ 2(ω−2	+ωl )2
�

	4

−2iμ4eit(ω−	+ωl )− 1
2 σ 2(ω−	+ωl )2

�

	4
+ 2iμ4eit(ω−	−ωl )− 1

2 σ 2(ω−	−ωl )2
�

	4
− 2iμ4eit(ω+	+ωl )− 1

2 σ 2(ω+	+ωl )2
�

	4

− iμ4eit(ω−2	−ωl )− 1
2 σ 2(ω−2	−ωl )2

�

	4
+ iμ4eit(ω+2	+ωl )− 1

2 σ 2(ω+2	+ωl )2
�

	4
+ 2iμ2eit(ω−ωl )− 1

2 σ 2(ω−ωl )2
�3

	4

− iμ2eit(ω+	−ωl )− 1
2 σ 2(ω+	−ωl )2

�3

	4
− 2iμ2eit(ω+ωl )− 1

2 σ 2(ω+ωl )2
�3

	4
+ iμ2eit(ω−	+ωl )− 1

2 σ 2(ω−	+ωl )2
�3

	4

− iμ2eit(ω−	−ωl )− 1
2 σ 2(ω−	−ωl )2

�3

	4
+ iμ2eit(ω+	+ωl )− 1

2 σ 2(ω+	+ωl )2
�3

	4
.
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